JPH0618200B2 - Method of manufacturing lateral transistor semiconductor device - Google Patents

Method of manufacturing lateral transistor semiconductor device

Info

Publication number
JPH0618200B2
JPH0618200B2 JP59166352A JP16635284A JPH0618200B2 JP H0618200 B2 JPH0618200 B2 JP H0618200B2 JP 59166352 A JP59166352 A JP 59166352A JP 16635284 A JP16635284 A JP 16635284A JP H0618200 B2 JPH0618200 B2 JP H0618200B2
Authority
JP
Japan
Prior art keywords
region
oxide film
emitter
polycrystalline semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59166352A
Other languages
Japanese (ja)
Other versions
JPS6146062A (en
Inventor
光造 坂本
健明 岡部
正利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59166352A priority Critical patent/JPH0618200B2/en
Publication of JPS6146062A publication Critical patent/JPS6146062A/en
Publication of JPH0618200B2 publication Critical patent/JPH0618200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/735Lateral transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高耐圧集積回路に係り、特に高耐圧化・高周波
化に好適なラテラルpnpトランジスタに関する。
Description: FIELD OF THE INVENTION The present invention relates to a high breakdown voltage integrated circuit, and more particularly to a lateral pnp transistor suitable for high breakdown voltage and high frequency.

〔発明の背景〕[Background of the Invention]

従来の、ラテラルpnpトランジスタについては、たと
えば、IBM J.RES.DEVELOP VOL.23,No.6 NOVEMEER 1979
年におけるS.J.Gillespieによる“Stability of La
teral pnp Transistors During Accelerated Aging"と
題する文献において論じられている。上記論文ではラテ
ラルpnpトランジスタのベース表面を安定化し、コレ
クタ・エミツタ間のパンチスルー耐圧を劣化させないた
めに、エミツタコンタクトに用いたAlでベース上を覆
う構造が有効であることが述べられている。しかし、前
記ベース上のAlは厚い酸化膜(例えば1μm程度)の
上の置かれているため、コレクタ・エミツタ間のパンチ
スルー耐圧を抑える効果が小さいという欠点があつた。
Regarding the conventional lateral pnp transistor, for example, IBM J.RES.DEVELOP VOL.23, No.6 NOVEMEER 1979.
S. J. “Stability of La” by Gillespie
Teral pnp Transistors During Accelerated Aging "is discussed in the above article. In order to stabilize the base surface of the lateral pnp transistor and to prevent the punch-through breakdown voltage between the collector and the emitter from deteriorating, the Al used for the emitter contact is used. However, since the Al on the base is placed on a thick oxide film (for example, about 1 μm), the punch-through breakdown voltage between the collector and the emitter is described. There is a drawback that the effect of suppressing is small.

〔発明の目的〕[Object of the Invention]

本発明の目的は、高周波・高電流利得で、なおかつ高耐
圧なラテラルpnpトランジスタの製造方法を提供する
ことにある。
An object of the present invention is to provide a method of manufacturing a lateral pnp transistor having high frequency, high current gain, and high breakdown voltage.

〔発明の概要〕[Outline of Invention]

上記目的を達するために本発明の製造方法により製造さ
れた半導体装置では、(1) ラテラルpnpトランジスタ
のベース上を覆う、エミツタと同電位の導電層下の酸化
膜厚をフイールド部より薄くし、ベース表面の反転を防
止し、ベースのパンチスル耐圧を向上する。(2)ベース
側のコレクタ部を低濃度にし、上記導電層とドレイン間
の電界増加によるコレクタ・ベース間のアバランシエ耐
圧劣化も防止するという特徴を有する。
In the semiconductor device manufactured by the manufacturing method of the present invention in order to achieve the above object, (1) the oxide film thickness under the conductive layer covering the base of the lateral pnp transistor and having the same potential as the emitter is made thinner than the field portion, Prevents reversal of the base surface and improves the punch-through resistance of the base. (2) The collector portion on the base side is made to have a low concentration to prevent deterioration of the avalanche breakdown voltage between the collector and the base due to the increase of the electric field between the conductive layer and the drain.

本願で開示される代表的な実施形態は、 半導体基板に設けられた一導電形のベース領域に、互い
に離れて設けられた上記一導電形と反対導電形のエミッ
タ領域とコレクタ領域を有し、その間の領域を実効的に
働くベース領域とし、 上記実効的に働くベース領域の表面上に上記エミッタ領
域と実質的に同電位となる制御電極を有し、 上記実効的に働くベース領域の表面上の酸化膜がフィー
ルド部の厚い酸化膜より薄い部分を有するラテラルトラ
ンジスタ半導体装置の製造方法であって、 上記ベース領域(3)が形成された上記半導体基板(1)の表
面上に上記厚い酸化膜(6)を形成し、該上記厚い酸化膜
(6)のうち上記エミッタ領域と上記コレクタ領域と上記
実効的に働くベース領域となる部分の厚い酸化膜(6)を
選択的に除去し、該選択除去部分に薄い酸化膜を形成す
る第1の工程(第8図(a)参照)と、 上記薄い酸化膜の上に多結晶半導体層を被着した後、該
多結晶半導体装置のうち上記実効的に働くベース領域上
以外の多結晶半導体層を除去することにより上記実効的
に働くベース領域上に多結晶半導体電極(7)を形成する
第2の工程(第8図(b)参照)と、 上記第2の工程により形成された上記多結晶半導体電極
(7)をマスクとして不純物を導入することにより、上記
多結晶半導体電極(7)と自己整合で上記エミッタ領域お
よび上記コレクタ領域の部分に低濃度不純物層(9)を形
成する第3の工程(第8図(c)参照)と、 上記コレクタ領域の部分の上記低濃度不純物層(9)のう
ち上記多結晶半導体電極(7)に近接した部分上に厚いマ
スク酸化膜(6)を形成し、しかる後該厚いマスク酸化膜
(6)をマスクとして不純物を導入することにより、上記
コレクタ領域の部分のうち上記多結晶半導体電極(7)か
ら離間した部分にコレクタ高濃度不純物層(10b)を形成
するとともに上記多結晶半導体電極(7)と自己整合で上
記エミッタ領域の部分にエミッタ高濃度不純物層(10a)
を形成する第4の工程(第8図(c)参照)とを含み、 上記多結晶半導体電極(7)と上記エミッタ高濃度不純物
層(10a)とに電気的に接続されるエミッタ電極(12a)を形
成することを特徴とする。
A typical embodiment disclosed in the present application has, in a base region of one conductivity type provided in a semiconductor substrate, an emitter region and a collector region of the opposite conductivity type provided separately from each other, A region between them is used as an effective working base region, and a control electrode having substantially the same potential as the emitter region is provided on the surface of the effective working base region, and on the surface of the effective working base region. A method of manufacturing a lateral transistor semiconductor device, wherein the oxide film has a portion thinner than the thick oxide film in the field part, wherein the thick oxide film is formed on the surface of the semiconductor substrate (1) on which the base region (3) is formed. (6) is formed, and the thick oxide film is formed.
First, a thick oxide film (6) in the emitter region, the collector region, and the effectively acting base region of (6) is selectively removed, and a thin oxide film is formed in the selectively removed region. (See FIG. 8 (a)), and after depositing a polycrystalline semiconductor layer on the thin oxide film, a polycrystalline semiconductor device of the polycrystalline semiconductor device other than on the effective base region A second step (see FIG. 8 (b)) of forming a polycrystalline semiconductor electrode (7) on the effective base region by removing the layer, and the above-mentioned step formed by the second step. Polycrystalline semiconductor electrode
The third step (3) of forming a low-concentration impurity layer (9) in the emitter region and the collector region by self-alignment with the polycrystalline semiconductor electrode (7) by introducing impurities using (7) as a mask 8 (c)), and a thick mask oxide film (6) is formed on a portion of the low-concentration impurity layer (9) in the collector region which is close to the polycrystalline semiconductor electrode (7). After that, the thick mask oxide film
By introducing impurities using (6) as a mask, a collector high-concentration impurity layer (10b) is formed in a portion of the collector region apart from the polycrystalline semiconductor electrode (7), and the polycrystalline semiconductor electrode is formed. The emitter high-concentration impurity layer (10a) is self-aligned with the emitter region (7).
And a fourth step (see FIG. 8 (c)) of forming the emitter electrode (12a) electrically connected to the polycrystalline semiconductor electrode (7) and the emitter high-concentration impurity layer (10a). ) Is formed.

上述の代表的な実施形態によるラテラルトランジスタ半
導体装置の製造方法によれば、 (1)実効的に働くベース領域と多結晶半導体電極(7)
との間の酸化膜がフィールド部の厚い酸化膜より薄いた
め、ベースのパンチスルー耐圧を向上できる、 (2)コレクタ領域の部分の低濃度不純物層(9)によ
り、コレクタ・ベース間のアバランシェ耐圧を向上でき
る、 (3)実効的に働くベース領域の幅(すなわち実効ベー
ス幅)が、第3の工程で多結晶半導体電極(7)と自己整合
で形成されるコレクタ低濃度不純物層(9)と第4の工程
で多結晶半導体電極(7)と自己整合で形成されるエミッ
タ高濃度不純物層(10a)との間隔(すなわち、ほぼ多結晶
半導体電極(7)の幅)で高精度に設定されるので、電流増
幅率のバラツキ、コレクタ・ベース間耐圧のバラツキ、
カットオフ周波数のバラツキ等を小さくできる、 (4)実効ベース幅を決定する多結晶半導体電極(7)は
Al(アルミニューム)等の通常の金属と比較して融点が
高いので、エミッタ及びコレクタの低濃度不純物層(9)
とエミッタ及びコレクタの高濃度不純物層(10a,10b)の
形成のための熱処理にも耐えることができる、 (5)上記(3)で説明したように実効ベース幅を自己
整合のプロセスで決定する多結晶半導体電極(7)それ自
体はエミッタ高濃度不純物層(10a)に接続できないが、
エミッタ電極(12a)を多結晶半導体電極(7)とエミッタ高
濃度不純物層(10a)とに電気的に接続することによっ
て、この多結晶半導体電極(7)をエミッタ領域と実質的
に同電位となる制御電極とすることができる、 等と言う顕著な作用・効果を奏する。
According to the method for manufacturing the lateral transistor semiconductor device according to the representative embodiment, (1) the base region and the polycrystalline semiconductor electrode (7) that work effectively
Since the oxide film between and is thinner than the thick oxide film in the field, the punch-through breakdown voltage of the base can be improved. (2) The low-concentration impurity layer (9) in the collector region allows the avalanche breakdown voltage between the collector and the base. (3) The width of the base region that effectively works (that is, the effective base width) is formed in the third step by self-alignment with the polycrystalline semiconductor electrode (7). And in the fourth step, the interval between the polycrystalline semiconductor electrode (7) and the emitter high-concentration impurity layer (10a) formed in self-alignment (that is, substantially the width of the polycrystalline semiconductor electrode (7)) is set with high accuracy. Therefore, variations in current amplification factor, variations in collector-base breakdown voltage,
Variations in cutoff frequency can be reduced. (4) Polycrystalline semiconductor electrode (7), which determines the effective base width, has a higher melting point than ordinary metals such as Al (aluminum). Low concentration impurity layer (9)
Also, it can withstand the heat treatment for forming the high-concentration impurity layers (10a, 10b) of the emitter and collector. (5) As described in (3) above, the effective base width is determined by the self-alignment process. Although the polycrystalline semiconductor electrode (7) itself cannot be connected to the emitter high-concentration impurity layer (10a),
By electrically connecting the emitter electrode (12a) to the polycrystalline semiconductor electrode (7) and the emitter high-concentration impurity layer (10a), the polycrystalline semiconductor electrode (7) is made to have substantially the same potential as the emitter region. Can be used as the control electrode.

本発明のその他の特徴は、以下に説明する実施例から明
らかとなろう。
Other features of the present invention will be apparent from the embodiments described below.

〔発明の実施例〕Example of Invention

以下、本発明を参考例および実施例を参照して詳細に説
明する。第1図は本発明の原理を説明するための参考例
の半導体装置の構造断面図である。10aはラテラルpn
pトランジスタのエミツタ層となるp形拡散層、10b
はエミツタをリング状に囲んだコレクタとなるp形拡散
層、3はベースとなるN形半導体で、11はベースコン
タクト用のn形拡散層である。12aはベース上のパン
チスルー降伏を防止するための電極であるが、酸化膜厚
を薄くし、N形ベース表面層のP形反転防止効果を増加
させるためにA部のように、ベース上の酸化膜を薄くし
た領域を設けてある。
Hereinafter, the present invention will be described in detail with reference to Reference Examples and Examples. FIG. 1 is a structural sectional view of a semiconductor device of a reference example for explaining the principle of the present invention. 10a is lateral pn
p-type diffusion layer 10b serving as an emitter layer of a p-transistor
Is a p-type diffusion layer that serves as a collector surrounding the emitter in a ring shape, 3 is an N-type semiconductor that is a base, and 11 is an n-type diffusion layer for a base contact. Reference numeral 12a is an electrode for preventing punch-through breakdown on the base, but in order to reduce the oxide film thickness and increase the P-type inversion prevention effect of the N-type base surface layer, the electrode 12a on the base is formed. A region where the oxide film is thin is provided.

第2図は本発明の原理を説明するための他の参考例の半
導体装置の構造断面図である。10aがエミツタ、10b
がコレクタ、3がベースであることは第1図と同じであ
る。本参考例の特徴は、ベース上を覆う電極7をたとえ
ば1000Å程度以下の薄い酸化膜上に設けたことと、電極
7と高濃度コレクタ層10bの間を離し、低濃度コレク
タ層9を設けてあることである。電極7は、従来フイー
ルド酸化膜のように厚い酸化膜上に形成していたが、本
発明では、薄い酸化膜上に形成するため、ベース表面が
P形に反転することを防止する効果が期待できる。この
ため、従来に比べ、ベース表面のパンチスルー耐圧を向
上できた。また、酸化膜を薄くすることにより、コレク
タと電極7の間の電界は増加するが、低濃度コレクタ層
9により、コレクタ・ベース間のアバランシエ耐圧劣化
を防止できた。このため、高周波・高電流利得の高耐圧
ラテラルpnpトランジスタを実現できる。特に、電極7
として多結晶半導体層を用いた場合には、第8図に示す
製造方法により、電極7と低濃度コレクタ層9を自己整
合で形成できるため、ベース表面を完全に覆い、かつ、
コレクタ層上へ導電層の張り出しを最小にできることか
ら、ベース表面の安定化,高耐圧化,微細化のたに最適
な構造にできる。
FIG. 2 is a structural sectional view of a semiconductor device of another reference example for explaining the principle of the present invention. 10a is an emitter and 10b
Is the same as FIG. 1 in that the collector is 3 and the base is 3. The feature of this reference example is that the electrode 7 covering the base is provided on a thin oxide film of, for example, about 1000 Å or less, and the electrode 7 and the high-concentration collector layer 10b are separated from each other, and the low-concentration collector layer 9 is provided. There is. The electrode 7 is conventionally formed on a thick oxide film such as a field oxide film, but since it is formed on a thin oxide film in the present invention, an effect of preventing the base surface from reversing into a P-type is expected. it can. Therefore, the punch-through breakdown voltage on the surface of the base can be improved as compared with the conventional case. Although the electric field between the collector and the electrode 7 is increased by thinning the oxide film, the low-concentration collector layer 9 can prevent deterioration of the avalanche breakdown voltage between the collector and the base. Therefore, a high breakdown voltage lateral pnp transistor with high frequency and high current gain can be realized. In particular, the electrode 7
When a polycrystalline semiconductor layer is used as the electrode, the electrode 7 and the low-concentration collector layer 9 can be formed in a self-aligned manner by the manufacturing method shown in FIG. 8, so that the base surface is completely covered and
Since the protrusion of the conductive layer on the collector layer can be minimized, the structure can be optimized for stabilizing the base surface, increasing the breakdown voltage, and miniaturizing.

第3図は本発明の原理を説明するための他の参考例の半
導体装置の構造断面図である。本実施例では、第2図で
述べた、第2の参考例を、公知の技術(たとえば、特開
昭55−30844)を用いた高耐圧素子製造技術に適用させ
た場合を示した。ここで、1はP形基板、2は高濃度n
形埋込層、3はN形エピタキシヤル層、4はP形アイソ
レーシヨン拡散層、5はベース抵抗低減のために用いる
n形拡散層、6はフィールド酸化膜、7は多結晶半導体
層で、12aは電極によりエミツタと同電位に保つてあ
る。この実施例ではアイソレーシヨン拡散層4を深くし
なくても、厚いエピタキシヤル部につくつた素子を分離
できる。素子部のエピタキシヤル層を厚くすることによ
り、ベース・コレクタ間のリーチスルー耐圧を増加でき
る。
FIG. 3 is a structural sectional view of a semiconductor device of another reference example for explaining the principle of the present invention. In the present embodiment, the case where the second reference example described in FIG. 2 is applied to the high breakdown voltage element manufacturing technology using a known technology (for example, Japanese Patent Laid-Open No. 55-30844) is shown. Here, 1 is a P-type substrate, 2 is a high concentration n
Type buried layer, 3 is an N type epitaxial layer, 4 is a P type isolation diffusion layer, 5 is an n type diffusion layer used for reducing the base resistance, 6 is a field oxide film, and 7 is a polycrystalline semiconductor layer. , 12a are kept at the same potential as the emitter by electrodes. In this embodiment, the element formed in the thick epitaxial portion can be separated without making the isolation diffusion layer 4 deep. By increasing the thickness of the epitaxial layer in the element portion, the reach-through breakdown voltage between the base and collector can be increased.

第4図は、本発明の原理を説明するための他の参考例の
半導体装置の構造断面図を示す。前記第3図の例との相
異は、エミツタとり出し用電極として用いる12aにあ
る。本参考例では、12aが、低濃度コレクタ層9上ま
できており、コレクタ9の端部における電界集中を緩和
させ耐圧を向上させる効果がある。
FIG. 4 is a structural sectional view of a semiconductor device of another reference example for explaining the principle of the present invention. The difference from the example of FIG. 3 lies in 12a used as an electrode for extracting an emitter. In this reference example, 12a is formed on the low-concentration collector layer 9 and has the effect of relaxing the electric field concentration at the end of the collector 9 and improving the breakdown voltage.

第5図は、本発明の原理を説明するための他の参考例の
半導体装置の構造断面図を示した。第4図の参考例との
相異は、N形拡散層8を追加した点にある。このN形拡
散層8は、第8図に示すように、多結晶半導体層8をマ
スクにして形成できるがこれにより、パンチスルー耐圧
をさらに向上させることが可能である。
FIG. 5 is a structural sectional view of a semiconductor device of another reference example for explaining the principle of the present invention. The difference from the reference example of FIG. 4 is that an N-type diffusion layer 8 is added. As shown in FIG. 8, the N-type diffusion layer 8 can be formed by using the polycrystalline semiconductor layer 8 as a mask, which makes it possible to further improve the punch-through breakdown voltage.

第6図は、本発明の原理を説明するための他の参考例の
半導体装置の構造断面図を示した。本参考例では、MOSF
ETの製造方法として公知のLOCOS プロセスで形成できる
フイールド酸化膜6直下のP形チヤネルストツパ17を
コレクタの低濃度拡散層9のかわりに用いている。本参
考例では、高耐圧化用低濃度拡散層9を用いずに、本発
明の目的を達成できる。また、本参考例はLOCOS 構造の
小信号MOSFETとの共存が容易である。
FIG. 6 is a structural sectional view of a semiconductor device of another reference example for explaining the principle of the present invention. In this reference example, MOSF
As the ET manufacturing method, a P-type channel stopper 17 directly below the field oxide film 6 that can be formed by the known LOCOS process is used instead of the low concentration diffusion layer 9 of the collector. In this reference example, the object of the present invention can be achieved without using the low-concentration diffusion layer 9 for increasing the breakdown voltage. In addition, this reference example is easy to coexist with a small-signal MOSFET having a LOCOS structure.

第7図は、本発明の原理を説明するための他の参考例の
半導体装置の構造断面図を示した。第6図に示した参考
例との相異は、エミツタとり出し用電極として用いる電
極12aにある。本参考例では電極12aが、低濃度コ
レクタ層17上まできているため、電界集中を緩和させ
耐圧を向上させる効果が高い。
FIG. 7 is a structural sectional view of a semiconductor device of another reference example for explaining the principle of the present invention. The difference from the reference example shown in FIG. 6 lies in the electrode 12a used as the emitter extraction electrode. In this reference example, since the electrode 12a is formed on the low-concentration collector layer 17, the effect of alleviating the electric field concentration and improving the breakdown voltage is high.

第8図(a)から第8図(c)に、本発明の実施例の半
導体装置の製造方法の一例を、前記第5図の参考例に示
した装置について示した。
FIGS. 8 (a) to 8 (c) show an example of a method of manufacturing a semiconductor device according to an embodiment of the present invention for the device shown in the reference example of FIG.

まず、第8図(a)に示す如く公知の技術(たとえば、
特開昭55−30844 に示した方法)により、凹みのあるp
基板に高濃度n形埋込層2を形成し、n形エピタキシヤ
ル層3を形成し、表面を平坦化する。次に、p形アイソ
レーシヨン拡散層4とn形拡散層5と厚いフィールド酸
化膜6を形成する。次に、ラテラルpnpトランジスタ
のエミツタ・コレクタ、及び、実効的に働くベース領域
となる部分の酸化膜6を選択的に除去し、1000Å程度の
薄い酸化膜の領域を作る。なお、この酸化膜は、同一チ
ツプ上のMOSFETのゲート酸化膜と同時に形成したものを
使用できる。
First, as shown in FIG. 8 (a), a known technique (for example,
According to the method disclosed in JP-A-55-30844), the p
The high-concentration n-type buried layer 2 is formed on the substrate, the n-type epitaxial layer 3 is formed, and the surface is flattened. Next, the p-type isolation diffusion layer 4, the n-type diffusion layer 5 and the thick field oxide film 6 are formed. Next, the emitter collector of the lateral pnp transistor and the oxide film 6 in the portion which becomes the effective base region are selectively removed to form a thin oxide film region of about 1000 Å. This oxide film can be formed at the same time as the gate oxide film of the MOSFET on the same chip.

次に、第8図(b)に示す如く、多結晶半導体層7をデ
ポジシヨンし、実効的に働くベース領域上以外の多結晶
半導体層を除去し、この多結晶半導体層7とホトレジス
トパターン15をマスクにして、リンをイオン打込み
し、レジスト除去後の拡散によりn形拡散層8を形成で
きる。
Next, as shown in FIG. 8 (b), the polycrystalline semiconductor layer 7 is deposited, and the polycrystalline semiconductor layer other than on the effective base region is removed to remove the polycrystalline semiconductor layer 7 and the photoresist pattern 15. Using the mask as a mask, phosphorus is ion-implanted, and the n-type diffusion layer 8 can be formed by diffusion after removing the resist.

次に、レジスト15除去後、酸化膜6の厚い領域と、ポ
リシリコン7をマスクに、イオン打込法により、第8図
(c)に示す如く低濃度p形拡散層9を形成できる。次
に、低濃度コレクタ層9のうち多結晶半導体層7に近接
した部分の上に厚いマスク酸化膜6を形成し、しかる後
ラテラルpnpトランジスタのエミツタとコレクタ及
び、p形拡散層にコンタクトをとる部分に高濃度p形拡
散層10a,10b,10cを形成する。
Next, after removing the resist 15, a low concentration p-type diffusion layer 9 can be formed by ion implantation using the thick region of the oxide film 6 and the polysilicon 7 as a mask, as shown in FIG. 8 (c). Next, a thick mask oxide film 6 is formed on a portion of the low-concentration collector layer 9 close to the polycrystalline semiconductor layer 7, and then the emitter and collector of the lateral pnp transistor and the p-type diffusion layer are contacted. High-concentration p-type diffusion layers 10a, 10b, 10c are formed in the portions.

次に、高濃度n形拡散層11を形成し、通常の2層配線
工程を行なうことにより、第5図に示した構造が得られ
る。
Next, a high-concentration n-type diffusion layer 11 is formed and a normal two-layer wiring process is performed to obtain the structure shown in FIG.

第6図,第7図に示した本発明の製造方法も本質的には
第8図に示した製造方法と同じである。第6図,第7図
のp形拡散層17の製造方法は、第9図に示す如く、ホ
トレジストパターン15′と、フイールド部形成を選択
酸化するためにパターン形成された耐酸化層16をマス
クにして、ボロンのイオン打込み法により形成できる。
The manufacturing method of the present invention shown in FIGS. 6 and 7 is essentially the same as the manufacturing method shown in FIG. As shown in FIG. 9, the p-type diffusion layer 17 shown in FIGS. 6 and 7 is manufactured by masking the photoresist pattern 15 'and the oxidation resistant layer 16 which is patterned to selectively oxidize the field portion formation. Then, it can be formed by a boron ion implantation method.

〔発明の効果〕〔The invention's effect〕

本発明によれば、 (1)実効的に働くベース領域と多結晶半導体電極(7)
との間の酸化膜がフィールド部の厚い酸化膜より薄く、
ベースのパンチスルー耐圧を向上できる、 (2)コレクタ領域の部分の低濃度不純物層(9)によ
り、コレクタ・ベース間アンバランシェ耐圧を向上でき
る、 (3)実効ベース幅が、コレクタ低濃度不純物層(9)と
エミッタ高濃度不純物層(10a)との間隔で自己整合のプ
ロセスで高精度に設定されるので、電流増幅率のバラツ
キ、コレクタ・ベース間耐圧のバラツキ、カットオフ周
波数のバラツキ等を小さくできる、 (4)実効ベース幅を決定する多結晶半導体電極(7)は
通常の金属と比較して融点が高いので、エミッタ及びコ
レクタの低濃度不純物層(9)とエミッタ及びコレクタの
高濃度不純物層(10a,10b)の形成のための熱処理にも耐
えることができる、 (5)実効ベース幅を自己整合プロセスで決定する多結
晶半導体電極(7)自体はエミッタ高濃度不純物層(10a)に
接続できないが、エミッタ電極(12a)と多結晶半導体電
極(7)およびエミッタ高濃度不純物層(10a)との間の電気
的接続によって、この多結晶半導体電極(7)をエミッタ
領域と実質的に同電位となる制御電極とできる、 と言う効果を奏する。
According to the present invention, (1) an effective working base region and a polycrystalline semiconductor electrode (7)
The oxide film between and is thinner than the thick oxide film in the field,
The punch-through breakdown voltage of the base can be improved. (2) The low-concentration impurity layer (9) in the collector region can improve the avalanche breakdown voltage between the collector and the base. (3) The effective base width is a low-concentration collector layer. The gap between (9) and the emitter high-concentration impurity layer (10a) is set with high accuracy through a self-alignment process, so variations in current amplification factor, variations in collector-base breakdown voltage, variations in cutoff frequency, etc. (4) The melting point of the polycrystalline semiconductor electrode (7), which determines the effective base width, is higher than that of ordinary metals, so that the low concentration impurity layer (9) of the emitter and collector and the high concentration of the emitter and collector It can withstand the heat treatment for forming the impurity layers (10a, 10b). (5) The polycrystalline semiconductor electrode (7) itself, which determines the effective base width by the self-alignment process, has a high impurity concentration in the emitter. Although it cannot be connected to the layer (10a), the polycrystalline semiconductor electrode (7) can be connected to the emitter electrode (12a) by an electrical connection between the polycrystalline semiconductor electrode (7) and the emitter high-concentration impurity layer (10a). There is an effect that the control electrode can have substantially the same potential as the region.

【図面の簡単な説明】[Brief description of drawings]

第1〜7図は本発明の参考例を示すラテラルpnpトラ
ンジスタの構造断面図、第8〜9図は本発明の実施例の
半導体装置の製造工程を説明する断面図である。 1……p基板、2……高濃度n形埋込層、3……n形エ
ピタキシヤル層、4……p形アイソレーシヨン拡散層、
5……n埋込層、6……フィールド酸化膜、7……多
結晶半導体層等の導電層(電極)、8……n形拡散層、
9……低濃度p形拡散層、10a,10b,10c……
高濃度p形拡散層、11……高濃度n形拡散層、12
a,12b,12c……第1電極、13……層間絶縁
膜、14……第2電極、15,15′……ホトレジス
ト、16……シリコン窒化膜、17……p形拡散層。
1 to 7 are sectional views of the structure of a lateral pnp transistor showing a reference example of the present invention, and FIGS. 8 to 9 are sectional views for explaining a manufacturing process of a semiconductor device of an embodiment of the present invention. 1 ... p substrate, 2 ... high-concentration n-type buried layer, 3 ... n-type epitaxial layer, 4 ... p-type isolation diffusion layer,
5 ... n + buried layer, 6 ... field oxide film, 7 ... conductive layer (electrode) such as polycrystalline semiconductor layer, 8 ... n-type diffusion layer,
9 ... Low-concentration p-type diffusion layer, 10a, 10b, 10c ...
High-concentration p-type diffusion layer, 11 ... High-concentration n-type diffusion layer, 12
a, 12b, 12c ... first electrode, 13 ... interlayer insulating film, 14 ... second electrode, 15,15 '... photoresist, 16 ... silicon nitride film, 17 ... p type diffusion layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板に設けられた一導電形のベース
領域に、互いに離れて設けられた上記一導電形と反対導
電形のエミッタ領域とコレクタ領域を有し、その間の領
域を実効的に働くベース領域とし、 上記実効的に働くベース領域の表面上に上記エミッタ領
域と実質的に同電位となる制御電極を有し、 上記実効的に働くベース領域の表面上の酸化膜がフィー
ルド部の厚い酸化膜より薄い部分を有するラテラルトラ
ンジスタ半導体装置の製造方法であって、 上記ベース領域が形成された上記半導体基板の表面上に
上記厚い酸化膜を形成し、該上記厚い酸化膜のうち上記
エミッタ領域と上記コレクタ領域と上記実効的に働くベ
ース領域となる部分の厚い酸化膜を選択的に除去し、該
選択除去部分に薄い酸化膜を形成する第1の工程と、 上記薄い酸化膜の上に多結晶半導体層を被着した後、該
多結晶半導体層のうち上記実効的に働くベース領域上以
外の多結晶半導体層を除去することにより上記実効的に
働くベース領域上に多結晶半導体電極を形成する第2の
工程と、 上記第2の工程により形成された上記多結晶半導体電極
をマスクとして不純物を導入することにより、上記多結
晶半導体電極と自己整合で上記エミッタ領域および上記
コレクタ領域の部分に低濃度不純物層を形成する第3の
工程と、 上記コレクタ領域の部分の上記低濃度不純物層のうち上
記多結晶半導体電極に近接した部分上に厚いマスク酸化
膜を形成し、しかる後該厚いマスク酸化膜をマスクとし
て不純物を導入することにより、上記コレクタ領域の部
分のうち上記多結晶半導体電極から離間した部分にコレ
クタ高濃度不純物層を形成するとともに上記多結晶半導
体電極と自己整合で上記エミッタ領域の部分にエミッタ
高濃度不純物層を形成する第4の工程とを含み、 上記多結晶半導体電極と上記エミッタ高濃度不純物層と
に電気的に接続されるエミッタ電極を形成することを特
徴とするラテラルトランジスタ半導体装置の製造方法。
1. A base region of one conductivity type provided on a semiconductor substrate, has an emitter region and a collector region of the opposite conductivity type of the one conductivity type, which are provided apart from each other. As a working base region, a control electrode having substantially the same potential as that of the emitter region is provided on the surface of the effectively working base region, and an oxide film on the surface of the effectively working base region is a field portion. A method of manufacturing a lateral transistor semiconductor device having a portion thinner than a thick oxide film, wherein the thick oxide film is formed on a surface of the semiconductor substrate on which the base region is formed, and the emitter of the thick oxide film is formed. A first step of selectively removing a thick oxide film in the region, the collector region, and a portion that effectively acts as a base region, and forming a thin oxide film in the selectively removed portion; After depositing the polycrystalline semiconductor layer on the oxide film, the polycrystalline semiconductor layer on the effectively operating base region is removed by removing the polycrystalline semiconductor layer other than on the effectively operating base region. A second step of forming a polycrystalline semiconductor electrode on the substrate, and introducing impurities by using the polycrystalline semiconductor electrode formed by the second step as a mask, so that the emitter region is self-aligned with the polycrystalline semiconductor electrode. And a third step of forming a low-concentration impurity layer in the collector region, and forming a thick mask oxide film on a part of the low-concentration impurity layer in the collector region near the polycrystalline semiconductor electrode. Then, by introducing impurities using the thick mask oxide film as a mask, the collector is formed in a portion of the collector region separated from the polycrystalline semiconductor electrode. A fourth step of forming a high concentration impurity layer and forming an emitter high concentration impurity layer in a portion of the emitter region in self-alignment with the polycrystalline semiconductor electrode, wherein the polycrystalline semiconductor electrode and the emitter high concentration impurity layer are included. A method of manufacturing a lateral transistor semiconductor device, which comprises forming an emitter electrode electrically connected to and.
【請求項2】上記第3の工程で上記エミッタ領域および
上記コレクタ領域の部分に上記低濃度不純物層を形成す
るため上記不純物がイオン打込みにより導入されること
を特徴とする特許請求の範囲第1項に記載のラテラルト
ランジスタ半導体装置の製造方法。
2. The impurity is introduced by ion implantation in order to form the low-concentration impurity layer in the portion of the emitter region and the collector region in the third step. Item 8. A method of manufacturing a lateral transistor semiconductor device according to item.
JP59166352A 1984-08-10 1984-08-10 Method of manufacturing lateral transistor semiconductor device Expired - Lifetime JPH0618200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59166352A JPH0618200B2 (en) 1984-08-10 1984-08-10 Method of manufacturing lateral transistor semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59166352A JPH0618200B2 (en) 1984-08-10 1984-08-10 Method of manufacturing lateral transistor semiconductor device

Publications (2)

Publication Number Publication Date
JPS6146062A JPS6146062A (en) 1986-03-06
JPH0618200B2 true JPH0618200B2 (en) 1994-03-09

Family

ID=15829784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59166352A Expired - Lifetime JPH0618200B2 (en) 1984-08-10 1984-08-10 Method of manufacturing lateral transistor semiconductor device

Country Status (1)

Country Link
JP (1) JPH0618200B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041854B2 (en) * 1988-11-22 2000-05-15 ソニー株式会社 Lateral transistor and method of manufacturing the same
JPH02142137A (en) * 1988-11-22 1990-05-31 Sony Corp Lateral transistor and manufacture thereof
FR2762139B1 (en) * 1997-04-15 1999-07-02 Sgs Thomson Microelectronics LATERAL PNP TRANSISTOR IN BICMOS TECHNOLOGY
US6885522B1 (en) 1999-05-28 2005-04-26 Fujitsu Limited Head assembly having integrated circuit chip covered by layer which prevents foreign particle generation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104254A (en) * 1980-12-22 1982-06-29 Hitachi Ltd Lateral-transistor

Also Published As

Publication number Publication date
JPS6146062A (en) 1986-03-06

Similar Documents

Publication Publication Date Title
US5065208A (en) Integrated bipolar and CMOS transistor with titanium nitride interconnections
US4962053A (en) Bipolar transistor fabrication utilizing CMOS techniques
JPH11297984A (en) Structure of ldd type mos transistor and forming method
JPS62229976A (en) Semiconductor device and manufacture thereof
US5019523A (en) Process for making polysilicon contacts to IC mesas
JP2587444B2 (en) Bipolar transistor using CMOS technology and method of manufacturing the same
JPH0557741B2 (en)
JPH04348053A (en) Manufacture of semiconductor device
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
JPH11354780A (en) Semiconductor device and its manufacture
US5065209A (en) Bipolar transistor fabrication utilizing CMOS techniques
JPH0618200B2 (en) Method of manufacturing lateral transistor semiconductor device
JP2000068372A (en) Semiconductor device and manufacture thereof
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JP3303550B2 (en) Method for manufacturing semiconductor device
JP3162745B2 (en) Method of manufacturing insulated gate field effect transistor
JP3785258B2 (en) Manufacturing method of semiconductor device
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JPH09102604A (en) Semiconductor device
JPH065708B2 (en) Semiconductor integrated circuit device
JP3067143B2 (en) Semiconductor device manufacturing method
JP2722506B2 (en) Semiconductor device and manufacturing method thereof
JP2630863B2 (en) Manufacturing method of insulated gate semiconductor device
JPH02296342A (en) Manufacture of mosfet
JP2770576B2 (en) Method for manufacturing semiconductor device