JPH0618108A - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator

Info

Publication number
JPH0618108A
JPH0618108A JP19656992A JP19656992A JPH0618108A JP H0618108 A JPH0618108 A JP H0618108A JP 19656992 A JP19656992 A JP 19656992A JP 19656992 A JP19656992 A JP 19656992A JP H0618108 A JPH0618108 A JP H0618108A
Authority
JP
Japan
Prior art keywords
differential pressure
valve
pressure
cryogenic
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19656992A
Other languages
Japanese (ja)
Other versions
JP2994862B2 (en
Inventor
Hiroyuki Mochihara
浩行 持原
Yuji Yamaguchi
勇治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4196569A priority Critical patent/JP2994862B2/en
Publication of JPH0618108A publication Critical patent/JPH0618108A/en
Application granted granted Critical
Publication of JP2994862B2 publication Critical patent/JP2994862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To promote cooling at the time of cool-down. and to avoid interruption by the overload of an ambient temperature, etc., by making the operating differential pressure of a variable differential pressure regulating valve as a bypass valve at the time of cool-down larger than that at the time of stationary operation and reducing the operating differential pressure in inversely proportional to the ambient temperature, etc. CONSTITUTION:A cryogenic cooling section 200 is supplied with a refrigerant body pressed by a cryogenic refrigerator 500 and a compression section 100 from a forward pipe 21, and the refrigerant body is discharged to a return pipe 25 and circulated to the compression section 100. The bypass valve 32 of a bypass pipe 31 communicating the forward pipe 21 and the return pipe 25 is opened in response to required differential pressure at that time. In said constitution, a variable differential pressure regulating valve 321 is used as the bypass valve 32. Each pressure on both sides before and behind the differential pressure regulating valve 32 is detected by each pressure detector 33, 34 respectively. An ambient temperature, etc., are detected by a room-temperature detector 102. The operating pressure of the variable differential pressure regulating valve 32 at the time of cool-down is made larger than that at the time of stationary operation on the basis of each detecting signal and reduced in inversely proportional to the ambient temperature, etc., in a control section 101.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は加圧ガス体を冷却媒体
とし、膨張冷却機の負荷状態に対応して制御を行う極低
温冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic refrigerating apparatus which uses a pressurized gas body as a cooling medium and controls in accordance with the load condition of an expansion cooler.

【0002】[0002]

【従来の技術】この種の装置として、図4の極低温冷凍
装置500ように、電動機10Aによって駆動する冷媒
圧縮機10により、所定のガス体、例えば、ヘリウムガ
スを冷媒体として加圧した加圧冷媒体を往路管21に供
給し、所要の極低温冷却を果して低圧化した冷媒体を復
路管25から回収し、再び加圧して往路管21に供給す
る圧縮部100と、往路管21から得られる加圧冷媒体
を供給弁22を介して極低温冷却機23に与え、所要の
極低温冷却を行って低圧化した冷媒体を排出弁24を介
して復路管25に戻す極低温冷却部200と、往路管2
1と復路管25との間を側路する側路管31の途中に設
けた差圧で動作する側路弁32に所要の圧力調節を与え
ることにより、極低温冷却機23または冷媒圧縮機10
に対する不要な高圧などを側路して極低温冷却機23と
冷媒圧縮機10との異常運転を防止するなどの運転調整
動作を行う調整部300とを設けた構成(以下、第1従
来技術という)が周知である。
2. Description of the Related Art As an apparatus of this type, a cryogenic refrigeration apparatus 500 shown in FIG. 4 pressurizes a predetermined gas body, for example, helium gas, as a refrigerant body by a refrigerant compressor 10 driven by an electric motor 10A. The compressed refrigerant body is supplied to the outward pipe 21, and the refrigerant body that has been cooled to a low pressure by performing the required cryogenic cooling is recovered from the return pipe 25, is pressurized again, and is supplied to the outward pipe 21. The cryogenic cooling unit which gives the obtained pressurized refrigerant body to the cryogenic cooler 23 via the supply valve 22 and performs the required cryogenic cooling to lower the pressure of the refrigerant body to the return pipe 25 via the discharge valve 24. 200 and forward pipe 2
1 and the return pipe 25, the cryogenic cooler 23 or the refrigerant compressor 10 is provided by providing a required pressure adjustment to the bypass valve 32 that operates at a differential pressure provided in the middle of the bypass pipe 31 that bypasses.
A configuration in which an adjusting unit 300 that performs an operation adjusting operation such as preventing an abnormal operation of the cryogenic cooler 23 and the refrigerant compressor 10 by bypassing unnecessary high pressure and the like is provided (hereinafter, referred to as a first conventional technique). ) Is well known.

【0003】上記の極低温冷却機23を、電動機23A
により所定のシリンダ内を往復動作するディスプレーサ
により加圧冷媒体を膨張し、膨張時の吸熱作用によって
極低温の冷却を行う膨張冷却操作に関連付けて、供給弁
22と排出弁25とを開閉操作するようにした構成(以
下、第2従来技術という)が特開平3−158661な
どにより開示されており、こうした構成の極低温冷却機
を構成要素の一部に用いたものに、例えば、クライオポ
ンプがある。
The above cryogenic cooler 23 is replaced by an electric motor 23A.
The expander that reciprocates in a predetermined cylinder expands the pressurized refrigerant body, and the supply valve 22 and the discharge valve 25 are opened and closed in association with the expansion cooling operation in which the cryogenic cooling is performed by the endothermic effect during expansion. Such a configuration (hereinafter referred to as the second conventional technique) is disclosed in Japanese Patent Laid-Open No. 3-158661 and the like, and a cryopump having such a configuration as a part of its constituent elements is, for example, a cryopump. is there.

【0004】また、上記の第1従来技術では、側路弁3
2は、一般には、入口側の圧力と出口側の圧力との差が
規定値以上になったとき、開通するように構成した単な
る差圧弁を用いているが、こうした差圧弁のみによる構
成では、周囲温度などの運転条件によっては、安定な冷
却動作を行えない場合があるので、上記の調整部300
を、圧縮機部100内の実際の圧縮動作に対応する部分
に圧力検出器33・34を設けて検出した各圧力の圧力
差を演算して制御する差圧制御回路35によって側路弁
32を制御するようにした構成(以下、第3従来技術と
いう)が特開平3−217763などにより開示されて
いる。
Further, in the above first prior art, the bypass valve 3
No. 2 generally uses a simple differential pressure valve configured to open when the difference between the pressure on the inlet side and the pressure on the outlet side becomes a specified value or more, but with a configuration using only such a differential pressure valve, A stable cooling operation may not be performed depending on operating conditions such as ambient temperature.
The bypass valve 32 is controlled by the differential pressure control circuit 35 that controls the pressure difference between the pressures detected by providing the pressure detectors 33 and 34 in the portion corresponding to the actual compression operation in the compressor unit 100. A controllable configuration (hereinafter referred to as a third conventional technique) is disclosed in Japanese Patent Application Laid-Open No. 3-217763.

【0005】上記の第3従来技術の構成は、さらに具体
的には、図5のような構成になっている。図5におい
て、図4の符号と同一符号の部分は、図4によって説明
したものと同一の機能をもつ部分であり、各部は次のよ
うに動作する。
More specifically, the configuration of the above third prior art is as shown in FIG. 5, portions having the same reference numerals as those in FIG. 4 have the same functions as those described with reference to FIG. 4, and each portion operates as follows.

【0006】圧縮機11で加圧した冷媒体は、熱交換器
12で圧縮による加温などの温度上昇分を冷却した後、
オイルセパレータ13に与えて加圧の際に用いたオイル
分を分流し、オイル分は図示しない経路を介して圧縮機
11に戻し、冷媒体はアドソーバ14に与える。アドソ
ーバ14はオイルセパレータでは分流しきれなかった細
かいオイル分を吸収分離して冷媒体のみを往路管21に
送出する。
The refrigerant body pressurized by the compressor 11 is cooled by the heat exchanger 12 to increase the temperature such as heating due to compression,
The oil component applied to the oil separator 13 and used for pressurization is diverted, the oil component is returned to the compressor 11 via a path (not shown), and the refrigerant body is supplied to the adsorber 14. The adsorber 14 absorbs and separates a fine oil component that could not be split by the oil separator, and sends only the refrigerant body to the outward pipe 21.

【0007】冷媒体は、極低温冷却部200で所要の冷
却目的を果した後、復路管25に排出し、アキュムレー
タ15に戻って、一時的に蓄え、再び圧縮機11で加圧
するという循環経路をたどる。
After the cooling medium has fulfilled the intended cooling purpose in the cryogenic cooling section 200, it is discharged to the return pipe 25, returned to the accumulator 15, temporarily stored, and then pressurized again by the compressor 11. Follow

【0008】側路管31を介して圧縮部100に戻す冷
媒体は多少オイル分を含んだままでも、調整部30の動
作には影響ないので、側路弁31はオイルセパレータ1
3とアドソーバ14の間の往路管部分から分岐してあ
る。
Even if the refrigerant returning to the compression unit 100 via the bypass pipe 31 contains a little oil, it does not affect the operation of the adjusting unit 30.
3 and the adsorber 14 are branched from the forward pipe portion.

【0009】差圧制御回路35は、図5のように、復路
管25のアキュムレータ15に近い管路に配置した圧力
検出器33と、圧縮機11と熱交換器12の間の圧縮機
11に近い管路に配置した圧力検出器34とで検出した
圧力により演算して制御している。
As shown in FIG. 5, the differential pressure control circuit 35 is provided in the pressure detector 33 disposed in the return pipe 25 near the accumulator 15 and in the compressor 11 between the compressor 11 and the heat exchanger 12. It is calculated and controlled by the pressure detected by the pressure detector 34 arranged in the near conduit.

【0010】[0010]

【発明が解決しようとする課題】上記の極低温冷凍装置
500における極低温冷却機23、例えば、クライオポ
ンプなどを始動させるには、排気対象の気体が極低温冷
却機23内の冷却体、例えば、コールドパネルに吸着さ
れる温度20K以下まで冷却することが必要であり、こ
の冷却に要する時間をクールダウン時間と言っている。
In order to start the cryogenic cooler 23, for example, a cryopump in the cryogenic refrigerating apparatus 500, the gas to be exhausted is the cooling body in the cryogenic cooler 23, for example, It is necessary to cool the cold panel to a temperature of 20K or lower, and the time required for this cooling is called the cool down time.

【0011】極低温冷却機23は始動時点で常温に近い
状態にあるため、極低温冷却機23内を流れる冷媒体の
流量は少なく、冷却が進行するに従って冷媒体の流量が
増加してくる。一方、圧縮機11の圧縮容積と圧縮動作
のための電動機10Aの回転数とは一定なので、冷媒体
の流量が少ないと、冷媒体の流量が多い場合よりも、圧
縮機11の入口側と出口側との圧力差は大きくなってし
まう。
Since the cryogenic cooler 23 is in a state close to room temperature at the time of starting, the flow rate of the refrigerant body flowing in the cryogenic cooler 23 is small and the flow rate of the refrigerant body increases as the cooling progresses. On the other hand, since the compression volume of the compressor 11 and the rotation speed of the electric motor 10A for the compression operation are constant, when the flow rate of the refrigerant body is small, the inlet side and the outlet side of the compressor 11 are larger than when the flow rate of the refrigerant body is high. The pressure difference with the side becomes large.

【0012】この圧力差が大きくなると、圧縮機11に
は大きな負荷が掛かったことになり、圧縮機11の系統
に故障を生ずる原因と誤って判断することになり、保護
装置を設けた場合には、保護装置が働いて運転が停止し
てしまう。このため、上記の第1従来技術や第2従来技
術では、所定の圧力差以上になった場合に側路弁32を
差圧制御回路35で開通して圧縮機11に対する圧力差
を下げて所定値以下に維持するようにしているわけであ
る。
When the pressure difference becomes large, a large load is applied to the compressor 11, and it is erroneously determined that the cause of the failure of the system of the compressor 11 is caused. Will stop the operation because of the protection device. Therefore, in the above-mentioned first conventional technique and second conventional technique, when the pressure difference exceeds a predetermined pressure difference, the bypass valve 32 is opened by the differential pressure control circuit 35 to reduce the pressure difference with respect to the compressor 11 to a predetermined value. The value is kept below the value.

【0013】しかしながら、極低温冷却機23の始動時
点では、この圧力差が大きいほど冷凍量が大きくなり冷
却が促進し得るわけであり、これに対して差圧制御回路
35はこの圧力差を下げる方向に動作してしまうので、
極低温冷却機23側からみれば、冷却の促進を制限する
逆作用を行っていることになる。
However, at the time of starting the cryogenic cooler 23, the larger the pressure difference, the larger the amount of refrigeration and the more the cooling can be promoted. On the other hand, the differential pressure control circuit 35 lowers this pressure difference. Because it will work in the direction
When viewed from the side of the cryogenic cooler 23, it has an adverse effect of limiting the promotion of cooling.

【0014】このため、図4のように、極低温冷却機2
3を動作する電動機23Aに与える電源を可変周波数電
源27にして、極低温冷却機23の始動時点では高速運
転し、冷却度が進行するにつれて低速に変化するように
した構成(以下、第4従来技術という)が特開昭60−
171359などにより開示されている。
Therefore, as shown in FIG. 4, the cryogenic cooler 2
The variable frequency power supply 27 is used as the power supply to the electric motor 23A for operating the motor 3, and the cryogenic cooler 23 operates at high speed at the time of starting and changes to low speed as the degree of cooling progresses (hereinafter, referred to as the fourth conventional art). "Technology")
171359 and the like.

【0015】こうした極低温冷却機23を高速運転する
方法では、極低温冷却機23の機械的運動部分の高速化
に伴う故障を招き易く、また、使用寿命を短くしてしま
うという不都合がある。
Such a method of operating the cryogenic cooler 23 at a high speed has a disadvantage that the mechanical movement part of the cryogenic cooler 23 is likely to cause a failure and the service life is shortened.

【0016】一方、周囲温度が高い場合などは、圧縮部
100は苛酷な条件下で動作することになるので、オー
バーロードリレーなどの過負荷保護装置が動作してしま
い、極低温冷却機23が動作中にもかかわらず運転が中
断されてしまうという不都合がある。
On the other hand, when the ambient temperature is high, the compression section 100 operates under severe conditions, so an overload protection device such as an overload relay operates and the cryogenic cooler 23 operates. There is an inconvenience that the operation is interrupted even during operation.

【0017】このため、こうした不都合のない構成で、
クールダウン時間を短縮し得るようにした極低温冷凍装
置の提供が望まれているという課題がある。
For this reason, the structure without such inconvenience
There is a problem that it is desired to provide a cryogenic refrigeration system that can shorten the cooldown time.

【0018】[0018]

【課題を解決するための手段】この発明は、上記のよう
な圧縮部で加圧した冷媒体を往路管から極低温冷却部に
供給して所要の極低温冷却を行うことにより復路管に排
出されて低圧化した冷媒体を再び圧縮部で加圧して循環
するとともに、上記の往路管側の経路に属する管路と復
路管側の経路に属する管路との間を側路する側路管に設
けた側路弁を所要の動作差圧にもとづいて開通動作する
ようにした極低温冷凍装置において、上記の側路弁とし
て可変差圧弁を設ける可変差圧弁手段と、上記の差圧弁
の往路管側の圧力と復路管側の圧力との差圧を検出して
始動時点からの差圧の変化により極低温冷却部のクール
ダウン時を検出するとともに、周囲温度あるいは圧縮部
温度を検出する検出手段と、上記の各検出にもとづい
て、可変差圧弁の動作差圧を、クールダウン時は定常運
転時よりも大きくし、周囲温度あるいは圧縮部温度に逆
比例して小さくするように制御する制御手段とを設ける
構成と、上記の側路弁として、所定の大きい動作差圧の
第1の差圧弁と、所定の小さい動作差圧の第2の差圧弁
とを並列に設ける並列差圧弁手段と、上記の極低温冷却
部のクールダウン時の情報を得る情報手段と、周囲温度
あるいは圧縮部温度を検出する検出手段と、上記の情報
と検出とにもとづいて、クールダウン時は第1の差圧弁
を選択し、周囲温度あるいは圧縮部温度が所定値よりも
高いときには第2の差圧弁を選択して動作するように制
御する制御手段とを設ける構成とにより上記の課題を解
決し得るようにしたものである。
SUMMARY OF THE INVENTION According to the present invention, the refrigerant body pressurized in the compression section as described above is supplied from the forward pipe to the cryogenic cooling unit to perform the required cryogenic cooling, and then discharged to the return pipe. The refrigerant pipe, which has been reduced in pressure and has been reduced in pressure, is circulated by pressurizing it again in the compression section, and bypasses between the conduit belonging to the above-mentioned outward conduit side path and the conduit belonging to the return conduit side path. In a cryogenic refrigeration system in which the bypass valve provided in the opening operation is performed based on a required operating differential pressure, a variable differential pressure valve means for providing the variable differential pressure valve as the bypass valve and the forward path of the differential pressure valve are provided. Detects the cooldown time of the cryogenic cooling section by detecting the differential pressure between the pipe side pressure and the return pipe side pressure and the change in the differential pressure from the start time, and also detects the ambient temperature or the compression part temperature Means and the operation of the variable differential pressure valve based on each of the above detections. A control means for controlling the differential pressure to be larger during the cool-down than during the steady-state operation and smaller in inverse proportion to the ambient temperature or the temperature of the compression part, and as the above-mentioned bypass valve, Parallel differential pressure valve means for providing in parallel a first differential pressure valve having a large operating differential pressure and a second differential pressure valve having a predetermined small operating differential pressure, and information for obtaining information at the time of cooldown of the cryogenic cooling unit. On the basis of the above-mentioned information and detection, the first differential pressure regulating valve is selected during the cool down so that the ambient temperature or the compression section temperature is higher than a predetermined value. The above problem can be solved by a configuration in which a control means for controlling the second differential pressure valve to be selected and operated when it is high is provided.

【0019】[0019]

【作用】極低温冷却機がクールダウン時の状態にあると
き、つまり、クールダウン時間中は、差圧弁が大きい動
作差圧で側路するため、圧縮部の入口側と出口側との圧
力差を大きくして圧縮動作を行うので、極低温冷却機に
流入する冷媒体の量が多くなり極低温冷却を促進するよ
うに作用するが、極低温冷却機がクールダウン時以外に
あるとき、つまり、クールダウン時間を経過した定常運
転状態のときと、周囲温度が高いときには、差圧弁が小
さい動作差圧で動作するため、圧縮部の動作を不安定に
し、または、過負荷状態にして極低温冷却を進行途中で
中断したりしないように作用する。
[Function] When the cryogenic cooler is in the cool-down state, that is, during the cool-down time, the differential pressure valve bypasses by a large operating differential pressure, so the pressure difference between the inlet side and the outlet side of the compression section Since the compression operation is performed with a large value, the amount of the refrigerant flowing into the cryogenic cooler increases and acts to promote the cryogenic cooling, but when the cryogenic cooler is not in the cool down period, that is, During steady operation after the cool-down time has elapsed, and when the ambient temperature is high, the differential pressure valve operates with a small operating differential pressure, which makes the operation of the compression part unstable or causes an overload condition, resulting in extremely low temperature. It works so as not to interrupt the cooling while it is in progress.

【0020】[0020]

【実施例】以下、実施例を図1〜図3により説明する。
これらの図において、図4・図5の符号と同一符号で示
した部分は、図4・図5によって説明したものと同一の
機能をもつ部分である。
EXAMPLES Examples will be described below with reference to FIGS.
In these figures, the parts denoted by the same reference numerals as those in FIGS. 4 and 5 have the same functions as those described with reference to FIGS.

【0021】〔第1実施例〕まず、第1実施例を図1に
より説明する。図1の構成は、側路弁32として開通動
作する圧力差が可変調整できる差圧弁、つまり、可変差
圧弁321を設ける可変差圧弁手段と、差圧弁321の
往路管21側の圧力と復路管25側の圧力との差圧を圧
力検出器33と圧力検出器34により検出して始動時点
からの差圧の変化により極低温冷却部200のクールダ
ウン時を検出するとともに、周囲温度を室温検出器10
2により検出する検出手段と、上記の差圧の検出と周囲
温度の検出との各検出にもとづいて、可変差圧弁321
の動作差圧を、クールダウン時は定常運転時よりも大き
くし、周囲温度に逆比例して小さくするように制御する
制御回路101を設ける制御手段と設けたものである。
[First Embodiment] First, a first embodiment will be described with reference to FIG. The configuration shown in FIG. 1 is a differential pressure valve capable of variably adjusting the pressure difference in which the bypass valve 32 is opened, that is, variable differential pressure valve means for providing the variable differential pressure valve 321, pressure on the forward pipe 21 side of the differential pressure valve 321, and return pipe. The pressure difference between the pressure on the 25 side is detected by the pressure detector 33 and the pressure detector 34, and the cooldown time of the cryogenic cooling unit 200 is detected by the change in the pressure difference from the starting time, and the ambient temperature is detected at room temperature. Bowl 10
The variable differential pressure control valve 321 is based on the detection means for detecting the differential pressure and the detection of the differential pressure and the ambient temperature.
The operating differential pressure is increased during the cool-down period than during the steady-state operation and is reduced in inverse proportion to the ambient temperature.

【0022】具体的には、側路管31は、往路管21側
の経路に属する管路、つまり、オイルセパレータ13と
アドソーバ14との間の管路と、復路管25側に属する
管路、つまり、アキュムレータ15の入口側の管路とを
側路するように設けてあり、また、側路管31に設けた
可変差弁321の往路管21側に圧力検出器33を、復
路管25側に圧力検出器34を設けて検出した各圧力値
を制御回路101に与えて、各検出値間の差、つまり、
差圧を検出することにより、始動時から始まるクールダ
ウン時間の間は差圧が大きく、定常運転に入ると差圧が
小さくなることを利用してクールダウン時を検出する。
Specifically, the side pipe 31 is a pipe line belonging to the path on the outward pipe 21 side, that is, a pipe line between the oil separator 13 and the adsorber 14, and a pipe line belonging to the return pipe 25 side. That is, it is provided so as to bypass the inlet-side pipe line of the accumulator 15, and the pressure detector 33 is provided on the forward pipe 21 side of the variable differential valve 321 provided on the bypass pipe 31 and the return pipe 25 side. Each pressure value detected by providing the pressure detector 34 to the control circuit 101 is given, and the difference between the detected values, that is,
By detecting the differential pressure, the cooldown time is detected by utilizing the fact that the differential pressure is large during the cooldown time starting from the start and becomes small when the steady operation is started.

【0023】制御回路101は、上記の圧力検出による
クールダウン時の信号と、室温検出器102が検出した
圧縮部100付近の周囲温度値、例えば、圧縮部100
などを収納したケーシングパネルの外気吸込用のスリッ
ト近辺の温度、あるいは、圧縮機11の本体の上部の温
度などの温度値と、上記の検出した差圧値とにより、ク
ールダウン時には可変差圧弁321の動作差圧を大き
く、つまり、開通動作する圧力差を大きくするように制
御するとともに、可変差圧弁321の動作差圧を検出し
た温度値に逆比例するように制御する。
The control circuit 101 controls the signal at the time of cooldown by the above pressure detection and the ambient temperature value around the compression unit 100 detected by the room temperature detector 102, for example, the compression unit 100.
The variable differential pressure control valve 321 at the time of cool down by the temperature value around the slit for sucking the outside air of the casing panel accommodating the like or the temperature value such as the temperature of the upper part of the main body of the compressor 11 and the detected differential pressure value. The operating differential pressure is controlled to be large, that is, the pressure difference during the opening operation is controlled to be large, and the operating differential pressure of the variable differential pressure valve 321 is controlled to be inversely proportional to the detected temperature value.

【0024】したがって、クールダウン時は可変差圧弁
321がクールダウン時の強制的な加圧に必要な大きい
圧力まで開通動作しないので、圧縮機11は大きい圧力
で動作することができ、極低温冷却部200には多量の
冷媒体が送り込まれることになり、極低温冷却を促進し
得ることになる。一方、周囲温度が高いときには、可変
差圧弁321が開通する圧力を小さい方に移行するの
で、圧縮機11は無理のない圧力で動作することがで
き、オーバーロードリレーなどの過負荷保護装置を動作
して運転を中断してしまうようなことが起きない。
Therefore, during the cool down, the variable differential pressure valve 321 does not open to the large pressure required for the forced pressurization during the cool down, so that the compressor 11 can operate at the large pressure and the cryogenic cooling. A large amount of refrigerant is sent to the portion 200, which can promote cryogenic cooling. On the other hand, when the ambient temperature is high, the pressure at which the variable differential pressure valve 321 opens is shifted to a smaller one, so the compressor 11 can operate at a reasonable pressure, and an overload protection device such as an overload relay operates. It does not happen that you stop driving.

【0025】〔第2実施例〕次に、図2により第2実施
例を説明する。図2の構成は、側路弁32として、所定
の大きい動作差圧の第1の差圧弁322と、所定の小さ
い動作差圧の第2の差圧弁323とを並列に設ける並列
差圧弁手段と、極低温冷却部200のクールダウン時の
情報を始動時の電源投入から所定時間をクールダウン時
間とするように制御回路101Aなどによって得る情報
手段と、周囲温度を室温検出器102により検出する検
出手段と、上記の情報と検出とにもとづいて、クールダ
ウン時は第1の差圧弁322を選択し、周囲温度が所定
値よりも高いときには第2の差圧弁323を選択して動
作するように制御回路101Aにより制御する制御手段
とを設けたものである。
[Second Embodiment] Next, a second embodiment will be described with reference to FIG. In the configuration of FIG. 2, as the bypass valve 32, a parallel differential pressure valve means is provided in which a first differential pressure valve 322 having a predetermined large operating differential pressure and a second differential pressure valve 323 having a predetermined small operating differential pressure are provided in parallel. Information means for obtaining information on the cool-down of the cryogenic cooling unit 200 by the control circuit 101A or the like so that a predetermined time after power-on at the time of start is set as the cool-down time, and detection for detecting the ambient temperature by the room temperature detector 102. Based on the above means and the above information and detection, the first differential pressure valve 322 is selected at the time of cooldown, and the second differential pressure valve 323 is selected and operated when the ambient temperature is higher than a predetermined value. A control means for controlling by the control circuit 101A is provided.

【0026】具体的には、側路管31は、第1実施例の
場合と同様に設けてあり、また、側路管31には、動作
差圧を調節した状態で固定できる差圧弁322・323
を並列にして設けてあり、差圧弁322は、クールダウ
ン時の圧縮部の強制的な運転に適するような大きい動作
差圧に調節して固定し、差圧弁322は、周囲温度が所
定値よりも高いときにオーバーロードリレーなどの保護
装置が動作しない程度の動作差圧に調節して固定してあ
る。
Specifically, the bypass pipe 31 is provided in the same manner as in the case of the first embodiment, and the differential pressure valve 322, which can be fixed in the bypass pipe 31 in a state in which the operating differential pressure is adjusted, is provided. 323
Are installed in parallel, and the differential pressure valve 322 is adjusted and fixed to a large operating differential pressure suitable for forced operation of the compression unit at the time of cooldown, and the differential pressure valve 322 has an ambient temperature higher than a predetermined value. It is fixed by adjusting the operating differential pressure so that the protective device such as overload relay does not operate when it is too high.

【0027】差圧弁322・323は、それぞれ、開閉
弁322A・323Aを直列に接続して、開閉弁322
A・323Aのうちのいずれかを選択して開通動作する
ことにより差圧弁322・323のうちのいずれかを選
択するようにしてある。
The differential pressure valves 322 and 323 are connected by opening / closing valves 322A and 323A connected in series, respectively.
Any one of the differential pressure regulating valves 322 and 323 is selected by selecting one of A.323A and performing the opening operation.

【0028】制御回路101Aは、電源投入などによっ
て始動時点の信号を得るとともに、この始動時点の信号
からタイマ回路を動作させてクールダウン時間に相当す
る時間を作り、この時間の間をクールダウン時とする情
報として開閉弁322Aを選択して開通動作することに
より、差圧弁322を選択して、側路管31の通路を差
圧弁322を通る管路側にするように動作する。
The control circuit 101A obtains a signal at the time of starting at the time of turning on the power source and operates the timer circuit from the signal at the time of starting to make a time corresponding to the cool-down time. By selecting the opening / closing valve 322A as the information to be opened and performing the opening operation, the differential pressure valve 322 is selected and the passage of the bypass pipe 31 is operated to be on the pipeline side passing through the differential pressure valve 322.

【0029】室温検出器102は、第1実施例の場合と
同様に温度を検出し、検出して得られた温度値が所定値
よりも高いときには、開閉弁323Aを選択して開通動
作することにより、差圧弁323を選択して、側路管3
1の通路を差圧弁323を通る管路側にするように動作
する。
The room temperature detector 102 detects the temperature similarly to the case of the first embodiment, and when the detected temperature value is higher than a predetermined value, the opening / closing valve 323A is selected to perform the opening operation. The differential pressure valve 323 is selected by the
It operates so that the passage of No. 1 is on the side of the pipeline passing through the differential pressure regulating valve 323.

【0030】したがって、クールダウン時は差圧弁32
2がクールダウン時の強制的な加圧に必要な大きい圧力
まで開通動作しないので、圧縮機11は大きい圧力で動
作することができ、極低温冷却部200には多量の冷媒
体が送り込まれることになり、極低温冷却を促進し得る
ことになる。
Therefore, during the cool down, the differential pressure valve 32
Since 2 does not operate to open up to a large pressure required for forced pressurization during cooldown, the compressor 11 can operate at a large pressure and a large amount of refrigerant is sent to the cryogenic cooling unit 200. Therefore, the cryogenic cooling can be promoted.

【0031】しかし、周囲温度が高いときには、仮にク
ールダウン時であっても差圧弁323が小さい圧力で開
通動作するので、圧縮機11は無理のない圧力で動作す
ることができ、オーバーロードリレーなどの過負荷保護
装置を動作して運転を中断してしまうようなことが起き
ない。
However, when the ambient temperature is high, the differential pressure regulating valve 323 is opened at a small pressure even during the cool down, so that the compressor 11 can be operated at a reasonable pressure, such as an overload relay. It does not happen that the operation of the overload protection device is operated and the operation is interrupted.

【0032】〔第3実施例〕次に、図3により第3実施
例を説明する。図3の構成は、側路弁32として電磁開
閉弁などの単なる開閉弁324を設ける側路弁手段と、
開閉弁324の往路管21側の圧力と復路管25側の圧
力との差圧を圧力検出器33と圧力検出器34により検
出する差圧検出手段と、始動検出回路111により極低
温冷却部200の電動機23Aの動作開始を検出すると
ともに、始動検出回路112により圧縮機10の電動機
10Aの動作開始を検出する始動検出手段と、室温検出
器102により周囲温度を検出する検出手段と、上記の
各始動検出にもとづいてクールダウン時と定常運転時を
検出し、定常運転時には小さい差圧値を選択し、クール
ダウン時には大きい差圧値を選択し、各選択した差圧値
を周囲温度の検出にもとづいて温度に逆比例して小さく
するように演算した演算値を得るとともに、この演算値
と上記の各圧力検出による各圧力の差圧値とを比較した
出力によって上記の開閉弁324を開通動作するように
制御する制御回路101Bを設ける制御手段と設けたも
のである。
[Third Embodiment] Next, a third embodiment will be described with reference to FIG. The configuration of FIG. 3 is a bypass valve means for providing a simple opening / closing valve 324 such as an electromagnetic opening / closing valve as the bypass valve 32.
The differential pressure detecting means for detecting the differential pressure between the pressure on the outward pipe 21 side of the on-off valve 324 and the pressure on the return pipe 25 side by the pressure detector 33 and the pressure detector 34, and the cryogenic cooling unit 200 by the start detection circuit 111. Starting detection means for detecting the operation start of the electric motor 23A of the compressor 10 and detecting the operation start of the electric motor 10A of the compressor 10 by the start detection circuit 112, and a detecting means for detecting the ambient temperature by the room temperature detector 102, and Cooldown and steady operation are detected based on the start detection, a small differential pressure value is selected during steady operation, a large differential pressure value is selected during cooldown, and each selected differential pressure value is used to detect the ambient temperature. Based on the output obtained by comparing the calculated value with the differential pressure value of each pressure detected by each pressure detection, Those provided with control means providing a control circuit 101B for controlling to open operate the opening and closing valve 324.

【0033】具体的には、側路管31と、圧力検出器3
3・34と、室温検出器102とは、第1実施例の場合
と同様に設けてあり、また、側路弁32は単なる開閉弁
324にしてある。
Specifically, the bypass pipe 31 and the pressure detector 3
3.34 and the room temperature detector 102 are provided as in the case of the first embodiment, and the bypass valve 32 is a simple open / close valve 324.

【0034】始動検出回路111・112は、それぞ
れ、極低温冷却部200の極低温冷却機23を駆動する
電動機23Aに与える電圧を検出した検出信号Aと、圧
縮部100の圧縮機11を駆動する電動機10Aに与え
る電圧とを検出した検出信号Bを得るようにしてある。
The start detection circuits 111 and 112 drive the compressor 11 of the compression unit 100 and the detection signal A which detects the voltage applied to the electric motor 23A for driving the cryogenic cooler 23 of the cryogenic cooling unit 200, respectively. A detection signal B, which is obtained by detecting the voltage applied to the electric motor 10A, is obtained.

【0035】制御回路101Bは、論理回路と演算回路
とによる処理部分と、クールダウン時に対応する大きい
差圧の基準値Cと、定常運転時に対応する小さい差圧の
基準値Dとを設定する設定部分と、クールダウン時に対
応する時間を計時する計時回路とを設けてある。
The control circuit 101B is set to set a processing portion including a logic circuit and an arithmetic circuit, a large differential pressure reference value C corresponding to a cooldown, and a small differential pressure reference value D corresponding to a steady operation. A portion and a timing circuit for timing the time corresponding to the cooldown are provided.

【0036】そして、検出信号Aと検出信号Bとを論理
回路に与えてクールダウン時か、定常運転時かを検出す
ることにより、クールダウン時には基準値Cを選択し、
定常運転時には基準値Dを選択するようにし、選択した
基準値を、室温検出器102から得られる温度値Eに逆
比例するように演算回路で演算して演算基準値Fを作
り、また、圧力検出器33・34の各圧力検出値から演
算回路で演算して差圧値Gを作り、差圧値Gと演算基準
値Fとを演算回路で比較演算して演算基準値Fよりも差
圧値Gの方が大きいときのみ、開閉弁324を開通動作
するための制御信号Hを得るとともに、論理回路で得ら
れたクールダウン時の出力で計時回路を計時してクール
ダウン時の終了信号Iを作り、この終了信号Iを論理回
路で判断して基準値Dを選択して動作するように切り替
えるようにしたものである。
Then, the detection signal A and the detection signal B are given to the logic circuit to detect whether the cool down or the steady operation is performed, so that the reference value C is selected during the cool down,
The reference value D is selected at the time of steady operation, the selected reference value is calculated in the calculation circuit so as to be inversely proportional to the temperature value E obtained from the room temperature detector 102, and the calculation reference value F is created. From the pressure detection values of the detectors 33 and 34, the differential pressure value G is calculated by the calculation circuit, and the differential pressure value G and the calculation reference value F are compared and calculated by the calculation circuit, and the differential pressure is higher than the calculation reference value F. Only when the value G is larger, the control signal H for opening and closing the on-off valve 324 is obtained, and the cool-down output obtained by the logic circuit is used to measure the cool-down circuit to finish the cool-down end signal I. And the end signal I is judged by the logic circuit to select the reference value D and the operation is switched to operate.

【0037】したがって、開閉弁324は、上記の第1
実施例とほぼ同様の作用を行って、クールダウン時の極
低温冷却の促進運転と、周囲温度に対する保全運転とを
行えるように動作することができる。
Therefore, the on-off valve 324 is the first
It is possible to perform an operation substantially similar to that of the embodiment so that the operation for promoting the cryogenic cooling during the cool down and the maintenance operation for the ambient temperature can be performed.

【0038】〔変形実施〕 (1)側路管31を往路管21と復路管25との間に設
けて構成する。
[Modification Implementation] (1) The side pipe 31 is provided between the forward pipe 21 and the return pipe 25.

【0039】(2)第2実施例におけるクールダウン時
の検出に、第3実施例における始動検出回路111・1
12と同様の検出信号を与えるように構成する。
(2) For the detection at the time of cool down in the second embodiment, the start detection circuit 111.1 in the third embodiment is used.
It is configured to give a detection signal similar to that of 12.

【0040】(3)制御回路101・101A・101
Bをマイクロコンピュータによる制御回路にして構成す
る。また、装置全体または装置の一部がマイクロコンピ
ュータによる制御を行っているときは、そのマイクロコ
ンピュータの制御の中に制御回路101・101A・1
01Bの制御を含ませて構成する。
(3) Control circuit 101 / 101A / 101
B is configured as a control circuit by a microcomputer. When the entire device or a part of the device is controlled by the microcomputer, the control circuit 101, 101A, 1
01B control is included.

【0041】(4)各実施例において、室温検出器10
2による検出温度の代わりに、圧縮部100本体の上部
に温度検出器を設けて検出した検出温度を、制御部10
1・101A・101Bに与えて同様の温度に対する制
御を行うように構成する。
(4) In each embodiment, the room temperature detector 10
Instead of the temperature detected by 2, the temperature detected by a temperature detector provided on the upper part of the main body of the compression unit 100 is detected by the control unit 10.
1. 101A and 101B are configured to perform similar temperature control.

【0042】(5)第1実施例において、圧縮部100
に供給している電源電圧を検出し、検出した電圧値が所
定の基準値に対して比較し、この基準値よりも低いとき
および高いときに、可変差圧弁321の動作差圧を小さ
く……低いときは大きく、高いときは小さくするのでは
ないか?……して側路管31の管路を開通するようにし
た制御機能を制御回路101に設けて構成する。
(5) In the first embodiment, the compression unit 100
The power supply voltage being supplied to is detected, and the detected voltage value is compared with a predetermined reference value. When the detected voltage value is lower or higher than this reference value, the operating differential pressure of the variable differential pressure valve 321 is reduced. Isn't it big when it is low and small when it is high? The control circuit 101 is provided with a control function for opening the conduit of the bypass pipe 31.

【0043】また、第2実施例・第3実施例において、
上記と同様に、電源電圧を検出して得られる電圧値と所
定の基準値との比較に対応させて、側路管31の管路を
開通するようにした制御機能を制御回路101A・10
1Bに設けて構成する。
In the second and third embodiments,
Similarly to the above, the control circuit 101A.10 has a control function for opening the conduit of the bypass pipe 31 corresponding to the comparison between the voltage value obtained by detecting the power supply voltage and a predetermined reference value.
It is provided and configured in 1B.

【0044】(6)第2実施例において、差圧弁とし
て、さらに、第3の差圧弁を1つ追加して並列に設ける
とともに、各差圧弁の動作差圧を「大」「中」「小」の
所要値に設定し、クールダウン時には「大」の動作差圧
の差圧弁を、検出した温度が所定値より高いときには
「小」の動作圧の差圧弁を、また、定常運転時には
「中」の動作差圧の差圧弁を通る管路の開閉弁を開通す
るようにした制御機能を制御回路101Aに設けて構成
する。
(6) In the second embodiment, as the differential pressure valve, a third differential pressure valve is additionally provided in parallel, and the operating differential pressure of each differential pressure valve is set to "large", "medium", and "small". The required value of ``, '' a differential pressure valve with a "large" operating differential pressure during cooldown, a differential pressure valve with a "small" operating pressure when the detected temperature is higher than a specified value, and a "medium pressure" during steady operation. The control circuit 101A is provided with a control function for opening the on-off valve of the pipeline passing through the differential pressure valve of the operating differential pressure.

【0045】(7)第2実施例において、第1実施例と
同様に、圧力検出器33・34を設けて検出した差圧の
変化によりクールダウン時を判断して得られる情報によ
り開閉弁322Aを選択する機能を制御回路101Aに
設けて構成する。
(7) In the second embodiment, similarly to the first embodiment, the on-off valve 322A is provided by the information obtained by determining the cool-down time by the change in the differential pressure detected by providing the pressure detectors 33 and 34. The control circuit 101A is provided with the function of selecting

【0046】(8)上記の(6)の構成において、上記
の(7)の構成を設ける。
(8) The configuration of (7) above is provided in the configuration of (6) above.

【0047】[0047]

【発明の効果】この発明によれば、以上のように、極低
温冷却機がクールダウン時の運転状態にあるときは側路
弁が大きい動作差圧で側路するため、圧縮部の入口側と
出口側との圧力差を大きくして圧縮動作を行い、極低温
冷却機に流入する冷媒体の量を多くすることができるの
で、極低温冷却を促進することができ、また、極低温冷
却機がクールダウン時以外で定常運転の状態にあるとき
や、周囲温度が高いときには、差圧弁が小さい動作差圧
で動作するため、圧縮部の動作を不安定にし、または、
過負荷状態にして極低温冷却を進行途中で中断したりす
ることがなく、つねに安定した運転を行える極低温冷凍
装置を提供し得るなどの特長がある。
As described above, according to the present invention, when the cryogenic cooler is in the operating state at the time of cool down, the bypass valve bypasses by a large operating differential pressure, so that the inlet side of the compression section The pressure difference between the outlet side and the outlet side is increased to perform the compression operation, and the amount of the refrigerant flowing into the cryogenic cooler can be increased, so the cryogenic cooling can be promoted and the cryogenic cooling can be performed. When the machine is in a steady operation state other than during cooldown or when the ambient temperature is high, the differential pressure valve operates with a small operating differential pressure, which makes the operation of the compression section unstable, or
There is a feature that it is possible to provide a cryogenic refrigerating device that can always perform stable operation without interrupting the cryogenic cooling during the progress in an overload state.

【図面の簡単な説明】[Brief description of drawings]

図1〜図3は、この発明の実施例を、また、図4〜図5
は従来の構成を示し、各図の内容は次のとおりである。
1 to 3 show an embodiment of the present invention, and FIGS.
Shows a conventional configuration, and the contents of each figure are as follows.

【図1】第1実施例のブロック構成図FIG. 1 is a block diagram of a first embodiment.

【図2】第2実施例のブロック構成図FIG. 2 is a block configuration diagram of a second embodiment.

【図3】第3実施例のブロック構成図FIG. 3 is a block configuration diagram of a third embodiment.

【図4】概略のブロック構成図FIG. 4 is a schematic block configuration diagram.

【図5】具体的なブロック構成図FIG. 5 is a specific block configuration diagram.

【符号の説明】[Explanation of symbols]

10 冷媒圧縮機 10A 電動機 11 圧縮機 12 熱交換器 13 オイルセパレータ 14 アドソーバ 15 アキュムレータ 21 往路管 22 供給弁 23 極低温冷却機 23A 電動機 24 排出弁 25 復路管 27 可変周波数電源 31 側路管 32 側路弁 33 圧力検出器 34 圧力検出器 35 差圧制御回路 100 圧縮部 101 制御回路 101A 制御回路 101B 制御回路 102 室温検出器 111 始動検出回路 112 始動検出回路 200 極低温冷却部 300 調整部 321 可変差圧弁 322 第1の差圧弁 322A 開閉弁 323 第2の差圧弁 323A 開閉弁 324 開閉弁 500 極低温冷凍装置 10 Refrigerant Compressor 10A Electric Motor 11 Compressor 12 Heat Exchanger 13 Oil Separator 14 Adsorber 15 Accumulator 21 Outgoing Pipe 22 Supply Valve 23 Cryogenic Cooler 23A Motor 24 Discharge Valve 25 Return Pipe 27 Variable Frequency Power Supply 31 Bypass Pipe 32 Bypass Valve 33 Pressure detector 34 Pressure detector 35 Differential pressure control circuit 100 Compressing section 101 Control circuit 101A Control circuit 101B Control circuit 102 Room temperature detector 111 Start detecting circuit 112 Start detecting circuit 200 Cryogenic cooling section 300 Adjusting section 321 Variable differential pressure valve 322 First differential pressure valve 322A Open / close valve 323 Second differential pressure valve 323A Open / close valve 324 Open / close valve 500 Cryogenic refrigerator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮部で加圧した冷媒体を往路管から極
低温冷却部に供給して所要の極低温冷却を行うことによ
り復路管に排出されて低圧化した前記冷媒体を再び前記
圧縮部で加圧して循環するとともに、前記往路管側の経
路に属する管路と前記復路管側の経路に属する管路との
間を側路する側路管に設けた側路弁を所要の動作差圧に
もとづいて開通動作するようにした極低温冷凍装置であ
って、 前記側路弁として可変差圧弁を設ける可変差圧弁手段
と、 前記差圧弁の前記往路管側の圧力と前記復路管側の圧力
との差圧を検出して始動時点からの差圧の変化により極
低温冷却部のクールダウン時を検出するとともに、周囲
温度あるいは圧縮部温度を検出する検出手段と、 前記各検出にもとづいて、前記可変差圧弁の動作差圧
を、前記クールダウン時は定常運転時よりも大きくし、
前記周囲温度あるいは圧縮部温度に逆比例して小さくす
るように制御する制御手段とを具備することを特徴とす
る極低温冷凍装置。
1. A refrigerant body pressurized in a compression part is supplied from an outward pipe to a cryogenic cooling part to perform a required cryogenic cooling, and is discharged to a return pipe to lower the pressure of the refrigerant body again. Required for operation of a bypass valve provided in a bypass pipe that circulates while pressurizing in a section and bypasses between a pipeline belonging to the forward pipeline side path and a pipeline belonging to the return pipeline side path. A cryogenic refrigeration system that is configured to open based on a differential pressure, comprising variable differential pressure valve means for providing a variable differential pressure valve as the bypass valve, pressure on the forward pipe side of the differential pressure valve, and return pipe side. Of the cryogenic cooling section by detecting the pressure difference with the pressure of the temperature difference from the starting time, and the detection means for detecting the ambient temperature or the temperature of the compression section, and based on each of the above detection. The operating differential pressure of the variable differential pressure valve When turning off, make it larger than during steady operation,
A cryogenic refrigeration system comprising: a control unit that controls the temperature to be inversely proportional to the ambient temperature or the compression unit temperature.
【請求項2】 圧縮部で加圧した冷媒体を往路管から極
低温冷却部に供給して所要の極低温冷却を行うことによ
り復路管に排出されて低圧化した前記冷媒体を再び前記
圧縮部で加圧して循環するとともに、前記往路管側の経
路に属する管路と前記復路管側の経路に属する管路との
間を側路する側路管に設けた側路弁を所要の動作差圧に
もとづいて開通動作するようにした極低温冷凍装置であ
って、 前記側路弁として、所定の大きい動作差圧の第1の差圧
弁と、所定の小さい動作差圧の第2の差圧弁とを並列に
設ける並列差圧弁手段と、 前記極低温冷却部のクールダウン時の情報を得る情報手
段と、 周囲温度あるいは圧縮部温度を検出する検出手段と、 前記情報と前記検出とにもとづいて、前記クールダウン
時は前記第1の差圧弁を選択し、前記周囲温度あるいは
圧縮部温度が所定値よりも高いときには前記第2の差圧
弁を選択して動作するように制御する制御手段とを具備
することを特徴とする極低温冷凍装置。
2. The refrigerant body pressurized in the compression section is supplied from the forward path tube to the cryogenic cooling section to perform the required cryogenic cooling, and is discharged to the return path tube to reduce the pressure of the refrigerant element again. Required for operation of a bypass valve provided in a bypass pipe that circulates while pressurizing in a section and bypasses between a pipeline belonging to the forward pipeline side path and a pipeline belonging to the return pipeline side path. A cryogenic refrigeration system configured to open based on a differential pressure, wherein the bypass valve includes a first differential pressure valve having a predetermined large operating differential pressure and a second differential valve having a predetermined small operating differential pressure. Based on the information and the detection, parallel differential pressure valve means provided in parallel with a pressure valve, information means for obtaining information at the time of cooling down of the cryogenic cooling portion, detection means for detecting ambient temperature or compression portion temperature. Then, at the time of the cool down, select the first differential pressure valve, Serial cryogenic refrigeration system, characterized by a control means for controlling to operate by selecting the second differential pressure regulating valve when the ambient temperature or compression unit temperature is higher than a predetermined value.
JP4196569A 1992-06-30 1992-06-30 Cryogenic refrigeration equipment Expired - Fee Related JP2994862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4196569A JP2994862B2 (en) 1992-06-30 1992-06-30 Cryogenic refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4196569A JP2994862B2 (en) 1992-06-30 1992-06-30 Cryogenic refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH0618108A true JPH0618108A (en) 1994-01-25
JP2994862B2 JP2994862B2 (en) 1999-12-27

Family

ID=16359924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4196569A Expired - Fee Related JP2994862B2 (en) 1992-06-30 1992-06-30 Cryogenic refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2994862B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085048A (en) * 2002-08-26 2004-03-18 Sumitomo Heavy Ind Ltd Cryogenic freezing device and its operation method
WO2020009110A1 (en) * 2018-07-03 2020-01-09 住友重機械工業株式会社 Compressor for ultra-low-temperature freezer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022076206A (en) 2020-11-09 2022-05-19 住友重機械工業株式会社 Cryogenic refrigerator and starting method for cryogenic refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085048A (en) * 2002-08-26 2004-03-18 Sumitomo Heavy Ind Ltd Cryogenic freezing device and its operation method
WO2020009110A1 (en) * 2018-07-03 2020-01-09 住友重機械工業株式会社 Compressor for ultra-low-temperature freezer

Also Published As

Publication number Publication date
JP2994862B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JP3164626B2 (en) Two-stage compression refrigeration cycle device
JPH0455671A (en) Refrigerating cycle device
JPH0618108A (en) Cryogenic refrigerator
JP2964705B2 (en) Air conditioner
JPH07243711A (en) Two-stage cooler
JP2923133B2 (en) Refrigeration equipment
JPH1151502A (en) Turbo refrigerating machine
JPH02290471A (en) Air-conditioner
JP3303689B2 (en) Binary refrigeration equipment
JPH07305903A (en) Controller for freezer
JPH07111181B2 (en) Compressor capacity control device
JP3060444B2 (en) Air conditioner
JP3099574B2 (en) Air conditioner pressure equalizer
JPH0682122A (en) Refrigerating apparatus
JP3467833B2 (en) Refrigeration equipment
JPH0217370A (en) Operation control device for air conditioning device
JPH04359759A (en) Method and device of controlling capacity of screw type compressor
JP2882172B2 (en) Air conditioner
JP4690574B2 (en) Control method and control device for expansion valve in refrigerator
JPH06323647A (en) Refrigerator
KR100251567B1 (en) Cooling cycle and its control method
JPH03233262A (en) Freezing cycle
JP2960211B2 (en) Pressure sensor destruction prevention control device for air conditioner
JPH0552430A (en) Refrigerating machine
JP2002081793A (en) Temperature regulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081022

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees