JPH06188242A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH06188242A
JPH06188242A JP33918092A JP33918092A JPH06188242A JP H06188242 A JPH06188242 A JP H06188242A JP 33918092 A JP33918092 A JP 33918092A JP 33918092 A JP33918092 A JP 33918092A JP H06188242 A JPH06188242 A JP H06188242A
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
metal wiring
film
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33918092A
Other languages
Japanese (ja)
Inventor
Sadahiro Kishii
貞浩 岸井
Hideki Harada
秀樹 原田
Hiroshi Horie
博 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP33918092A priority Critical patent/JPH06188242A/en
Publication of JPH06188242A publication Critical patent/JPH06188242A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To provide an interlayer insulating film which has excellent flatness and insulation for multilayer interconnection by coating bottom layer metal wiring with an SiO2 interlayer insulating film which has tensile stress so as to flatten the wiring, coating the insulating film with an SiO2 interlayer insulating film which has compressive stress and forming top layer metal wiring on the insulating film. CONSTITUTION:When bottom layer metal wiring 2 is performed for the introduction into a CVD device, temperature is kept at 400 deg.C and SiH4, PH3 and O2 are permitted to flow on the wiring by the normal pressure, a PSG film 3 which has tensile stress is accumulated. Then, the interlayer insulating film 3 composed of the PSG film is flattened by polishing and polishing deformation is modified by light chemical etching. The wiring is introduced into a plasma CVD device, is kept at 380 deg.C and is permitted to discharge in the pressure reduced condition while permitting SiH4, PH3 and N2O gas to flow and plasma is generated. As a result, an interlayer insulating film 4 which has compressive stress and composed of the PSG film is accumulated. A contact hole 6 which penetrates the interlayer insulating films 3 and 4 is provided and top layer metal wiring 5 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に関し、特
に多層配線を含む半導体装置とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device including multi-layer wiring and a method of manufacturing the same.

【0002】高度情報社会の進展と共に、半導体集積回
路は、いわゆるスケーリング則に沿って約3年で4倍の
速度で高集積化している。集積化技術は絶え間なく進歩
を続け、回路素子の微細化、高集積化に対応している。
配線の線幅は、U−LSIにおいて、サブミクロンサイ
ズからクォータミクロンサイズへと研究が進められてい
る。
With the progress of the advanced information society, semiconductor integrated circuits have been highly integrated at a speed four times higher in about three years according to the so-called scaling law. The integration technology is constantly advancing, and is responding to miniaturization and high integration of circuit elements.
In the U-LSI, the line width of wiring is being researched from submicron size to quarter micron size.

【0003】LSIの集積度向上に伴って、内部配線も
複雑化し、その占有面積が素子面積を凌ぐようになって
いる。そこで、半導体基板上における配線面積を減少さ
せ、かつ配線の自由度を増すため、多層配線化が推進さ
れている。たとえば、多層化はキロビットDRAM時代
の2層からメガビットDRAMでは3〜4層配線へとな
ってきた。
With the improvement in the degree of integration of LSIs, the internal wiring has become complicated, and the occupied area thereof exceeds the element area. Therefore, in order to reduce the wiring area on the semiconductor substrate and increase the degree of freedom of wiring, multilayer wiring has been promoted. For example, the number of layers has changed from two layers in the era of the kilobit DRAM to three to four layers of wiring in the megabit DRAM.

【0004】[0004]

【従来の技術】多層配線技術は、導電性配線と層間絶縁
膜の交互積層、層間接続、各層の平坦化、低抵抗化等、
多くの個別技術が集大成されたものである。
2. Description of the Related Art Multi-layer wiring technology includes alternating wiring of conductive wiring and interlayer insulating film, interlayer connection, flattening of each layer, reduction of resistance, etc.
It is the compilation of many individual technologies.

【0005】図2は、従来の技術による代表的な多層配
線工程の例を示す断面図である。簡単のために2層配線
としたが、より多層化した場合も基本的には同じと考え
てよい。
FIG. 2 is a sectional view showing an example of a typical multi-layer wiring process according to the prior art. Although two-layer wiring is used for the sake of simplicity, it can be basically considered to be the same even when the number of layers is increased.

【0006】図2(A)は、回路素子形成済の半導体基
板11に下層金属配線12を形成した状態を示す。たと
えば、厚い熱酸化膜(素子間分離膜)18を形成した半
導体基板11の能動領域にMOSトランジスタを形成
し、絶縁膜19を介して下層金属配線12を形成してい
る。
FIG. 2A shows a state in which the lower layer metal wiring 12 is formed on the semiconductor substrate 11 on which circuit elements have been formed. For example, a MOS transistor is formed in the active region of the semiconductor substrate 11 on which a thick thermal oxide film (element isolation film) 18 is formed, and a lower metal wiring 12 is formed via an insulating film 19.

【0007】図2(B)は、上下の金属配線に対する層
間絶縁膜の形成とその平坦化プロセスを示す図である。
通常、層間絶縁膜13には融点の低い酸化膜、たとえば
燐を含むSiO2 であるPSG、ボロンと燐を含むSi
2 であるBPSG、ボロンを含むSiO2 であるBS
G等が用いられる。
FIG. 2B is a diagram showing the formation of an interlayer insulating film for the upper and lower metal wirings and the planarization process thereof.
Usually, the interlayer insulating film 13 is an oxide film having a low melting point, for example, PSG, which is SiO 2 containing phosphorus, or Si containing boron and phosphorus.
O 2 BPSG, boron-containing SiO 2 BS
G or the like is used.

【0008】図2(A)で示すように、下層金属配線を
終えたチップ表面には回路配線によって多数の凹凸が形
成されている。このまま層間絶縁膜の形成、さらに上層
の配線を行なうと、凹凸が一層増幅されてリソグラフィ
工程で段差による焦点ボケによってパターニング不良を
生じたり、段差によって堆積膜の被覆率、いわゆるステ
ップカバレージが低下し、配線歩留まりや信頼性が低下
する等の問題を生じる。
As shown in FIG. 2A, a large number of irregularities are formed by circuit wiring on the surface of the chip where the lower metal wiring is finished. If the interlayer insulating film is formed as it is and wiring is further performed on the upper layer, the unevenness is further amplified to cause patterning failure due to defocusing due to a step in the lithography process, or the step reduces the coverage of the deposited film, so-called step coverage, This causes problems such as reduction in wiring yield and reliability.

【0009】そこで、図2(B)に示すように、層間絶
縁膜13を堆積した後、加熱することによって低融点ガ
ラスを軟化させ、流動化による平坦化(いわゆるグラス
リフロー)を行なう。たとえば、実線で示す表面が破線
で示す表面のように変化する。
Therefore, as shown in FIG. 2B, after the interlayer insulating film 13 is deposited, the low melting glass is softened by heating and flattened by fluidization (so-called glass reflow). For example, the surface indicated by the solid line changes to the surface indicated by the broken line.

【0010】この他の平坦化方法として、比較的よく用
いられる技術には、液状ガラスを塗布する法、いわゆる
スピンオングラス(SOG)や、一旦凹凸のある層間絶
縁膜を形成した後、その上にホトレジスト層等を塗布し
て平坦面を形成し、その後、表面から必要量をエッチす
るエッチバック法等がある。
As another flattening method, a relatively frequently used technique is a method of applying liquid glass, so-called spin-on-glass (SOG), or an interlayer insulating film having irregularities once formed and then formed thereon. There is an etch-back method in which a photoresist layer or the like is applied to form a flat surface, and then a necessary amount is etched from the surface.

【0011】図2(C)は、平坦化した層間絶縁膜13
上に上層金属配線14を行なった状態を示す。層間絶縁
膜13の所定位置に、下層金属配線12の表面に達する
コンタクトホール17を形成し、金属配線層を堆積し、
パターニングして上層金属配線14を形成する。
FIG. 2C shows a planarized interlayer insulating film 13
The state where the upper layer metal wiring 14 is provided is shown above. A contact hole 17 reaching the surface of the lower layer metal wiring 12 is formed at a predetermined position of the interlayer insulating film 13, and a metal wiring layer is deposited,
The upper metal wiring 14 is formed by patterning.

【0012】図2は、例としてMOSトランジスタに対
する2層配線についての説明であったが、集積回路素子
はその他にも多岐に亘る。たとえば、代表的な超LSI
であるDRAMは、1メモリセルが1ケのMOSトラン
ジスタと1ケのキャパシタからなる。
Although FIG. 2 has been described with respect to the two-layer wiring for the MOS transistor as an example, there are various other integrated circuit elements. For example, a typical VLSI
In the DRAM, one memory cell consists of one MOS transistor and one capacitor.

【0013】集積度が向上してメガビット時代に入る
と、素子微小化による利用可能表面積の減少で、キャパ
シタの蓄積電荷量を確保することが困難となり、3次元
キャパシタが実用化されている。
When the degree of integration is improved and the megabit era is entered, it becomes difficult to secure the amount of accumulated charge of the capacitor due to the decrease in usable surface area due to the miniaturization of elements, and the three-dimensional capacitor has been put into practical use.

【0014】このために、層間絶縁膜表面の凹凸は一段
と激しくなり、より一層の平坦化技術が求められてい
る。すなわち、図2で示したようなグラスリフローやS
OG等では対応しきれなくなっている。
For this reason, the unevenness on the surface of the interlayer insulating film becomes more severe, and a further flattening technique is required. That is, the glass reflow or S as shown in FIG.
OG etc. can no longer handle it.

【0015】[0015]

【発明が解決しようとする課題】新たな平坦化技術の1
つとして、グラスリフロー後に堆積膜を機械的研磨する
方法が提案されている。しかし、ステップカバレージの
良い減圧CVD、たとえばプラズマCVDで酸化膜を堆
積後、研磨すると、クラックが生じる危険がある。
One of the new flattening techniques
As one, a method of mechanically polishing the deposited film after glass reflow has been proposed. However, if an oxide film is deposited by low pressure CVD with good step coverage, for example, plasma CVD, and then polished, there is a risk of cracking.

【0016】本発明の目的は、平坦性と絶縁性に優れた
多層配線用の層間絶縁膜を備えた半導体装置およびその
製造方法を提供することである。
An object of the present invention is to provide a semiconductor device provided with an interlayer insulating film for multi-layer wiring, which is excellent in flatness and insulation, and a manufacturing method thereof.

【0017】[0017]

【課題を解決するための手段】本発明の層間絶縁膜は、
基本的に2層からなる。すなわち、本発明の半導体装置
は、回路素子を形成した半導体基板と、前記半導体基板
上に形成された下層金属配線と、該下層金属配線を被覆
し、平坦化した表面を有する引張り応力性SiO2 系の
第1の層間絶縁膜と、該第1の層間絶縁膜を被覆する圧
縮応力性SiO 2 系の第2の層間絶縁膜と、該第2の層
間絶縁膜上に形成された上層金属配線とを有する。
The interlayer insulating film of the present invention comprises:
It basically consists of two layers. That is, the semiconductor device of the present invention
Is a semiconductor substrate on which circuit elements are formed, and the semiconductor substrate
Covering the lower layer metal wiring formed above and the lower layer metal wiring
And tensile stressed SiO having a flattened surface2System
A first interlayer insulating film and a pressure for covering the first interlayer insulating film.
Shrink stress SiO 2System second interlayer insulating film and the second layer
And an upper metal wiring formed on the inter-insulating film.

【0018】[0018]

【作用】一般的に、プラズマCVDで形成した酸化シリ
コン膜は、下地半導体基板に対して圧縮性応力を及ぼ
す。もし、プラズマCVDで形成した圧縮応力性堆積膜
表面を研磨して平坦化すると、圧縮性応力は下地凹凸に
沿って局所的に不均一に残存する。このため、酸化膜に
マイクロクラックが生じ易いと考えられる。クラックは
絶縁不良の発生等につながる。
In general, the silicon oxide film formed by plasma CVD exerts compressive stress on the underlying semiconductor substrate. If the surface of the compressive stress deposited film formed by plasma CVD is polished and flattened, the compressive stress locally remains uneven along the unevenness of the base. Therefore, it is considered that microcracks are likely to occur in the oxide film. Cracks lead to defective insulation.

【0019】半導体基板に対して、引張り応力を及ぼす
第1の層間絶縁膜は、研磨してもクラックを生じること
が少ない。さらに、圧縮応力を及ぼす第2の層間絶縁膜
を直接重ねて堆積すると、応力歪が相殺される。
The first interlayer insulating film exerting tensile stress on the semiconductor substrate is less likely to be cracked even if it is polished. Further, if the second interlayer insulating film that exerts compressive stress is directly overlaid and deposited, the stress strain is offset.

【0020】第1の層間絶縁膜堆積後に、機械的技術を
行なって表面を平坦化し、その上に第2の層間絶縁膜を
堆積するので、上層金属配線は平坦な面上に行なうこと
ができる。
After depositing the first interlayer insulating film, a mechanical technique is applied to planarize the surface and the second interlayer insulating film is deposited thereon, so that the upper metal wiring can be formed on the flat surface. .

【0021】以下、本発明を実施例に基づいてより詳し
くのべる。
Hereinafter, the present invention will be described in more detail based on examples.

【0022】[0022]

【実施例】図1は、実施例による2層配線の主要工程を
示す断面図である。図示してあるのは集積回路の一部で
あり、半導体基板1に形成された回路素子は、図2と同
様のMOSトランジスタである。
EXAMPLE FIG. 1 is a sectional view showing the main steps of a two-layer wiring according to an example. A part of the integrated circuit is shown, and the circuit element formed on the semiconductor substrate 1 is a MOS transistor similar to that shown in FIG.

【0023】本実施例では、常圧CVDとプラズマCV
DとのPSG膜を用いるが、そのプロセス条件は概ね以
下のようなものである。
In this embodiment, atmospheric pressure CVD and plasma CV are used.
The PSG film with D is used, and the process conditions are generally as follows.

【0024】[0024]

【表1】 [Table 1]

【0025】図1(A)に示すように、厚いフィールド
絶縁膜、すなわち、熱酸化膜8で素子形成領域を分離し
たSi単結晶ウエハからなる半導体基板1に、酸化膜形
成、多結晶Si層堆積、ホトリソグラフィと選択エッチ
ングおよびイオン注入技術を利用して、ポリSiゲート
G、ソースS、ドレインD領域を形成する。さらに、電
極間絶縁膜9の形成、コンタクトホール6の形成を行な
い、下層金属配線2を形成する。
As shown in FIG. 1A, a thick field insulating film, that is, a semiconductor substrate 1 made of a Si single crystal wafer in which element formation regions are separated by a thermal oxide film 8 is formed with an oxide film and a polycrystalline Si layer. A poly-Si gate G, a source S, and a drain D region are formed by using deposition, photolithography, selective etching, and ion implantation technique. Further, the interelectrode insulating film 9 and the contact hole 6 are formed to form the lower layer metal wiring 2.

【0026】図1(A)は、下層金属配線2上へ第1の
層間絶縁膜3を堆積した状態を示す。第1の層間絶縁膜
3は、引張り応力性SiO2 系膜からなる。たとえば、
高融点金属等の下層金属配線2を行なった試料を、CV
D装置内に導入し、以下に述べるような常圧CVDによ
って第1の層間絶縁膜3を堆積する。
FIG. 1A shows a state in which the first interlayer insulating film 3 is deposited on the lower metal wiring 2. The first interlayer insulating film 3 is made of a tensile stress SiO 2 based film. For example,
CV was applied to the sample on which the lower metal wiring 2 such as high melting point metal was formed.
Then, the first interlayer insulating film 3 is deposited by atmospheric pressure CVD as described below.

【0027】試料を400℃に保持し、この上に常圧で
SiH4 、PH3 およびO2 を流すと、 SiH4 +2O2 →SiO2 +2H2 O SiH4 +2H2 O→SiO2 +4H2 4PH3 +2O2 →2P2 2 +6H2 等の反応が生じて試料上にPSG膜3が堆積する。この
PSG膜3は代表的には1.0×10-9dyn/cm2
の応力を内蔵する。
When the sample was kept at 400 ° C. and SiH 4 , PH 3 and O 2 were flown over it at normal pressure, SiH 4 + 2O 2 → SiO 2 + 2H 2 O SiH 4 + 2H 2 O → SiO 2 + 4H 2 4PH A reaction such as 3 + 2O 2 → 2P 2 O 2 + 6H 2 occurs and the PSG film 3 is deposited on the sample. The PSG film 3 is typically 1.0 × 10 −9 dyn / cm 2
Built-in stress.

【0028】図1(A)で示した下層金属配線2の下地
表面からの高さが約0.8μm(最大値)の場合、PS
G膜3の膜厚は、たとえば約2μmとする。図1(B)
に示すように、次に、第1の層間絶縁膜3の研磨を行な
う。研磨は、いわゆるメカノケミカル方式であり、たと
えばロデール社製の研磨布IC60と研磨剤WS100
1(2倍希釈)を用いて150g/cm2 の加圧下で行
なうことができる。この研磨工程によって厚さ約1μm
分のPSG膜を除去し、表面を平坦化する。
When the height of the lower metal wiring 2 shown in FIG. 1 (A) from the underlying surface is about 0.8 μm (maximum value), PS
The film thickness of the G film 3 is, eg, about 2 μm. Figure 1 (B)
Then, the first interlayer insulating film 3 is polished as shown in FIG. Polishing is a so-called mechanochemical method, for example, polishing cloth IC60 and polishing agent WS100 manufactured by Rodel Co.
1 (2-fold dilution) can be performed under a pressure of 150 g / cm 2 . This polishing process results in a thickness of approximately 1 μm
Then, the PSG film is removed to flatten the surface.

【0029】次に、研磨で平坦化した第1の層間絶縁膜
3上に、以下に述べるようなプラズマCVDによって圧
縮応力性の第2の層間絶縁膜4を堆積する。まず、研磨
工程後、第1の層間絶縁膜3表面を軽く化学エッチング
する。NH 4 OH1:H2 2 4:H2 O20の容積比
でエッチング液を作り、80℃に加熱して試料を5分間
浸漬する。この処理でSiO2 系膜表面層が除去され、
研磨歪が緩和される。
Next, the first interlayer insulating film flattened by polishing
3 on top of the substrate by plasma CVD as described below.
A second interlayer insulating film 4 having a contractive stress property is deposited. First, polishing
After the process, the surface of the first interlayer insulating film 3 is lightly chemically etched.
To do. NH FourOH1: H2O24: H2O20 volume ratio
Make an etching solution with and heat to 80 ℃ for 5 minutes.
Soak. This process makes SiO2The system membrane surface layer is removed,
Polishing strain is alleviated.

【0030】次に、試料をプラズマCVD装置内に導入
する。試料温度を380℃に保持し、SiH4 、PH3
およびN2 Oガスを全圧にして約1.0Torr流しな
がら減圧状態で放電させ、ガスプラズマを発生させる。
プラズマ内でガス分子は活性化される。
Next, the sample is introduced into the plasma CVD apparatus. The sample temperature is maintained at 380 ° C, and SiH 4 , PH 3
And N 2 O gas at a total pressure of about 1.0 Torr and discharged under reduced pressure to generate gas plasma.
Gas molecules are activated in the plasma.

【0031】この結果、SiH4 とN2 Oの反応が生じ
てPドープSiO2 、すなわちPSG膜が試料上に堆積
する。これが第2の層間絶縁膜4である。このプラズマ
CVDによるPSG膜は、Si基板との間に代表的には
−1.0×10-9dyn/cm2 の圧縮性応力を発生さ
せる。
As a result, a reaction between SiH 4 and N 2 O occurs, and P-doped SiO 2 , that is, a PSG film is deposited on the sample. This is the second interlayer insulating film 4. The PSG film formed by the plasma CVD typically generates compressive stress of −1.0 × 10 −9 dyn / cm 2 with the Si substrate.

【0032】第2の層間絶縁膜4の厚さは約1μmとす
る。下地表面が平坦化されているので、第2の層間絶縁
膜4の表面はほぼ平坦である。PSG膜3とPSG膜4
は、大きさがほぼ等しく、符号が逆の応力を発生させ
る。このために、約1μmの厚さをそれぞれ有する両P
SG膜間では、応力歪は相当程度相殺される。
The thickness of the second interlayer insulating film 4 is about 1 μm. Since the underlying surface is flattened, the surface of the second interlayer insulating film 4 is almost flat. PSG film 3 and PSG film 4
Generate stresses of approximately equal magnitude but opposite signs. To this end, both Ps each having a thickness of about 1 μm
Between the SG films, the stress strain is canceled out to a large extent.

【0033】図1(C)は、上層配線の形成工程を示
す。ホトリソグラフィと選択エッチングの技術を用い
て、所定の位置に第1の層間絶縁膜3および第2の層間
絶縁膜4を貫通するコンタクトホール(ビア孔)6を設
ける。
FIG. 1C shows a step of forming an upper layer wiring. A contact hole (via hole) 6 penetrating the first interlayer insulating film 3 and the second interlayer insulating film 4 is provided at a predetermined position by using a technique of photolithography and selective etching.

【0034】次に、Al等の上層金属配線を形成し、再
びホトリソグラフィの技術を用いてパターニングした上
層金属配線5を形成する。たとえば、Alのスパッタリ
ングを用い、コンタクトホール6内にもAlを充填する
ようにすれば、上層、下層金属配線の接続が行なわれ
る。なお、コンタクトホール内の充填をポリSiや高融
点金属で前もって行なってもよい。
Next, an upper layer metal wiring 5 of Al or the like is formed, and an upper layer metal wiring 5 is formed by patterning again using the photolithography technique. For example, if the contact holes 6 are also filled with Al by using Al sputtering, the upper and lower metal wirings are connected. The contact holes may be filled with poly-Si or a refractory metal in advance.

【0035】図1は、簡単のために2層配線の例を示し
たが、3層、4層配線の場合は同様の工程を繰り返して
行なえばよい。金属配線の材料は、加熱処理等との関係
で適当に選択すればよい。
Although FIG. 1 shows an example of two-layer wiring for simplification, the same process may be repeated in the case of three-layer and four-layer wiring. The material of the metal wiring may be appropriately selected in consideration of heat treatment or the like.

【0036】上述の実施例では、第1の層間絶縁膜3と
してシランの常圧CVDによって堆積したPSG膜を用
いたが、他の方法で第1の層間絶縁膜を形成することも
できる。たとえば、テトラエチルオルソシリケートSi
(OC2 5 4 (TEOS)の分解反応を利用するこ
とも可能である。
Although the PSG film deposited by atmospheric pressure CVD of silane is used as the first interlayer insulating film 3 in the above-mentioned embodiment, the first interlayer insulating film can be formed by another method. For example, tetraethyl orthosilicate Si
It is also possible to utilize the decomposition reaction of (OC 2 H 5 ) 4 (TEOS).

【0037】下層金属配線した試料をCVD装置内に導
入し、試料温度を約400℃程度としてTEOSを流入
させると、 Si(OC2 5 4 →SiO2 +気体生成物 の形で熱分解反応が起き、SiO2 膜が堆積する。この
時PH3 も同時に導入すれば、PSG膜が生成する。
When the sample with the lower metal wiring is introduced into the CVD apparatus and TEOS is introduced at a sample temperature of about 400 ° C., thermal decomposition takes place in the form of Si (OC 2 H 5 ) 4 → SiO 2 + gas product. A reaction occurs and a SiO 2 film is deposited. At this time, if PH 3 is also introduced at the same time, a PSG film is formed.

【0038】TEOSを用いたCVDは、堆積膜の均一
性に優れており、また熱分解反応のため、ステップカバ
レージに優れている。さらに、凹部を埋めるリフロー作
用と類似の効果があり、平坦性はシランを用いた常圧C
VD法のSiO2 系膜より優れている。なお、この結
果、生じたSiO2 (PSG)膜も引張り応力性を有し
ている。
The CVD using TEOS is excellent in the uniformity of the deposited film and is excellent in the step coverage because of the thermal decomposition reaction. Further, it has an effect similar to the reflow action of filling the recess, and the flatness is normal pressure C using silane.
It is superior to the VD method SiO 2 film. The resulting SiO 2 (PSG) film also has tensile stress properties.

【0039】なお、第1の層間絶縁膜3に圧縮応力性S
iO2 膜を用いて、研磨後、引張り応力性のSiO2
からなる第2の層間絶縁膜4を堆積させても、応力歪相
殺は可能で、経時変化によるクラックの発生防止には効
果がある。しかし、Si基板上に堆積させた圧縮応力性
SiO2 膜を前記実施例のようにして研磨すると、Si
2 膜にクラックが生じることがある。
The compressive stress property S is applied to the first interlayer insulating film 3.
Even if the second interlayer insulating film 4 made of a tensile stressed SiO 2 film is deposited after polishing using the iO 2 film, the stress strain can be canceled out, and it is effective in preventing the generation of cracks due to aging. is there. However, when the compressive stress SiO 2 film deposited on the Si substrate is polished as in the above embodiment, Si
A crack may occur in the O 2 film.

【0040】前記実施例では、第1の層間絶縁膜3が引
張り応力性SiO2 系膜からなる。この膜に研磨工程で
クラックが入る危険性は少ない。この上に圧縮応力性S
iO 2 系膜を形成することにより、クラックを生じる危
険性少なく、応力の相殺が行なえる。
In the above-mentioned embodiment, the first interlayer insulating film 3 is not drawn.
Tensile stress SiO2It consists of a system membrane. In this film polishing process
There is little risk of cracking. Compressive stress S
iO 2By forming a system film, there is a risk of cracking.
It is less rugged and can cancel the stress.

【0041】引張り応力性SiO2 系膜と圧縮応力性S
iO2 系膜としては、図3に示すようなものを用いるこ
とができる。以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
Tensile stress SiO 2 film and compressive stress S
As the iO 2 -based film, a film as shown in FIG. 3 can be used. The present invention has been described above with reference to the embodiments,
The present invention is not limited to these. For example,
It will be apparent to those skilled in the art that various changes, improvements, combinations and the like can be made.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
多層配線における平坦性が改善される。上層配線のステ
ップカバレージ特性が向上する。また、層間絶縁膜に内
蔵される応力歪が相殺して経時劣化を低減することがで
きる。
As described above, according to the present invention,
The flatness in the multilayer wiring is improved. The step coverage characteristic of the upper layer wiring is improved. In addition, the stress strains built in the interlayer insulating film can be offset to reduce deterioration over time.

【0043】この結果、高集積化半導体装置の信頼性向
上に資することができると考えられる。
As a result, it is considered that the reliability of the highly integrated semiconductor device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例による2層配線工程の主要部を示す断面
図である。
FIG. 1 is a sectional view showing a main part of a two-layer wiring process according to an example.

【図2】従来例による2層配線工程の主要部を示す断面
図である。
FIG. 2 is a sectional view showing a main part of a two-layer wiring process according to a conventional example.

【図3】各種ガラス膜の室温における応力を示すグラフ
である。
FIG. 3 is a graph showing stress at room temperature of various glass films.

【符号の説明】[Explanation of symbols]

1、11 半導体基板 2、12 下層金属配線 3 第1の層間絶縁膜 4 第2の層間絶縁膜 5、14 上層金属配線 6、17 コンタクトホール 8、18 熱酸化膜 9、19 絶縁膜 13 層間絶縁膜 1, 11 Semiconductor substrate 2, 12 Lower layer metal wiring 3 First interlayer insulating film 4 Second interlayer insulating film 5, 14 Upper layer metal wiring 6, 17 Contact hole 8, 18 Thermal oxide film 9, 19 Insulating film 13 Interlayer insulation film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回路素子を形成した半導体基板(1)
と、 前記半導体基板(1)上に形成された下層金属配線
(2)と、 該下層金属配線(2)を被覆し、研磨されてできる平坦
化した表面を有する引張り応力性SiO2 系の第1の層
間絶縁膜(3)と、 該第1の層間絶縁膜(3)を被覆する圧縮応力性SiO
2 系の第2の層間絶縁膜(4)と、 該第2の層間絶縁膜(4)上に形成された上層金属配線
(5)とを有する半導体装置。
1. A semiconductor substrate (1) on which a circuit element is formed.
A lower-layer metal wiring (2) formed on the semiconductor substrate (1), and a tensile-stressing SiO 2 -based first metal wiring (2) having a flattened surface formed by polishing and polishing the lower-layer metal wiring (2). First interlayer insulating film (3) and compressive stress SiO that covers the first interlayer insulating film (3)
A semiconductor device having a 2- system second interlayer insulating film (4) and an upper layer metal wiring (5) formed on the second interlayer insulating film (4).
【請求項2】 さらに、前記上層金属配線(5)上に、
前記第1の層間絶縁膜と第2の層間絶縁膜と同様の第3
の層間絶縁膜と第4の層間絶縁膜とを有する請求項1記
載の半導体装置。
2. Further, on the upper metal wiring (5),
The same third interlayer insulating film as the first interlayer insulating film and the second interlayer insulating film
2. The semiconductor device according to claim 1, further comprising: the interlayer insulating film and the fourth interlayer insulating film.
【請求項3】 回路素子を形成した半導体基板(1)上
に、下層金属配線(2)を形成する工程と、 該下層金属配線(2)上に、引張り応力を内蔵するSi
2 系膜を堆積する工程と、 前記引張り応力を内蔵するSiO2 系膜を平坦化研磨し
て平坦化された表面を有する第1の層間絶縁膜(3)と
する工程と、 該第1の層間絶縁膜(3)上に、圧縮応力を内蔵するS
iO2 系膜を堆積して第2の層間絶縁膜(4)を形成す
る工程と、 該第1および第2の層間絶縁膜(3、4)を貫通して前
記下層金属配線(2)に達するコンタクトホール(6)
を設けた後、表面上に上層金属配線(5)を形成する工
程とを含む半導体装置の製造方法。
3. A step of forming a lower layer metal wiring (2) on a semiconductor substrate (1) on which a circuit element is formed, and Si having a tensile stress built in on the lower layer metal wiring (2).
A step of depositing an O 2 -based film; a step of flattening and polishing the SiO 2 -based film containing a tensile stress to form a first interlayer insulating film (3) having a flattened surface; S containing a compressive stress on the interlayer insulating film (3) of
a step of depositing an iO 2 -based film to form a second interlayer insulating film (4); and a step of penetrating the first and second interlayer insulating films (3, 4) to form the lower metal wiring (2). Contact hole reached (6)
And a step of forming an upper layer metal wiring (5) on the surface thereof after the formation of the semiconductor device.
JP33918092A 1992-12-18 1992-12-18 Semiconductor device and its manufacture Withdrawn JPH06188242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33918092A JPH06188242A (en) 1992-12-18 1992-12-18 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33918092A JPH06188242A (en) 1992-12-18 1992-12-18 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH06188242A true JPH06188242A (en) 1994-07-08

Family

ID=18324999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33918092A Withdrawn JPH06188242A (en) 1992-12-18 1992-12-18 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH06188242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912185A (en) * 1995-12-30 1999-06-15 Samsung Electronics Co., Ltd. Methods for forming contact holes having improved sidewall profiles
US6004729A (en) * 1996-11-02 1999-12-21 Samsung Electronics Co., Ltd. Methods of improving photoresist adhesion for integrated circuit fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912185A (en) * 1995-12-30 1999-06-15 Samsung Electronics Co., Ltd. Methods for forming contact holes having improved sidewall profiles
US6004729A (en) * 1996-11-02 1999-12-21 Samsung Electronics Co., Ltd. Methods of improving photoresist adhesion for integrated circuit fabrication

Similar Documents

Publication Publication Date Title
JP2820187B2 (en) Method for manufacturing semiconductor device
JPH11307633A (en) Semiconductor device having film of low permittivity and manufacture thereof
JP2600600B2 (en) Abrasive, method for manufacturing the same, and method for manufacturing semiconductor device using the same
JPH1022473A (en) Manufacture of semiconductor device
JPH11204645A (en) Interlayer insulating film of semiconductor device and manufacture thereof
JPH11312679A (en) Manufacture of wide and flattened semiconductor device
JPH09116009A (en) Forming method for connecting hole
KR960001339B1 (en) Semiconductor memory device and the manufacturing
US5963837A (en) Method of planarizing the semiconductor structure
JPH06188242A (en) Semiconductor device and its manufacture
US6054360A (en) Method of manufacturing a semiconductor memory device with a stacked capacitor wherein an electrode of the capacitor is shaped using a high melting point metal film
JP3127983B2 (en) Method for manufacturing semiconductor device
JPH09167765A (en) Insulation layer and method of forming it
JPH07273182A (en) Fabrication of semiconductor device
JPH1187511A (en) Method of forming contact plug of semiconductor device and planarization of insulation film
JP3203720B2 (en) Method of forming trench
JPH10340952A (en) Method for forming multilayer wiring in integrated circuit
KR20060058583A (en) Conductive structure, method of manufacturing the conductive structure, semiconductor device including the conductive structure and method of manufacturing the semiconductor device
KR100224788B1 (en) Process for fabricating semicondcutor device
US6054397A (en) BPSG planarization method having improved planarity and reduced chatter mark defects
JP2003273237A (en) Method of manufacturing semiconductor device
JP2611744B2 (en) Method for manufacturing semiconductor device
JP3287326B2 (en) Method for manufacturing semiconductor device
US6472313B2 (en) Device formation method for preventing pattern shift caused by glass layer reflow
JPH0684902A (en) Method of flattening insulation film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307