JPH06187615A - Magneto-resistance effect reproduction head - Google Patents

Magneto-resistance effect reproduction head

Info

Publication number
JPH06187615A
JPH06187615A JP33997992A JP33997992A JPH06187615A JP H06187615 A JPH06187615 A JP H06187615A JP 33997992 A JP33997992 A JP 33997992A JP 33997992 A JP33997992 A JP 33997992A JP H06187615 A JPH06187615 A JP H06187615A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive
layer
center
inner end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33997992A
Other languages
Japanese (ja)
Inventor
Chiaki Ishikawa
千明 石川
Ko Suzuki
香 鈴木
Naoki Koyama
直樹 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33997992A priority Critical patent/JPH06187615A/en
Publication of JPH06187615A publication Critical patent/JPH06187615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magneto-resistance effect reproduction head which can reduce the crosstalk quantity of the conventional head by 6-10dB and has the satisfactory off-track characteristic. CONSTITUTION:The magneto-resistance effect reproduction head has no coincidence between the center of a center magnetism-sensitive area 11 set in the track width direction and the center between the inner end faces of an electrode. In particular, the ratio (d/T) between the error (d) caused between the center of the area 11 and the distance T between the inner end faces of the electrode is set at 0.05-0.5 and preferably at 0.1-0.3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体から情報
信号を読み取るための再生ヘッドに係り、特に、改良さ
れた磁気抵抗効果再生ヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reproducing head for reading an information signal from a magnetic recording medium, and more particularly to an improved magnetoresistive effect reproducing head.

【0002】[0002]

【従来の技術】従来、磁気抵抗効果(MR)センサまた
はヘッドと呼ばれる磁気読み取り変換器が知られてい
る。このようなセンサは、大きな線記録密度の磁気表面
からデータを読み取ることができることが知られてい
る。MRセンサは、磁気抵抗効果材料から作った読み取
り素子の抵抗変化を使って、磁気信号を素子が感知する
磁束の量および方向の関数として検出する。
2. Description of the Related Art Conventionally, a magnetic reading transducer called a magnetoresistive effect (MR) sensor or a head is known. It is known that such a sensor can read data from a magnetic surface having a large linear recording density. MR sensors use the resistance change of a read element made of a magnetoresistive material to detect a magnetic signal as a function of the amount and direction of magnetic flux sensed by the element.

【0003】従来では、MR素子が最適に動作するため
には、二つのバイアス磁界をかける必要があることが示
されている。磁束に対する応答が線形になるようにMR
素子にバイアスをかけるために、一般に横方向バイアス
磁界を使用する。このバイアス磁界は、磁気媒体の面に
垂直で平坦なMR素子の表面に平行である。このバイア
ス印加法には電流バイアス,シャントバイアス,ソフト
バイアス,ソフトアジィスントレーヤ(SAL)バイア
ス等、種々の方法がある。これらの横方向バイアスはヘ
ッドをR−H特性曲線の最も直線的な範囲にバイアスさ
せるのに十分なレベルで発生される。
Conventionally, it has been shown that it is necessary to apply two bias magnetic fields for the MR element to operate optimally. MR for linear response to magnetic flux
A lateral bias field is commonly used to bias the device. This bias field is perpendicular to the plane of the magnetic medium and parallel to the flat MR element surface. There are various methods for applying the bias, such as current bias, shunt bias, soft bias, and soft-aisson tracer (SAL) bias. These lateral biases are generated at a level sufficient to bias the head into the most linear range of the RH characteristic curve.

【0004】MR素子で使用されている他のバイアス磁
界は、当技術分野で縦バイアス磁界と呼ばれるもので、
磁気媒体の表面に平行、かつ、MR素子の長手方向に平
行である。縦バイアス磁界の機能は、MR素子内の多磁
区作用から生じるバルクハウゼンノイズを抑えることで
ある。
Another bias field used in MR elements is what is referred to in the art as the longitudinal bias field,
It is parallel to the surface of the magnetic medium and parallel to the longitudinal direction of the MR element. The function of the longitudinal bias magnetic field is to suppress Barkhausen noise caused by multi-domain effect in the MR element.

【0005】MRセンサ用のバイアス法および装置が従
来技術で多数開発されている。しかし、記録密度を大き
くするにつれて、記録トラックをより狭くし、トラック
にそった線記録密度を大きくすることが必要になってき
た。これらの用件を満たす小型MRセンサは、従来技術
を使用して実現できない。
Many prior art bias methods and devices for MR sensors have been developed. However, as the recording density increases, it becomes necessary to make the recording track narrower and increase the linear recording density along the track. A compact MR sensor that meets these requirements cannot be realized using conventional techniques.

【0006】これらの従来技術の問題に対する概念上の
解決策が、パターン化した縦方向バイアスの実施によっ
て得られた。この解決策は、特開昭60−59518 号および
特開平2−220213 号公報に記述されている。簡単に言う
と、上記の発明はMR層の端部領域を適切な単磁区状態
にし、この結果、MR層の中央部感磁領域内に単磁区状
態が誘導される。これは、MR層の端部領域に接して、
MR膜より保磁力の大きい強磁性体層を設けることで、
端部領域内だけに縦方向バイアスを発生させることによ
って実現できる。この概念の実施例では、縦方向バイア
スは、硬磁性体層と軟磁性MR層の強磁***換結合もし
くは静磁結合によって実現される。
A conceptual solution to these prior art problems has been obtained by implementing patterned longitudinal biasing. This solution is described in JP-A-60-59518 and JP-A-2-220213. Briefly, the above-mentioned invention puts the end region of the MR layer into an appropriate single domain state, and as a result, the single domain state is induced in the central magnetic sensitive region of the MR layer. This is in contact with the edge region of the MR layer,
By providing a ferromagnetic layer having a coercive force larger than that of the MR film,
This can be achieved by generating the longitudinal bias only in the end region. In an embodiment of this concept, the longitudinal bias is realized by ferromagnetic exchange coupling or magnetostatic coupling between the hard magnetic layer and the soft magnetic MR layer.

【0007】[0007]

【発明が解決しようとする課題】この従来技術では、電
極間の抵抗変化が最大となる感度の中心とMRヘッドの
幾何学的な中心は一致しておらず、トラック幅方向の感
度分布は左右で非対称になる(図2(b))。このた
め、媒体とヘッドの位置ずれが生じた場合に、隣接トラ
ックから読む信号(クロストーク)が、分布の傾きが急
峻な側で増大する。例えば、隣接媒体トラックの端部が
Q点にある場合のクロストーク量は、左右対称な感度分
布をもつヘッド(a)と比べて、斜線で示す面積に相当
する分、大きい。
In this prior art, the sensitivity center where the resistance change between the electrodes is maximum and the geometric center of the MR head do not coincide, and the sensitivity distribution in the track width direction is left and right. Becomes asymmetrical (Fig. 2 (b)). For this reason, when the medium and the head are misaligned, the signals (crosstalk) read from the adjacent tracks increase on the side where the distribution gradient is steep. For example, the crosstalk amount when the end of the adjacent medium track is located at the point Q is larger than that of the head (a) having the symmetrical sensitivity distribution by the amount corresponding to the area indicated by the diagonal lines.

【0008】本発明の目的は、トラック幅方向の感度分
布が左右対称になるようにヘッドを設計し、クロストー
ク量が小さい、オフトラック特性の良好な磁気抵抗効果
再生ヘッドを得ることにある。
An object of the present invention is to design a head so that the sensitivity distribution in the track width direction is symmetrical and to obtain a magnetoresistive reproducing head having a small amount of crosstalk and good off-track characteristics.

【0009】[0009]

【課題を解決するための手段】上記目的は、中央部感磁
領域のトラック幅方向の中心と、電極の内端面間の中心
をずらすことにより達せられる。
The above object can be achieved by displacing the center in the track width direction of the central magnetic sensitive region and the center between the inner end faces of the electrodes.

【0010】[0010]

【作用】図3は従来のMRヘッドに横方向バイアス磁界
を上方に印加したときの反磁界を模式的に示したもので
ある。横方向バイアス磁界により、感磁領域の磁化は約
45°傾き、また、縦方向バイアス磁界により磁区制御
領域の磁化は膜の長手方向を向く。このような磁化状態
から生じる磁荷による反磁界を示した。図のように、反
磁界はMR膜の左下部より右下部のほうが小さい。トラ
ック幅方向の感度分布が左右で非対称になる原因は、媒
体からの漏洩磁界の影響が強いMR膜の下部で、反磁界
の影響が左右で異なることによる。例えば、左側の磁区
制御領域の右端を左方向へ所定量移動して、感磁領域の
中心と電極の内端面間の中心をずらすと、電極内におい
て左右の反磁界が一様となり、トラック幅方向の感度分
布が左右で対称になる。
FIG. 3 schematically shows a demagnetizing field when a lateral bias magnetic field is applied upward to a conventional MR head. The lateral bias magnetic field causes the magnetization of the magnetic sensitive region to be inclined by about 45 °, and the longitudinal bias magnetic field causes the magnetization of the magnetic domain control region to be oriented in the longitudinal direction of the film. The demagnetizing field due to the magnetic charge generated from such a magnetization state is shown. As shown, the demagnetizing field is smaller in the lower right part of the MR film than in the lower left part. The reason why the sensitivity distribution in the track width direction is asymmetric between left and right is that the effect of the demagnetizing field is different between left and right in the lower part of the MR film where the effect of the leakage magnetic field from the medium is strong. For example, if the right end of the left domain control region is moved to the left by a predetermined amount and the center of the magnetic sensitive region is displaced from the center between the inner end faces of the electrodes, the left and right diamagnetic fields become uniform within the electrode, and the track width The sensitivity distribution in the direction becomes symmetrical on the left and right.

【0011】[0011]

【実施例】本発明による代表的な磁気抵抗効果(MR)
再生ヘッドは、図1に示すように、磁気抵抗層10,横
方向バイアス印加用シャント膜20,SAL膜21,縦
方向バイアス印加用硬磁性体層30,電極層40から構
成される。また、磁気抵抗層10は、媒体からの漏洩磁
界を検出する中央部感磁領域11、および中央部感磁領
域の磁区構造を制御し、バルクハウゼンノイズの発生を
制御するための端部磁区制御領域12に分けられる。
EXAMPLES Representative magnetoresistive effect (MR) according to the present invention
As shown in FIG. 1, the reproducing head comprises a magnetoresistive layer 10, a lateral bias applying shunt film 20, a SAL film 21, a longitudinal bias applying hard magnetic layer 30, and an electrode layer 40. Further, the magnetoresistive layer 10 controls the central magnetic field sensitive region 11 for detecting a leakage magnetic field from the medium, and the magnetic domain structure of the central magnetic field sensitive region, and end magnetic domain control for controlling generation of Barkhausen noise. It is divided into regions 12.

【0012】ここで、縦方向バイアスは磁気抵抗層10
に平行とし、端部磁区制御領域12に直接接する硬磁性
体層30によって発生させる。また、横方向バイアスは
磁気抵抗層10に平行するシャント膜20およびSAL
膜21によって発生させる。電極層40は、信号検出電
流およびバイアス電流を磁気抵抗層10およびシャント
膜20に伝え、出力信号を外部電気回路に伝えるための
電気経路である。
Here, the longitudinal bias is the magnetoresistive layer 10.
And is generated by the hard magnetic layer 30 that is in parallel with the edge magnetic domain control region 12 and is in direct contact with the end magnetic domain control region 12. Further, the lateral bias is applied to the shunt film 20 and SAL parallel to the magnetoresistive layer 10.
It is generated by the membrane 21. The electrode layer 40 is an electric path for transmitting a signal detection current and a bias current to the magnetoresistive layer 10 and the shunt film 20 and transmitting an output signal to an external electric circuit.

【0013】この実施例では、磁気抵抗層の厚さを5か
ら20nm、硬磁性体層の厚さを10から100nm、
シャント層の厚さを10から40nmとした。また、磁
気抵抗層はNi−Fe合金、硬磁性体層は、CoPtC
r合金、シャント膜はNb膜とした。硬磁性体層は、C
o合金系の磁気記録媒体材料もしくは他の硬磁性体材料
が有効であった。
In this embodiment, the thickness of the magnetoresistive layer is 5 to 20 nm, the thickness of the hard magnetic layer is 10 to 100 nm,
The thickness of the shunt layer was 10 to 40 nm. The magnetoresistive layer is a Ni—Fe alloy, and the hard magnetic layer is CoPtC.
The r alloy and the shunt film were Nb films. The hard magnetic layer is C
The o-alloy-based magnetic recording medium material or other hard magnetic material was effective.

【0014】電極内端面間の距離Tは5μm、硬磁性体
内面間距離Wは7μmとし、電極内端面間の中心Pと硬
磁性体内端面間の中心P′間の距離dは1.0μm とし
た。すなわち、d/Tは0.2 とした。
The distance T between the inner end surfaces of the electrode is 5 μm, the distance W between the inner surfaces of the hard magnetic body is 7 μm, and the distance d between the center P between the inner end surfaces of the electrode and the center P ′ between the inner end surfaces of the hard magnetic body is 1.0 μm. did. That is, d / T was set to 0.2.

【0015】図2は本実施例のヘッド(a)と、電極内
端面間の中心と硬磁性体内端面間の中心間の距離dが0
の従来ヘッド(b)の、トラック幅方向の感度分布を示
したものである。ヘッドのトラック幅より狭い領域に記
録した媒体を、トラック幅方向に移動しながら再生出力
を測定した。記録ヘッドは収束イオンビーム(FIB)を
用いて加工したトラック幅0.5μm の誘導型磁気ヘッ
ド(アイイーイーイートランザクションズ オン マグ
ネティクス(IEEE Trans. Magn.)VOL.27,4678
(1991))を用いた。図からわかるように、従来の
ヘッド(b)は感度分布が左右非対称であるのに対し、
本実施例のヘッド(a)は電極間の抵抗変化が最大とな
る感度の中心とMRヘッドの幾何学的な中心が一致して
おり、感度分布が左右でほぼ対称になった。実際、ヘッ
ドが隣の媒体の端部と0.5μm重なったオフトラック
時に再生を行なった結果、ヘッド(a)のクロストーク
量は(b)より約8dB減少した。
In FIG. 2, the distance (d) between the center of the head (a) of this embodiment and the center between the inner end faces of the electrode and the end face of the hard magnetic body is 0.
3 shows a sensitivity distribution of the conventional head (b) in the track width direction. The reproduction output was measured while moving the medium recorded in an area narrower than the track width of the head in the track width direction. The recording head is an induction type magnetic head with a track width of 0.5 μm processed by using a focused ion beam (FIB) (IEEE Trans. Magn. VOL. 27, 4678).
(1991)) was used. As can be seen from the figure, the conventional head (b) has a laterally asymmetric sensitivity distribution, whereas
In the head (a) of this embodiment, the center of sensitivity at which the resistance change between the electrodes is maximized coincides with the geometric center of the MR head, and the sensitivity distribution is substantially left-right symmetrical. Actually, when the head was reproduced at the time of off-track where it overlapped 0.5 μm with the edge of the adjacent medium, the crosstalk amount of the head (a) was reduced by about 8 dB from that of (b).

【0016】電極内端面間の中心と硬磁性体内端面間の
中心間のずれ量dが異なるMRヘッドを多数作製し、そ
れぞれのクロストーク量を上記条件で測定した結果を図
4に示す。ずれ量は電極内端面間の距離Tに対して規格
化した値d/Tで示した。縦方向バイアスを印加するた
めに硬磁性体層を用いた場合は、0.05≦d/T≦0.
5 のとき、従来ヘッド(d/T=0)に比べてクロス
トーク量が6〜8dB減少し、オフトラック特性の良好
なヘッドが得られた。
FIG. 4 shows the result of measuring a number of crosstalks under the above-mentioned conditions by preparing a large number of MR heads having different amounts of deviation d between the centers of the inner end faces of the electrodes and the ends of the hard magnetic body. The amount of deviation is indicated by a value d / T that is standardized with respect to the distance T between the inner end surfaces of the electrode. When a hard magnetic layer is used to apply a longitudinal bias, 0.05≤d / T≤0.
In the case of 5, the crosstalk amount was reduced by 6 to 8 dB as compared with the conventional head (d / T = 0), and a head having good off-track characteristics was obtained.

【0017】また、硬磁性体層のかわりに反強磁性体層
を備えたMRヘッドを作製し、同様の実験を行なった。
この場合も0.05≦d/T≦0.5のとき従来ヘッドに
比べてクロストーク量が7〜10dB減少し、同様の効
果が得られた。特に0.1≦d/T≦0.3 のとき、ク
ロストーク量は9〜10dB減少し、効果は顕著にな
る。
An MR head having an antiferromagnetic material layer instead of the hard magnetic material layer was prepared and the same experiment was conducted.
Also in this case, when 0.05 ≦ d / T ≦ 0.5, the crosstalk amount was reduced by 7 to 10 dB compared to the conventional head, and the same effect was obtained. In particular, when 0.1 ≦ d / T ≦ 0.3, the crosstalk amount is reduced by 9 to 10 dB, and the effect becomes remarkable.

【0018】なお、MR素子に横方向バイアス磁界を印
加する方法として、電流バイアス法,シャントバイアス
法,ソフトバイアス法,SALバイアス法のいずれであ
っても同様の効果が得られる。
The same effect can be obtained by any of the current bias method, the shunt bias method, the soft bias method, and the SAL bias method as a method for applying a lateral bias magnetic field to the MR element.

【0019】[0019]

【発明の効果】本発明によれば磁気抵抗効果再生ヘッド
におけるトラック幅方向の感度分布を左右対称にできる
ので、クロストーク量が小さい、オフトラック特性の良
好な磁気抵抗効果再生ヘッドを得ることができる。
According to the present invention, since the sensitivity distribution in the track width direction of the magnetoresistive effect reproducing head can be made symmetrical, a magnetoresistive effect reproducing head having a small amount of crosstalk and good off-track characteristics can be obtained. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気抵抗効果再生ヘッドの実施例
の断面図。
FIG. 1 is a sectional view of an embodiment of a magnetoresistive effect reproducing head according to the present invention.

【図2】本発明による磁気抵抗効果再生ヘッドと従来の
ヘッドにおけるトラック幅方向の感度分布図。
FIG. 2 is a sensitivity distribution diagram in the track width direction of a magnetoresistive effect reproducing head according to the present invention and a conventional head.

【図3】従来の磁気抵抗効果再生ヘッドにおけるバイア
ス磁界中の反磁界の説明図。
FIG. 3 is an explanatory diagram of a demagnetizing field in a bias magnetic field in a conventional magnetoresistive effect reproducing head.

【図4】感磁領域の中心と電極内端面間の中心のずれ量
が異なるヘッドのクロストーク量の比較特性図。
FIG. 4 is a comparative characteristic diagram of crosstalk amounts of heads having different amounts of deviation between the center of the magnetic sensitive region and the center between the electrode inner end faces.

【符号の説明】[Explanation of symbols]

10…磁気抵抗層、20…シャント膜、21…SAL
膜、30…硬磁性体層、40…電極。
10 ... Magnetoresistive layer, 20 ... Shunt film, 21 ... SAL
Film, 30 ... Hard magnetic layer, 40 ... Electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】中央部感磁領域と端部磁区制御領域を有す
る磁気抵抗層、この両側に接続された電極、前記磁気抵
抗層に横方向バイアスを発生するためのパターン、前記
磁気抵抗層を磁気シールドするために両側に設けた軟磁
性膜、およびこれを支持する基体からなる磁気抵抗効果
再生ヘッドにおいて、前記中央部感磁領域のトラック幅
方向の中心と、電極の内端面間の中心が一致していない
ことを特徴とする磁気抵抗効果再生ヘッド。
1. A magnetoresistive layer having a central magnetic sensitive region and an end magnetic domain control region, electrodes connected on both sides of the magnetoresistive layer, a pattern for generating a lateral bias in the magnetoresistive layer, and the magnetoresistive layer. In a magnetoresistive effect reproducing head including a soft magnetic film provided on both sides for magnetic shielding and a substrate supporting the soft magnetic film, the center in the track width direction of the central magnetic sensitive region and the center between the inner end faces of the electrodes are A magnetoresistive effect reproducing head characterized by not matching.
【請求項2】請求項1において、前記中央部感磁領域の
中心と電極の内端面間の中心のずれ量dと、電極の内端
面間の距離Tの比d/Tが、0.05から0.5である磁
気抵抗効果再生ヘッド。
2. The ratio d / T of the amount of deviation d between the center of the central magnetic sensitive region and the center between the inner end faces of the electrodes and the distance T between the inner end faces of the electrodes is 0.05. To 0.5 magnetoresistive effect reproducing head.
【請求項3】請求項1において、前記中央部感磁領域の
中心と電極の内端面間の中心のずれ量dと、電極の内端
面間の距離Tの比d/Tが、0.1から0.3である磁気
抵抗効果再生ヘッド。
3. The ratio d / T of the distance d between the center of the central magnetic sensitive region and the center of the inner end face of the electrode to the distance T between the inner end faces of the electrodes is 0.1. To 0.3 magnetoresistive effect reproducing head.
【請求項4】請求項1,2または3において、前記中央
部感磁領域の長さが電極の内端面間距離より大きい磁気
抵抗効果再生ヘッド。
4. A magnetoresistive effect reproducing head according to claim 1, 2 or 3, wherein the length of the central magnetic sensitive region is larger than the distance between the inner end faces of the electrodes.
【請求項5】請求項1,2,3または4において、前記
磁気抵抗層の端部磁区制御領域に直接接した硬磁性体層
を備え、前記磁気抵抗層の中央部感磁領域を単磁区状態
に維持するため、磁界および強磁***換結合による縦バ
イアスを発生させる手段を含む磁気抵抗効果再生ヘッ
ド。
5. The hard magnetic material layer according to claim 1, 2, 3 or 4, wherein the hard magnetic layer is in direct contact with the end magnetic domain control region of the magnetoresistive layer, and the central magnetic sensitive region of the magnetoresistive layer is a single magnetic domain. A magnetoresistive reproducing head including means for generating a longitudinal bias by magnetic field and ferromagnetic exchange coupling to maintain the state.
【請求項6】請求項1,2,3または4において、前記
磁気抵抗層の端部磁区制御領域に直接接した反強磁性体
層を備え、前記磁気抵抗層の中央部感磁領域を単磁区状
態に維持するため、反強磁***換結合による縦バイアス
を発生させる手段を含む磁気抵抗効果再生ヘッド。
6. The antiferromagnetic material layer according to claim 1, 2, 3 or 4, wherein the antiferromagnetic material layer is in direct contact with the end magnetic domain control region of the magnetoresistive layer, and the central magnetic sensitive region of the magnetoresistive layer is a single region. A magnetoresistive effect reproducing head including means for generating a longitudinal bias by antiferromagnetic exchange coupling to maintain a magnetic domain state.
JP33997992A 1992-12-21 1992-12-21 Magneto-resistance effect reproduction head Pending JPH06187615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33997992A JPH06187615A (en) 1992-12-21 1992-12-21 Magneto-resistance effect reproduction head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33997992A JPH06187615A (en) 1992-12-21 1992-12-21 Magneto-resistance effect reproduction head

Publications (1)

Publication Number Publication Date
JPH06187615A true JPH06187615A (en) 1994-07-08

Family

ID=18332584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33997992A Pending JPH06187615A (en) 1992-12-21 1992-12-21 Magneto-resistance effect reproduction head

Country Status (1)

Country Link
JP (1) JPH06187615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201669B1 (en) * 1997-12-09 2001-03-13 Alps Electric Co., Ltd. Magnetoresistive element and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201669B1 (en) * 1997-12-09 2001-03-13 Alps Electric Co., Ltd. Magnetoresistive element and its manufacturing method

Similar Documents

Publication Publication Date Title
US5461526A (en) Magnetoresistive read head and magnetic storage system using the same
US5218497A (en) Magnetic recording-reproducing apparatus and magnetoresistive head having two or more magnetoresistive films for use therewith
US5406433A (en) Dual magnetoresistive head for reproducing very narrow track width short wavelength data
JPH0594605A (en) Magneto-resistance effect type magnetic head
JPH09191142A (en) Magnetoresistance device and magnetic sensor
KR0145034B1 (en) Peak enhanced magnetoresistive read transducer
US6583970B1 (en) Magnetoresistive head device incorporating joints between magnetoresistive layer and sense current conductors
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JPH11175925A (en) Magnetic reluctance effect type element and magnetic recording and reproducing device
JPH06187615A (en) Magneto-resistance effect reproduction head
JPH08203032A (en) Magneto-resistance effect reproducing head
JP3120012B2 (en) Magnetic sensor, magnetic recording / reproducing head and magnetic recording / reproducing apparatus using the same
JPH07153036A (en) Magnetoresistance effect type magnetic head
JPS6224848B2 (en)
JP2583851B2 (en) Magnetoresistive magnetic head
JPH0836715A (en) Magnetoresistance effect-type magnetic head
JPH10222817A (en) Magneto-resistive sensor
JPH0528436A (en) Magneto-resistance effect type head
JPH08321015A (en) Magneto-resistive reproducing head and magnetic recorder using the same
JPH0981910A (en) Magnetoresistive effect type reproducing head and magnetic recording and reproducing device
JP2003208706A (en) Magnetic head
JPH07110921A (en) Magnetoresistance effect type thin film head
JPS61287025A (en) Magneto-resistance effect type reproducing head
JPH08124122A (en) Magnetoresistive reproducing head and magnetic recording/reproducing device
JPH09153652A (en) Magnetoresistive effect element