JPH0981910A - Magnetoresistive effect type reproducing head and magnetic recording and reproducing device - Google Patents

Magnetoresistive effect type reproducing head and magnetic recording and reproducing device

Info

Publication number
JPH0981910A
JPH0981910A JP23813895A JP23813895A JPH0981910A JP H0981910 A JPH0981910 A JP H0981910A JP 23813895 A JP23813895 A JP 23813895A JP 23813895 A JP23813895 A JP 23813895A JP H0981910 A JPH0981910 A JP H0981910A
Authority
JP
Japan
Prior art keywords
film
magnetic
permanent magnet
head
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23813895A
Other languages
Japanese (ja)
Inventor
Kazuhisa Fujimoto
和久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23813895A priority Critical patent/JPH0981910A/en
Publication of JPH0981910A publication Critical patent/JPH0981910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of Barkhausen noise of a magnetoresistive effect type reproducing head constituted by using multilayered films consisting of permanent magnet films or antiferromagnetic films and soft magnetic films as a longitudinal direction bias magnetic field impression method. SOLUTION: This magnetoresistive effect type reproducing head has the multilayered films consisting of a soft magnetic film (SAL) 30 for transverse bias impressing, a nonmagnetic conductive film 40 and a magnetoresistive (MR film) 50 laminated on a substrate 5, a pair of the permanent magnet films 60 for longitudinal bias impressing disposed at both ends of the multilayered films and a pair of electrodes 70 disposed on the multilayered films. The laminar structure in the film thickness direction of the multilayered films and the permanent magnet films 60 is formed out of the structure obtd. by holding the permanent magnet film layers 60 with the soft magnetic film layers 30 and the magnetoresistive film layers 50 at both ends of the multilayered films.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体から情報
信号を読み取るための再生ヘッドに係り、特に、改良さ
れた磁気抵抗効果型再生ヘッドならびにそれを用いた磁
気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reproducing head for reading an information signal from a magnetic recording medium, and more particularly to an improved magnetoresistive effect reproducing head and a magnetic recording / reproducing apparatus using the same.

【0002】[0002]

【従来の技術】従来、磁気抵抗効果型(MR)センサま
たはヘッドと呼ばれる磁気読み取り変換器が知られてい
る。このMRセンサは、磁気抵抗効果材料から作った読
み取り素子の抵抗変化を利用して、磁気信号を素子が感
知する磁束の量および方向の関数として検出するもの
で、従来のインダクティブヘッドを用いた場合に比べ
て、より大きな再生出力を得ることができる。そのた
め、径の小さな磁気記録媒体ディスク上に大きな線記録
密度で記録されたデータを読み取ることが可能である。
2. Description of the Related Art Conventionally, a magnetic reading converter called a magnetoresistive (MR) sensor or a head is known. This MR sensor detects the magnetic signal as a function of the amount and direction of the magnetic flux sensed by the element by utilizing the resistance change of a reading element made of a magnetoresistive material, and when using a conventional inductive head. It is possible to obtain a larger reproduction output as compared with. Therefore, it is possible to read data recorded at a large linear recording density on a magnetic recording medium disk having a small diameter.

【0003】MR素子の動作を最適化するためには、2
種類のバイアス磁界を印加する必要がある。第1のバイ
アス磁界は、外部磁界に対するMR素子の応答を線形に
するためのもので、横方向バイアス磁界と呼ばれ、磁気
記録媒体の表面に垂直な方向であり、かつ平坦なMR素
子の表面に平行な方向に印加される。
To optimize the operation of the MR element, 2
It is necessary to apply a kind of bias magnetic field. The first bias magnetic field is used to make the response of the MR element to an external magnetic field linear, and is called a lateral bias magnetic field, which is in a direction perpendicular to the surface of the magnetic recording medium and has a flat surface of the MR element. Is applied in the direction parallel to.

【0004】この横方向バイアス磁界印加法には、MR
膜上に絶縁膜を介して導体膜を積層し、この導体膜を流
れるバイアス用電流によって発生する磁界によりMR膜
にバイアスを印加する電流バイアス法,MR膜上に直接
導体膜を積層し、導体膜に分流するセンス電流によって
発生する磁界により、バイアスを印加するシャントバイ
アス法,MR膜上に絶縁膜を介して軟磁性膜を積層し、
センス電流によって発生する磁界により軟磁性膜を磁化
し、その漏洩磁界によりバイアスを印加するソフトバイ
アス法,MR膜上に非磁性導電膜を介して軟磁性膜を積
層することによって前記ソフトバイアスの作用とシャン
トバイアスの作用を併用するソフトアジィセントレーヤ
(SAL)バイアス法等、種々の方法がある。
This lateral bias magnetic field application method uses MR
A conductor film is laminated on the film via an insulating film, and a current bias method in which a bias is applied to the MR film by a magnetic field generated by a bias current flowing through the conductor film, a conductor film is directly laminated on the MR film, A shunt bias method of applying a bias by a magnetic field generated by a sense current shunting the film, a soft magnetic film is laminated on an MR film via an insulating film,
A soft bias method in which a soft magnetic film is magnetized by a magnetic field generated by a sense current and a bias is applied by the leakage magnetic field, and a soft magnetic film is laminated on an MR film via a non-magnetic conductive film so that the soft bias works. There are various methods such as a soft agile layer (SAL) bias method in which the action of shunt bias is used together.

【0005】これらの横方向バイアスはMR素子をR−
H特性曲線の最も直線的な範囲にバイアスさせるのに十
分なレベルで発生される。本発明はこのうち、SALバ
イアス法を用いたものであるが、他のバイアス法にも適
用可能なものである。
These lateral biases make the MR element R-
It is generated at a level sufficient to bias it into the most linear range of the H characteristic curve. Of these, the present invention uses the SAL bias method, but is also applicable to other bias methods.

【0006】MR素子の動作を最適化するための第2の
バイアス磁界は、縦バイアス磁界と呼ばれるもので、磁
気媒体の表面に平行、かつ、MR素子の長手方向に平行
に印加される。縦バイアス磁界の機能は、MR素子内の
多磁区構造から生じるバルクハウゼンノイズを抑えるこ
とである。
The second bias magnetic field for optimizing the operation of the MR element is called a longitudinal bias magnetic field and is applied parallel to the surface of the magnetic medium and parallel to the longitudinal direction of the MR element. The function of the longitudinal bias magnetic field is to suppress Barkhausen noise caused by the multi-domain structure in the MR element.

【0007】縦バイアス磁界の印加方法には、特開昭62
−40610号公報や特開昭63−117309号公報あるいは特開
平5−303724 号明細書に示されている反強磁性膜を用い
る方法や、特開平2−220213号公報や特開平3−29105 号
公報に示されている永久磁石膜を用いる方法がある。
A method for applying a longitudinal bias magnetic field is disclosed in Japanese Patent Laid-Open No. 62-62
-40610, JP-A-63-117309 or JP-A-5-303724, a method using an antiferromagnetic film, JP-A-2-220213 and JP-A-3-29105. There is a method using a permanent magnet film disclosed in the publication.

【0008】本発明は、このうち永久磁石膜バイアス法
を用いたものである。この方法を用いたMR素子の特性
は、MR膜やSALの磁化状態が、永久磁石膜と接して
いる面近くで乱れる可能性があり、その乱れによりバル
クハウゼンノイズが発生する可能性がある。
Of these, the present invention uses the permanent magnet film bias method. Regarding the characteristics of the MR element using this method, the magnetization state of the MR film or SAL may be disturbed near the surface in contact with the permanent magnet film, and Barkhausen noise may be generated due to the disturbance.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、横方
向バイアス磁界及び縦バイアス磁界印加手段を有する磁
気抵抗効果型センサまたはヘッド、特に、横方向バイア
ス磁界印加法としてソフトアジェイセントバイアス法を
用い、縦バイアス磁界印加法として永久磁石膜あるいは
反強磁性膜と軟磁性膜から成る多層膜を用いる磁気抵抗
効果センサまたはヘッドのバルクハウゼンノイズを抑え
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive sensor or head having means for applying a lateral bias magnetic field and a longitudinal bias magnetic field, and in particular, a soft-acent bias method as a lateral bias magnetic field applying method. In order to suppress Barkhausen noise of a magnetoresistive sensor or head using a permanent magnet film or a multilayer film composed of an antiferromagnetic film and a soft magnetic film as a method of applying a longitudinal bias magnetic field.

【0010】[0010]

【課題を解決するための手段】本発明では、基板上に積
層して設けられた横バイアス印加用の軟磁性膜(SAL),
非磁性導電膜,磁気抵抗効果膜(MR膜)から成る多層
膜,前記多層膜の両端に設けられた縦バイアス印加用の
一対の永久磁石膜、及び前記多層膜上に設けられた一対
の電極とを備えた磁気抵抗効果型再生ヘッドで、多層膜
及び永久磁石膜の膜厚方向の層構造を、多層膜両端部
で、永久磁石膜層が軟磁性膜層と磁気抵抗効果膜層によ
って挟まれた構造にすることにより、前記目的を達成す
る。
According to the present invention, a soft magnetic film (SAL) for lateral bias application, which is provided by laminating on a substrate,
A multilayer film including a non-magnetic conductive film and a magnetoresistive film (MR film), a pair of permanent magnet films for applying a longitudinal bias provided at both ends of the multilayer film, and a pair of electrodes provided on the multilayer film. In the magnetoresistive effect reproducing head having the structure described above, the layer structure of the multilayer film and the permanent magnet film in the thickness direction is sandwiched between the soft magnetic film layer and the magnetoresistive effect film layer at both ends of the multilayer film. The above-mentioned object is achieved by the structure having a closed structure.

【0011】このような構造では、非磁性導電膜のトラ
ック幅方向の幅が軟磁性膜及び磁気抵抗効果膜のトラッ
ク幅方向の幅より短くなる。
In such a structure, the width of the non-magnetic conductive film in the track width direction is shorter than the width of the soft magnetic film and the magnetoresistive film in the track width direction.

【0012】このような構造は、基板上に軟磁性膜及び
非磁性導電膜を積層し、所望の形状にパターンニングし
た後、二層膜の両端に永久磁石膜パターンを形成し、そ
の後、磁気抵抗効果膜を積層、所望の形状にパターンニ
ングすることにより実現できる。
In such a structure, a soft magnetic film and a non-magnetic conductive film are laminated on a substrate, patterned into a desired shape, permanent magnet film patterns are formed on both ends of the two-layer film, and then a magnetic film is formed. This can be realized by laminating resistance effect films and patterning them into a desired shape.

【0013】上記の磁気抵抗効果型ヘッドでは、縦バイ
アス印加用に永久磁石膜を用いたが、永久磁石膜の代わ
りに、反強磁性膜と軟磁性膜から成る多層膜を用いても
前記目的を達成する。
In the above-mentioned magnetoresistive head, the permanent magnet film is used for applying the longitudinal bias, but a multilayer film composed of an antiferromagnetic film and a soft magnetic film may be used instead of the permanent magnet film. To achieve.

【0014】本発明の磁気抵抗効果型再生ヘッドは、磁
気記録用誘導型薄膜ヘッドと組み合わせて記録再生分離
型磁気ヘッドを構成するのが望ましく、2000Oe以
上の高い保持力の記録媒体の信号を再生する際に特に有
効である。
The magnetoresistive effect reproducing head of the present invention is preferably combined with an inductive thin film head for magnetic recording to form a recording / reproducing separated type magnetic head, and reproduces a signal from a recording medium having a high coercive force of 2000 Oe or more. It is especially effective when

【0015】[0015]

【作用】縦バイアス磁界印加法として永久磁石膜あるい
は反強磁性膜と軟磁性膜から成る多層膜を用いる磁気抵
抗効果型ヘッドでは、永久磁石膜、あるいは反強磁性膜
と軟磁性膜から成る多層膜内の磁化は、通常トラック幅
方向(縦バイアスの方向)を向いている。その膜の保磁力
は300〜400Oe以上である。この保磁力以上の大
きさの磁界が磁化の方向と反対方向にかかった場合、磁
化は印加磁界の方向に向く。しかし、磁気抵抗効果型ヘ
ッドの使用時には、トラック幅方向にこの保磁力以上の
大きさの磁界がかかることはない。したがって、永久磁
石膜、あるいは反強磁性膜と軟磁性膜から成る多層膜内
の磁化方向が、初期の方向から乱れる可能性は小さい。
In the magnetoresistive head using the permanent magnet film or the multilayer film composed of the antiferromagnetic film and the soft magnetic film as the method of applying the longitudinal bias magnetic field, the permanent magnet film or the multilayer composed of the antiferromagnetic film and the soft magnetic film is used. The magnetization in the film is normally oriented in the track width direction (longitudinal bias direction). The coercive force of the film is 300 to 400 Oe or more. When a magnetic field having a magnitude greater than this coercive force is applied in the direction opposite to the direction of the magnetization, the magnetization is oriented in the direction of the applied magnetic field. However, when using the magnetoresistive head, a magnetic field having a magnitude greater than the coercive force is not applied in the track width direction. Therefore, it is unlikely that the magnetization direction in the permanent magnet film or the multilayer film including the antiferromagnetic film and the soft magnetic film is disturbed from the initial direction.

【0016】一方、隣り合う磁化の間には交換相互作用
と呼ばれる力が働き、同方向を向こうとする性質があ
る。磁気抵抗効果型ヘッドのSAL及びMR膜は、その
トラック幅方向の両端部で、永久磁石膜、あるいは反強
磁性膜と軟磁性膜から成る多層膜と面で接している。こ
のため、交換相互作用によって、SAL及びMR膜内の
磁化と永久磁石膜、あるいは反強磁性膜と軟磁性膜から
成る多層膜内の磁化は、両者が接している面近くで同方
向を向こうとする。前に述べたように、永久磁石膜、あ
るいは反強磁性膜と軟磁性膜から成る多層膜内の磁化
は、強い保磁力によってトラック幅方向を向いているた
め、SAL及びMR膜内の磁化はその両端部近くで同じ
トラック幅方向に向こうとする。
On the other hand, a force called exchange interaction acts between adjacent magnetizations and tends to move in the same direction. The SAL and MR films of the magnetoresistive head are in surface contact with the permanent magnet film or the multilayer film composed of the antiferromagnetic film and the soft magnetic film at both ends in the track width direction. Therefore, due to the exchange interaction, the magnetizations in the SAL and MR films and the magnetizations in the permanent magnet film or in the multilayer film composed of the antiferromagnetic film and the soft magnetic film should be oriented in the same direction near the surfaces in contact with each other. And As described above, the magnetization in the permanent magnet film or the multilayer film composed of the antiferromagnetic film and the soft magnetic film is oriented in the track width direction due to the strong coercive force. Try to move in the same track width direction near both ends.

【0017】交換相互作用が弱いと、SAL及びMR膜
内の磁化をトラック幅方向に向ける力が弱くなるため、
ヘッドの動作時に何らかの原因によって、SAL及びM
R膜のトラック幅方向の端部で、磁化がトラック幅方向
以外の方向を向き、その部分の磁化状態が乱れ、磁壁や
磁区が発生する可能性がある。この乱れは、バルクハウ
ゼンノイズの原因の一つになると考えられる。
If the exchange interaction is weak, the force for directing the magnetization in the SAL and MR films in the track width direction becomes weak.
For some reason, the SAL and M
At the end of the R film in the track width direction, the magnetization is oriented in a direction other than the track width direction, and the magnetized state of that part may be disturbed, resulting in the generation of domain walls or magnetic domains. This disturbance is considered to be one of the causes of Barkhausen noise.

【0018】交換相互作用は、SAL及びMR膜と、永
久磁石膜あるいは反強磁性膜と軟磁性膜から成る多層膜
とが接している面の面積に比例して大きくなる。
The exchange interaction increases in proportion to the area of the surface where the SAL and MR films are in contact with the permanent magnet film or the multilayer film composed of the antiferromagnetic film and the soft magnetic film.

【0019】図2は、縦バイアス印加に永久磁石膜を用
いた従来の磁気抵抗効果型ヘッドを媒体対向面側から見
たときの図、言い換えるとヘッドの膜厚方向の層構造を
表す図である。図3は従来の磁気抵抗効果型ヘッドのS
AL,非磁性導電膜,MR膜及び永久磁石膜層部分の作
製方法を示している。従来構造では、スパッタ法により
SAL30,非磁性導電膜40,MR膜50の順で積層
した後に、フォトマスク100をフォトリソグラフィに
より形成する(a)。図2中A′,B′の部分に見られ
るように、端部で裾を引いた形状にして、SAL30,
非磁性導電膜40,MR膜50と、後から積層する永久
磁石膜60との接触性をよくするために、フォトマスク
100の形状を茸型、言い換えるとオーバーハングの形
状にする。次に、それらをイオンミリング法によりエッ
チングすると両端部が裾を引いた形状になる(b)。そ
の後、永久磁石膜60をスパッタ法で積層する(c)。
最後に、フォトマスク100を取り除く(d)。
FIG. 2 is a diagram of a conventional magnetoresistive head using a permanent magnet film for longitudinal bias application, as viewed from the medium facing surface side, in other words, a diagram showing a layer structure in the film thickness direction of the head. is there. FIG. 3 shows S of a conventional magnetoresistive head.
It shows a method of manufacturing the AL, non-magnetic conductive film, MR film and permanent magnet film layer portion. In the conventional structure, the SAL 30, the nonmagnetic conductive film 40, and the MR film 50 are laminated in this order by the sputtering method, and then the photomask 100 is formed by photolithography (a). As can be seen from A ′ and B ′ in FIG. 2, the SAL30,
In order to improve the contact property between the non-magnetic conductive film 40, the MR film 50 and the permanent magnet film 60 to be laminated later, the photomask 100 has a mushroom shape, in other words, an overhang shape. Next, when they are etched by the ion milling method, both ends have a shape with a skirt (b). Then, the permanent magnet film 60 is laminated by the sputtering method (c).
Finally, the photomask 100 is removed (d).

【0020】しかし、このような手順で作製する従来の
磁気抵抗効果型ヘッドの構造では、下の層であるSAL
30はパターンの両端部に露出する面積(図2中A′)
が大きくなるが、上の層であるMR膜50が露出する面
積(図2中B′)は大きくならない。このため、SAL
30と永久磁石膜60の接触面積(図2中A′)は大き
くできるが、MR膜50と永久磁石膜60(図中2
B′)の接触面積は大きくできない。このため、MR膜
50と永久磁石膜60間の交換相互作用が小さく、MR
膜50内に磁壁や磁区が発生しやすいと考えられる。
However, in the structure of the conventional magnetoresistive head manufactured by the above procedure, the lower layer SAL is used.
30 is an area exposed at both ends of the pattern (A 'in FIG. 2)
However, the exposed area (B ′ in FIG. 2) of the upper MR film 50 does not increase. Therefore, SAL
Although the contact area between the magnetic film 30 and the permanent magnet film 60 (A ′ in FIG. 2) can be increased, the MR film 50 and the permanent magnet film 60 (2 in the drawing).
The contact area of B ') cannot be increased. Therefore, the exchange interaction between the MR film 50 and the permanent magnet film 60 is small, and
It is considered that domain walls and domains are likely to occur in the film 50.

【0021】一方、図1に示す本発明の磁気抵抗効果型
ヘッドでは、図4に示す手順でSAL,非磁性導電膜,
MR膜及び永久磁石膜層部分の作製を行う。すなわち、
スパッタ法により、SAL30,非磁性導電膜40の順
で積層した後に、フォトマスク100をフォトリソグラ
フィにより形成する(a)。図1中Aの部分に見られる
ように、端部で裾を引いた形状にして、SAL30,非
磁性導電膜40と、後から積層する永久磁石膜60との
接触性をよくするために、フォトマスク100の形状を
茸型、言い換えるとオーバーハングの形状にする。
On the other hand, in the magnetoresistive head of the present invention shown in FIG. 1, SAL, a non-magnetic conductive film,
The MR film and the permanent magnet film layer portion are manufactured. That is,
After the SAL 30 and the nonmagnetic conductive film 40 are laminated in this order by the sputtering method, the photomask 100 is formed by photolithography (a). In order to improve the contact between the SAL 30 and the non-magnetic conductive film 40 and the permanent magnet film 60 to be laminated later, as shown in the portion A in FIG. The photomask 100 has a mushroom shape, in other words, an overhang shape.

【0022】次に、それらをイオンミリング法によりエ
ッチングすると両端部が裾を引いた形状になる。その
後、永久磁石膜60をスパッタ法で積層する(b)。次
に、フォトマスク100を取り除き、MR膜の形状を決
めるためのフォトマスク110をフォトリソグラフィに
より形成する(c)。その後、スパッタ法により、MR
膜50を積層する(d)。最後に、フォトマスク110
を取り除く。
Next, when they are etched by the ion milling method, both ends have a hem. Then, the permanent magnet film 60 is laminated by the sputtering method (b). Next, the photomask 100 is removed, and a photomask 110 for determining the shape of the MR film is formed by photolithography (c). After that, by sputtering, MR
The film 50 is laminated (d). Finally, the photomask 110
Get rid of.

【0023】本発明の磁気抵抗効果型ヘッドの構造で
は、図に示すように、MR膜50と永久磁石膜60の接
触面積(図1中B)をSAL30と永久磁石膜60の接
触面積(図1中A)と同程度に大きくできる。したがっ
て、MR膜50と永久磁石膜間の交換相互作用も大きく
なり、MR膜50内でも磁壁や磁区が発生しにくくなる
と考えられる。
In the structure of the magnetoresistive head of the present invention, as shown in the figure, the contact area between the MR film 50 and the permanent magnet film 60 (B in FIG. 1) is the contact area between the SAL 30 and the permanent magnet film 60 (see FIG. 1) It can be made as large as A). Therefore, it is considered that the exchange interaction between the MR film 50 and the permanent magnet film is also increased, and the domain wall and the magnetic domain are less likely to be generated in the MR film 50.

【0024】このような考えに基づいて、図1,図2に
示す層構造の磁気抵抗効果型ヘッドのバイアス状態にお
けるMR膜内の磁化分布を計算機シミュレーションによ
り求めた。
Based on such an idea, the magnetization distribution in the MR film in the bias state of the magnetoresistive head having the layer structure shown in FIGS. 1 and 2 was obtained by computer simulation.

【0025】シミュレーションの条件は次の通りであ
る。MRヘッドの寸法は、高さを2.0μm,縦バイア
ス方向の長さをMR膜2.0μm,SAL2.1μmと
し、MR膜50,SAL30及び非磁性導電膜40の膜
厚は、それぞれ20,20,10nmとした。縦バイアス
磁界印加用の永久磁石膜60は残留磁束密度(Br )と
膜厚(tmag)との積(Brmag )を280G・μmと
し、MR膜及びSALと接している面に、磁束密度と膜
厚の積から算出される量の磁化が一様に分布していると
仮定して、永久磁石が作る縦バイアス磁界を計算した。
飽和磁束密度(Bs)はMR膜が1.0T,SALが0.8
Tであるとし、異方性磁界はトラック幅方向にMR膜が
5Oe,SALが10Oeとした。また、比抵抗はMR
膜が24μΩ・cm,非磁性導電膜が180μΩ・cm,S
ALが70μΩ・cmであるとした。また、MR膜におけ
る電流密度は2×107A/cm2 とした。
The simulation conditions are as follows. The MR head has a height of 2.0 μm and a length in the longitudinal bias direction of an MR film of 2.0 μm and a SAL of 2.1 μm, and the MR films 50, SAL30 and non-magnetic conductive film 40 each have a film thickness of 20, It was set to 20, 10 nm. Longitudinal magnetic biasing permanent magnet film 60 for the product of the residual magnetic flux density (B r) and the thickness (t mag) to (B r t mag) and 280G · [mu] m, the surface in contact with the MR layer and the SAL Assuming that the amount of magnetization calculated from the product of magnetic flux density and film thickness is uniformly distributed, the longitudinal bias magnetic field generated by the permanent magnet was calculated.
The saturation magnetic flux density (B s ) is 1.0 T for MR film and 0.8 for SAL.
Assuming T, the anisotropic magnetic field was 5 Oe in the MR film and 10 Oe in the SAL in the track width direction. Also, the specific resistance is MR
Film is 24μΩ ・ cm, non-magnetic conductive film is 180μΩ ・ cm, S
The AL was 70 μΩ · cm. The current density in the MR film was 2 × 10 7 A / cm 2 .

【0026】計算では、まず、MR膜,SAL内の磁化
をすべて縦バイアス方向に向けた状態を初期状態とし
て、横バイアス発生用電流を印加してバイアス状態の磁
化分布を計算した。図5,図6に、図1,図2の構造の
ヘッドのバイアス状態におけるMR膜内の磁化分布5
1,52をそれぞれ示す。図で、個々の矢印は磁性膜内
の磁化の方向を示している。計算の結果、従来構造のヘ
ッドではMR膜51の右端部に磁化の乱れ(磁壁)が発
生するが、本発明のヘッドではMR膜52内に磁壁が発
生しないことを見出した。この磁壁は、永久磁石のBr
magが120G・μm以上で発生した。この結果か
ら、本発明のヘッド構造ではMR膜と永久磁石膜間の交
換相互作用が従来型のヘッドに比べて強くなることがわ
かる。以上のことから、本発明のヘッドではバルクハウ
ゼンノイズが発生しにくくなることがわかる。
In the calculation, first, with the state in which the magnetizations in the MR film and SAL are all oriented in the longitudinal bias direction as an initial state, a transverse bias generating current is applied and the magnetization distribution in the bias state is calculated. FIGS. 5 and 6 show the magnetization distribution 5 in the MR film in the bias state of the head having the structure shown in FIGS.
1, 52 are shown respectively. In the figure, each arrow indicates the direction of magnetization in the magnetic film. As a result of the calculation, it was found that in the head having the conventional structure, the disturbance of the magnetization (domain wall) occurs at the right end portion of the MR film 51, but in the head of the present invention, the domain wall does not occur in the MR film 52. This domain wall is the B r of the permanent magnet.
It occurred at t mag of 120 G · μm or more. From this result, it can be seen that in the head structure of the present invention, the exchange interaction between the MR film and the permanent magnet film is stronger than that of the conventional head. From the above, it is understood that Barkhausen noise is less likely to occur in the head of the present invention.

【0027】本発明は、横バイアス磁界印加用の軟磁性
膜,縦バイアス磁界印加用の永久磁石膜あるいは反強磁
性膜と軟磁性膜から成る多層膜,非磁性導電膜、及び磁
気抵抗効果膜を備えた磁気抵抗効果型再生ヘッドに関し
て説明したが、縦バイアス磁界印加用の永久磁石膜ある
いは反強磁性膜と軟磁性膜から成る多層膜を用いたその
他の磁気抵抗効果型再生ヘッド、例えば、非磁性導電膜
の代わりに、非磁性絶縁膜を用いたヘッドや、横バイア
ス印加用の軟磁性膜の代わりに磁気抵抗効果膜を用いた
デュアルタイプMRヘッドなどにも有効である。
According to the present invention, a soft magnetic film for applying a transverse bias magnetic field, a permanent magnet film for applying a longitudinal bias magnetic field, or a multilayer film composed of an antiferromagnetic film and a soft magnetic film, a non-magnetic conductive film, and a magnetoresistive film. Although the magnetoresistive reproducing head including the above has been described, other magnetoresistive reproducing heads using a permanent magnet film for longitudinal bias magnetic field application or a multilayer film composed of an antiferromagnetic film and a soft magnetic film, for example, It is also effective for a head using a non-magnetic insulating film instead of the non-magnetic conductive film, a dual type MR head using a magnetoresistive film instead of the soft magnetic film for applying a lateral bias, and the like.

【0028】[0028]

【実施例】【Example】

(実施例1)図1に、本発明の一実施例のハードバイア
ス構造の磁気抵抗効果型再生ヘッドを媒体対向面側から
見た図、言い換えると膜厚方向の積層構造の図を示す。
本実施例では、図に示す構造の磁気抵抗効果型ヘッドを
以下に述べる方法で作製した。
(Embodiment 1) FIG. 1 shows a magnetoresistive effect reproducing head having a hard bias structure according to one embodiment of the present invention as viewed from the medium facing surface side, in other words, a diagram of a laminated structure in the film thickness direction.
In this example, a magnetoresistive head having the structure shown in the figure was produced by the method described below.

【0029】基板5上に、厚さ2μmの下部シールド膜
(NiFe膜)10,厚さ0.15μmの磁気ギャップ
形成用絶縁膜(Al23膜)20を積層し、その上にフ
ォトマスクを形成し、イオンミリング法により所望の形
状に加工した。
A lower shield film (NiFe film) 10 having a thickness of 2 μm and an insulating film (Al 2 O 3 film) 20 for forming a magnetic gap having a thickness of 0.15 μm are laminated on a substrate 5, and a photomask is formed thereon. Was formed and processed into a desired shape by an ion milling method.

【0030】次に、図4に示す手順でSAL,非磁性導
電膜,MR膜及び永久磁石膜層部分の作製を行った。す
なわち、スパッタ法により、飽和磁束密度(Bs)0.
8T,厚さ20nmの軟磁性膜(NiFe膜:SAL)
30,厚さ10nmの非磁性導電膜(Ta膜)40を積
層し、その上にフォトマスク100をフォトリソグラフ
ィにより形成した(a)。
Next, the SAL, the non-magnetic conductive film, the MR film and the permanent magnet film layer were manufactured by the procedure shown in FIG. That is, the saturation magnetic flux density (Bs) of 0.1 by the sputtering method.
8T, 20 nm thick soft magnetic film (NiFe film: SAL)
A nonmagnetic conductive film (Ta film) 40 having a thickness of 30 and a thickness of 10 nm was laminated, and a photomask 100 was formed thereon by photolithography (a).

【0031】図1中Aの部分に見られるように、端部で
裾を引いた形状にして、SAL30,非磁性導電膜40
と、後から積層する永久磁石膜60との接触性をよくす
るために、フォトマスク100の形状を茸型、言い換え
るとオーバーハングの形状にした。次に、それらをイオ
ンミリング法によりエッチングすると両端部が裾を引い
た形状になった。その後、永久磁石膜(CoCrPt膜)60
をスパッタ法で積層した(b)。
As shown in the portion A in FIG. 1, the SAL 30 and the non-magnetic conductive film 40 are formed in a shape in which the hem is drawn at the end.
Then, in order to improve the contact property with the permanent magnet film 60 to be laminated later, the photomask 100 has a mushroom shape, in other words, an overhang shape. Next, when they were etched by the ion milling method, the both ends had a hem. After that, permanent magnet film (CoCrPt film) 60
Were laminated by a sputtering method (b).

【0032】次に、フォトマスク100を取り除き、M
R膜の形状を決めるためのフォトマスク110をフォト
リソグラフィにより形成した(c)。その後、スパッタ
法により、Bs1.0T ,厚さ20nmの磁気抵抗効果
膜(NiFe膜:MR膜50)を積層した(d)。最後
に、フォトマスク110を取り除いた(e)。
Next, the photomask 100 is removed and M
A photomask 110 for determining the shape of the R film was formed by photolithography (c). Then, a magnetoresistive effect film (NiFe film: MR film 50) having a Bs of 1.0 T and a thickness of 20 nm was laminated by the sputtering method (d). Finally, the photomask 110 was removed (e).

【0033】その後、電極70となるNb/Au/Nb
を積層し、所望の形状に加工した。さらに、厚さ0.2
μm の磁気ギャップ形成用絶縁膜(Al23膜)8
0,厚さ2μmの上部シールド膜(NiFe膜)90を
積層し所望の形状に加工して磁気ヘッドとした。
After that, Nb / Au / Nb to be the electrode 70 is formed.
Were laminated and processed into a desired shape. Furthermore, the thickness is 0.2
Insulating film (Al 2 O 3 film) for forming magnetic gap of 8 μm
An upper shield film (NiFe film) 90 having a thickness of 0 μm and a thickness of 2 μm was laminated and processed into a desired shape to obtain a magnetic head.

【0034】以上の過程を経て作製した磁気抵抗効果型
再生ヘッドでは、MR膜50と永久磁石膜60が接する
面(図1中B)の面積を、SAL30と永久磁石膜60
が接する面(図1中A)の面積と同程度に大きくするこ
とが可能であった。永久磁石膜60と、MR膜50ある
いはSAL30との間の交換相互作用は両者の接触面積
に比例して強まる。このヘッドのバイアス状態における
MR膜50内の磁化分布を計算機シミュレーションによ
り求めたところ、図6に示すように磁壁の無い単磁区構
造となった。したがって、本発明の磁気抵抗効果型ヘッ
ドでは、MR膜50と永久磁石膜60間の交換相互作用
がSAL30と永久磁石膜60間のそれと同程度まで強
まることがわかった。
In the magnetoresistive reproducing head manufactured through the above process, the area of the surface (B in FIG. 1) where the MR film 50 and the permanent magnet film 60 are in contact with each other is SAL30 and the permanent magnet film 60.
It was possible to make the area as large as the area of the surface (A in FIG. 1) in contact with. The exchange interaction between the permanent magnet film 60 and the MR film 50 or the SAL 30 increases in proportion to the contact area between the two. When the magnetization distribution in the MR film 50 in the bias state of the head was obtained by computer simulation, a single domain structure without a domain wall was obtained as shown in FIG. Therefore, it was found that in the magnetoresistive head of the present invention, the exchange interaction between the MR film 50 and the permanent magnet film 60 is strengthened to the same extent as that between the SAL 30 and the permanent magnet film 60.

【0035】実際に本発明のヘッドのR/W特性を測定
したところ、バルクハウゼンノイズの発生率が、図2に
示す層構造の従来型のヘッドでの10%以上から、約1
%以下に低減できた。
When the R / W characteristic of the head of the present invention was actually measured, the occurrence rate of Barkhausen noise was about 1% from 10% or more in the conventional head having the layer structure shown in FIG.
% Could be reduced to below%.

【0036】本実施例では、縦バイアス印加に永久磁石
膜を用いたが、その代わりにFeMn,NiO等の反強磁性
膜と軟磁性膜(NiFe)から成る多層膜を用いても、
本実施例と同様の効果が得られた。
In this embodiment, the permanent magnet film is used for applying the longitudinal bias, but a multilayer film composed of an antiferromagnetic film such as FeMn or NiO and a soft magnetic film (NiFe) may be used instead.
The same effect as that of this example was obtained.

【0037】本実施例によれば、バルクハウゼンノイズ
の発生を抑制した磁気抵抗効果型再生ヘッドを得ること
が可能となる。
According to this embodiment, it is possible to obtain a magnetoresistive effect reproducing head in which Barkhausen noise is suppressed.

【0038】(実施例2)再生用ヘッドとして本発明の
磁気抵抗効果再生ヘッドを用い、従来公知の誘導型薄膜
ヘッドを記録用ヘッドとして用いる記録再生分離型磁気
ヘッドを作製した。図7に本実施例による記録再生分離
型ヘッドの一部分を切断した斜視図を示す。
Example 2 A magneto-resistance effect reproducing head of the present invention was used as a reproducing head, and a recording / reproducing separated type magnetic head using a conventionally known inductive thin film head as a recording head was manufactured. FIG. 7 shows a perspective view in which a part of the recording / reproducing separated type head according to the present embodiment is cut.

【0039】Al23・TiCを主成分とする焼結体を
スライダ用の基板5とした。まず、基板5の上に下部シ
ールド膜10を形成し、その上に磁気ギャップ形成用絶
縁膜(Al23膜)を積層した後、最上部のAl23
を所望の形状に加工した。
A sintered body containing Al 2 O 3 .TiC as the main component was used as the substrate 5 for the slider. First, the lower shield film 10 is formed on the substrate 5, an insulating film for magnetic gap formation (Al 2 O 3 film) is laminated thereon, and then the uppermost Al 2 O 3 film is processed into a desired shape. did.

【0040】次に、厚さ20nmの軟磁性膜(NiFe
膜)30,厚さ10nmの非磁性導電膜(Ta膜)4
0,厚さ20nmの磁気抵抗効果膜(NiFe膜)50
を積層した後、所望の形状に加工した。次に、厚さ30
nmの永久磁石膜(CoCrPt膜)60を積層し所望の形状
に加工した。その後、電極70となるNb/Au/Nb
を積層し、所望の形状に加工した。次に、厚さ0.2μ
m の磁気ギャップ形成膜(Al23膜)80,厚さ2
μmの磁気シールド膜(NiFe膜)90を形成した。
以上の部分が再生ヘッドとして働く。
Next, a soft magnetic film (NiFe) having a thickness of 20 nm is formed.
Film) 30, 10 nm thick non-magnetic conductive film (Ta film) 4
0, 20 nm thick magnetoresistive film (NiFe film) 50
After being laminated, it was processed into a desired shape. Next, thickness 30
A permanent magnet film (CoCrPt film) 60 having a thickness of 10 nm was laminated and processed into a desired shape. After that, Nb / Au / Nb to be the electrode 70
Were laminated and processed into a desired shape. Next, the thickness is 0.2μ
m magnetic gap forming film (Al 2 O 3 film) 80, thickness 2
A μm magnetic shield film (NiFe film) 90 was formed.
The above part functions as a reproducing head.

【0041】次に、磁気記録用ヘッドとして、厚さ3μ
mのAl23からなる絶縁膜を形成した後、下部磁極1
30,上部磁極140およびコイル150からなる誘導
型薄膜ヘッドを形成した。下部磁極130,上部磁極1
40には、スパッタリング法で形成した膜厚3.0μm
のNi−20at%Fe合金を用いた。下部磁極130お
よび上部磁極140の間のギャップ層には、スパッタリ
ング法で形成した膜厚0.2μmのAl23を用いた。
コイル150には、膜厚3.0μmのCuを使用した。
下部磁極130と上部磁極140は磁気的に結合されて
磁気回路を構成し、コイル150はその磁気回路に鎖交
している。
Next, as a magnetic recording head, the thickness is 3 μm.
After forming an insulating film of Al 2 O 3 of m, the lower magnetic pole 1
An inductive thin film head composed of 30, the upper magnetic pole 140 and the coil 150 was formed. Lower magnetic pole 130, upper magnetic pole 1
40 has a film thickness of 3.0 μm formed by the sputtering method.
Ni-20 at% Fe alloy was used. For the gap layer between the lower magnetic pole 130 and the upper magnetic pole 140, Al 2 O 3 having a film thickness of 0.2 μm formed by the sputtering method was used.
Cu having a film thickness of 3.0 μm was used for the coil 150.
The lower magnetic pole 130 and the upper magnetic pole 140 are magnetically coupled to form a magnetic circuit, and the coil 150 is linked to the magnetic circuit.

【0042】以上述べた構造の磁気ヘッドを用い、磁気
抵抗効果型再生ヘッドに流すセンス電流を2×107
/cm2として記録再生実験を行ったところ、バルクハウ
ゼンノイズの発生率が約1%以下となった。
Using the magnetic head having the structure described above, the sense current flowing in the magnetoresistive effect reproducing head is 2 × 10 7 A
When a recording / reproducing experiment was carried out at / cm 2 , the Barkhausen noise occurrence rate was about 1% or less.

【0043】(実施例3)前記実施例2で述べた本発明
による磁気ヘッドを用い、磁気ディスク装置を作製し
た。図8に磁気ディスク装置の構造の概略を示す。
Example 3 A magnetic disk device was manufactured using the magnetic head according to the present invention described in Example 2. FIG. 8 shows an outline of the structure of the magnetic disk device.

【0044】磁気記録媒体160には、残留磁束密度
0.75T のCo−Ni−Pt−Ta系合金からなる材
料を用いた。磁気記録媒体160は駆動部170によっ
て回転駆動される。磁気ヘッド180の記録ヘッドのト
ラック幅は2μm,再生ヘッドのトラック幅は1.5μ
m とした。磁気ヘッド180は、駆動部190によっ
て回転駆動されて磁気記録媒体160上のトラックを選
択できる。磁気ヘッド180による記録再生信号は記録再
生信号処理系200で処理される。
For the magnetic recording medium 160, a material made of a Co--Ni--Pt--Ta alloy having a residual magnetic flux density of 0.75T was used. The magnetic recording medium 160 is rotationally driven by the driving unit 170. The track width of the recording head of the magnetic head 180 is 2 μm, and the track width of the reproducing head is 1.5 μm.
m. The magnetic head 180 is rotationally driven by the driving unit 190 and can select a track on the magnetic recording medium 160. The recording / reproducing signal from the magnetic head 180 is processed by the recording / reproducing signal processing system 200.

【0045】磁気ヘッド180に用いた磁気抵抗効果型
再生ヘッドは、バルクハウゼンノイズの発生率が、従来
の磁気抵抗効果型再生ヘッドの10%以上から約1%以
下に低減されているため、非常に安定な記録再生特性を
示した。
The magnetoresistive effect reproducing head used for the magnetic head 180 has a very low Barkhausen noise occurrence rate, which is 10% or more as compared with the conventional magnetoresistive effect reproducing head, and therefore is extremely low. The recording and reproducing characteristics were stable.

【0046】[0046]

【発明の効果】本発明によると、磁気抵抗効果型再生ヘ
ッドにおけるバルクハウゼンノイズの発生を抑制するこ
とが可能となる。
According to the present invention, it is possible to suppress the generation of Barkhausen noise in the magnetoresistive effect reproducing head.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気抵抗効果型再生ヘッドの層構造を
示す説明図。
FIG. 1 is an explanatory diagram showing a layer structure of a magnetoresistive effect reproducing head of the present invention.

【図2】従来の磁気抵抗効果型再生ヘッドの断面図。FIG. 2 is a sectional view of a conventional magnetoresistive reproducing head.

【図3】従来の磁気抵抗効果型再生ヘッドの作製方法を
表す説明図。
FIG. 3 is an explanatory view showing a method for manufacturing a conventional magnetoresistive effect reproducing head.

【図4】本発明の磁気抵抗効果型再生ヘッドの作製方法
を表す説明図。
FIG. 4 is an explanatory diagram showing a method for manufacturing a magnetoresistive effect reproducing head according to the present invention.

【図5】従来の磁気抵抗効果型再生ヘッドのバイアス状
態におけるMR膜内の磁化分布を示す説明図。
FIG. 5 is an explanatory diagram showing a magnetization distribution in the MR film in a bias state of a conventional magnetoresistive effect reproducing head.

【図6】本発明の磁気抵抗効果型再生ヘッドのバイアス
状態におけるMR膜内の磁化分布を示す説明図。
FIG. 6 is an explanatory view showing the magnetization distribution in the MR film in the bias state of the magnetoresistive effect reproducing head of the present invention.

【図7】本発明の磁気抵抗効果型再生ヘッドを用いた記
録再生分離型磁気ヘッドの構造を示す斜視図。
FIG. 7 is a perspective view showing the structure of a recording / reproducing separated type magnetic head using the magnetoresistive effect reproducing head of the present invention.

【図8】記録再生装置の説明図。FIG. 8 is an explanatory diagram of a recording / reproducing device.

【符号の説明】[Explanation of symbols]

5…基板、10…下部シールド膜、20…下部磁気ギャ
ップ形成用絶縁膜、30…軟磁性膜、40…非磁性導電
膜、50…磁気抵抗効果膜、60…永久磁石膜、70…
電極、80…上部磁気ギャップ形成用絶縁膜、90…上
部シールド膜。
5 ... Substrate, 10 ... Lower shield film, 20 ... Lower magnetic gap forming insulating film, 30 ... Soft magnetic film, 40 ... Nonmagnetic conductive film, 50 ... Magnetoresistive film, 60 ... Permanent magnet film, 70 ...
Electrodes, 80 ... Insulating film for forming upper magnetic gap, 90 ... Upper shield film.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上に積層して設けられた横バイアス印
加用の軟磁性膜,非磁性導電膜,磁気抵抗効果膜から成
る多層膜,前記多層膜の両端に設けられた縦バイアス印
加用の一対の永久磁石膜,前記多層膜上に設けられた一
対の電極とを備えた磁気抵抗効果型再生ヘッドにおい
て、前記多層膜及び永久磁石膜の膜厚方向の層構造が、
前記多層膜のトラック幅方向の両端部で、前記永久磁石
膜層が軟磁性膜層と磁気抵抗効果膜層によって挟まれた
構造になっていることを特徴とする磁気抵抗効果型再生
ヘッド。
1. A multilayer film composed of a soft magnetic film for applying a lateral bias, a non-magnetic conductive film, a magnetoresistive film, which is laminated on a substrate, and a longitudinal bias applied to both ends of the multilayer film. In a magnetoresistive effect reproducing head including a pair of permanent magnet films, and a pair of electrodes provided on the multilayer film, the layer structure in the film thickness direction of the multilayer film and the permanent magnet film,
A magnetoresistive effect reproducing head having a structure in which the permanent magnet film layer is sandwiched between a soft magnetic film layer and a magnetoresistive effect film layer at both ends in the track width direction of the multilayer film.
【請求項2】基板上に積層して設けられた横バイアス印
加用の軟磁性膜,非磁性導電膜,磁気抵抗効果膜から成
る多層膜,前記多層膜の両端に設けられた縦バイアス印
加用の一対の永久磁石膜、及び前記多層膜上に設けられ
た一対の電極とを備えた磁気抵抗効果型再生ヘッドにお
いて、前記非磁性導電膜のトラック幅方向の幅が前記軟
磁性膜及び磁気抵抗効果膜のトラック幅方向の幅より短
いことを特徴とする磁気抵抗効果型再生ヘッド。
2. A multilayer film made of a soft magnetic film for applying a lateral bias, a non-magnetic conductive film, a magnetoresistive film, which is laminated on a substrate, and a longitudinal bias applied at both ends of the multilayer film. A pair of permanent magnet films, and a pair of electrodes provided on the multilayer film, wherein the non-magnetic conductive film has a width in the track width direction of the soft magnetic film and the magnetic resistance. A magnetoresistive effect reproducing head characterized by being shorter than the width of the effect film in the track width direction.
【請求項3】基板上に積層して設けられた横バイアス印
加用の軟磁性膜,非磁性導電膜,磁気抵抗効果膜から成
る多層膜,前記多層膜の両端に設けられた縦バイアス印
加用の一対の永久磁石膜、及び前記多層膜上に設けられ
た一対の電極とを備えた磁気抵抗効果型再生ヘッドにお
いて、前記基板上に前記軟磁性膜及び非磁性導電膜を積
層し、所望の形状にパターンニングした後、前記二層膜
の両端に永久磁石膜パターンを形成し、その後、磁気抵
抗効果膜を積層、所望の形状にパターンニングすること
により作製されたことを特徴とする磁気抵抗効果型再生
ヘッド。
3. A multilayer film composed of a soft magnetic film for applying a lateral bias, a non-magnetic conductive film, a magnetoresistive film, and a longitudinal bias provided on both ends of the multilayer film, which are laminated on the substrate. In a magnetoresistive effect reproducing head provided with a pair of permanent magnet films and a pair of electrodes provided on the multilayer film, the soft magnetic film and the non-magnetic conductive film are laminated on the substrate to obtain a desired magnetic field. After patterning into a shape, a permanent magnet film pattern is formed on both ends of the two-layer film, and then a magnetoresistive film is laminated and patterned into a desired shape. Effective playback head.
【請求項4】前記縦バイアス印加用の永久磁石膜の代わ
りに、反強磁性膜と軟磁性膜から成る多層膜を用いた請
求項1,2または3に記載の磁気抵抗効果型再生ヘッ
ド。
4. The magnetoresistive effect reproducing head according to claim 1, wherein a multilayer film composed of an antiferromagnetic film and a soft magnetic film is used instead of the permanent magnet film for applying the longitudinal bias.
【請求項5】請求項1,2,3または4に記載の磁気抵
抗効果型再生ヘッドが、積層方向に離間して設けられた
一対の磁気シールド膜の間に設けられている磁気抵抗効
果型再生ヘッド。
5. The magnetoresistive effect reproducing head according to claim 1, 2, 3 or 4, wherein the magnetoresistive effect reproducing head is provided between a pair of magnetic shield films which are spaced from each other in the stacking direction. Playhead.
【請求項6】一対の磁極、該一対の磁極を磁気的に焼結
する磁気回路手段及び前記磁気回路に鎖交するコイルを
含む磁気記録用誘導型薄膜ヘッドと、請求項1,2,
3,4または5に記載の磁気抵抗効果型再生ヘッドとを
備える記録再生分離型磁気ヘッド。
6. An inductive thin film head for magnetic recording, comprising a pair of magnetic poles, magnetic circuit means for magnetically sintering the pair of magnetic poles, and a coil interlinking with the magnetic circuit, and
A recording / reproducing separated type magnetic head comprising the magnetoresistive effect reproducing head described in 3, 4, or 5.
【請求項7】磁気記録媒体と、請求項1,2,3,4,
5または6に記載のヘッドと前記磁気記録媒体と前記ヘ
ッドとを相対的に駆動する駆動手段と、前記ヘッドに接
続された記録再生信号処理系とを含む磁気記録再生装
置。
7. A magnetic recording medium and claims 1, 2, 3, 4,
7. A magnetic recording / reproducing apparatus including the head according to 5 or 6, a drive unit for relatively driving the magnetic recording medium and the head, and a recording / reproducing signal processing system connected to the head.
JP23813895A 1995-09-18 1995-09-18 Magnetoresistive effect type reproducing head and magnetic recording and reproducing device Pending JPH0981910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23813895A JPH0981910A (en) 1995-09-18 1995-09-18 Magnetoresistive effect type reproducing head and magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23813895A JPH0981910A (en) 1995-09-18 1995-09-18 Magnetoresistive effect type reproducing head and magnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH0981910A true JPH0981910A (en) 1997-03-28

Family

ID=17025764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23813895A Pending JPH0981910A (en) 1995-09-18 1995-09-18 Magnetoresistive effect type reproducing head and magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH0981910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449850B1 (en) * 2001-04-26 2004-09-24 가부시키가이샤 히타치세이사쿠쇼 Magnetoresistive head and magnetic recording/reproducing apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449850B1 (en) * 2001-04-26 2004-09-24 가부시키가이샤 히타치세이사쿠쇼 Magnetoresistive head and magnetic recording/reproducing apparatus using the same

Similar Documents

Publication Publication Date Title
JPH07105006B2 (en) Magnetoresistive magnetic head
JPH0594605A (en) Magneto-resistance effect type magnetic head
JP2001176028A (en) Thin film magnetic head and method of producing the same
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JPH1125431A (en) Magneto-resistance effect type reproducing head and magnetic recording and reproducing device
JPH08235542A (en) Magnetic reluctance effect element
JPH0981910A (en) Magnetoresistive effect type reproducing head and magnetic recording and reproducing device
JP3981856B2 (en) Thin film magnetic head
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JPH0877517A (en) Magneto-resistive head and its production
JP2701748B2 (en) Magnetoresistive element and bias applying method thereof
JP2897725B2 (en) Magnetoresistive head
JPH11175928A (en) Magnetic reluctance effect head and magnetic recording and reproducing device
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH08124122A (en) Magnetoresistive reproducing head and magnetic recording/reproducing device
JP2861714B2 (en) Magnetoresistive head and magnetic disk drive
JP3044012B2 (en) Magnetoresistive element, magnetoresistive head, magnetic head, and magnetic recording / reproducing device
JPH09180135A (en) Magnetoresistive head
JP2838942B2 (en) Magnetoresistive head
JP3083090B2 (en) Magnetoresistive sensor
JPH08147638A (en) Magnetoresistance read converter
JP2002367118A (en) Magnetic head and magnetic recording/reproducing device using the same
JP2001297412A (en) Thin film magnetic head and method of manufacture
JP2003208706A (en) Magnetic head