JPH06180608A - Using method for industrial robot - Google Patents

Using method for industrial robot

Info

Publication number
JPH06180608A
JPH06180608A JP2189192A JP2189192A JPH06180608A JP H06180608 A JPH06180608 A JP H06180608A JP 2189192 A JP2189192 A JP 2189192A JP 2189192 A JP2189192 A JP 2189192A JP H06180608 A JPH06180608 A JP H06180608A
Authority
JP
Japan
Prior art keywords
coordinate
robot
main body
teaching
industrial robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2189192A
Other languages
Japanese (ja)
Inventor
Takashi Iigahama
隆 飯ケ浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Shinano Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Shinano Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd, Shinano Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2189192A priority Critical patent/JPH06180608A/en
Publication of JPH06180608A publication Critical patent/JPH06180608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To suppress a teaching operation to the necessary minimum at the time of using a robot for a work handling or the like. CONSTITUTION:At the time of operating a main device by an industrial robot, the conversion factors theta, x0, and y0 of the position coordinates of the industrial robot and the main device are decided by the teaching operation of at least two parts P1 and P2, the position coordinates Xn and Yn of the main device are designated, and automatically converted into the position coordinates xn and yn of the industrial robot, and the main device is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業用ロボット(以下
ロボットという)で本体装置を操作する際、ロボットに
対する教示作業を最小限に抑えるロボットの使用方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of using an industrial robot (hereinafter referred to as "robot") for operating a main body device to minimize teaching work for the robot.

【0002】[0002]

【従来の技術】従来ロボットで本体装置を操作するに
は、まず対象ワーク(被移動物)に応じて教示作業を行
わなければならない。複数の本体装置を操作する場合
は、対象ワークは同一でも各本体装置別に教示作業を行
わなければならず、プログラム資産が他の本体装置に生
かされないという不利があった。またパレタイズ機能等
を具備したロボットも市販されているが、その多くはパ
レタイズエリアの外端の教示と、その個数をプログラム
することにより操作し得るのであるから、教示作業を省
略することはできなかった。
2. Description of the Related Art Conventionally, in order to operate a main body device by a robot, it is necessary to first perform a teaching operation according to a target work (moving object). When operating a plurality of main units, there is a disadvantage in that the teaching work must be performed for each main unit even if the target work is the same, and the program resources are not utilized by the other main units. Robots equipped with palletizing functions are also available on the market, but most of them can be operated by teaching the outer edge of the palletizing area and programming the number of them, so the teaching work cannot be omitted. It was

【0003】[0003]

【発明が解決しようとする課題】このような従来のロボ
ットの使用方法では、多品種少量製品が増加している現
在、教示作業に多大の工数と、多数の熟練作業者を必要
とするほか、危険作業の増加、立上げ期間の延長をきた
している。またロボットの構造上、本体装置への取り付
け部とロボットの座標軸との関係は、要求動作精度以下
であり、設置時に本体装置の座標軸とロボットの座標軸
を調整して一致させることは非常に困難で、ロボットを
本体装置へ固定設置した後の教示作業を必要とした。
According to the conventional method of using a robot as described above, a large number of products of various kinds and a small number of products are increasing at present. In addition to requiring a great number of man-hours and a large number of skilled workers for teaching work, Increased hazardous work and extended startup period. Due to the structure of the robot, the relationship between the attachment part to the main unit and the coordinate axis of the robot is less than the required motion accuracy, and it is very difficult to adjust the coordinate axes of the main unit and the robot to match when installing. , Teaching work was required after the robot was fixedly installed on the main unit.

【0004】[0004]

【課題を解決するための手段】本発明は上記した従来の
問題を解決するもので、これは産業用ロボットにより本
体装置を操作する際、少なくとも2箇所の教示作業によ
り産業用ロボットと本体装置の位置座標の変換係数を決
定し、以降は本体装置の位置座標を指定してこれを自動
的に産業用ロボットの位置座標に変換し本体装置を操作
することを特徴とする産業用ロボットの使用方法を要旨
とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, in which, when operating a main body apparatus by an industrial robot, the operation of the industrial robot and the main body apparatus is performed by teaching at least two locations. A method of using an industrial robot, characterized in that the conversion coefficient of the position coordinate is determined, and thereafter, the position coordinate of the main body device is specified and automatically converted into the position coordinate of the industrial robot to operate the main body device. Is the gist.

【0005】すなわち本発明は、ロボットを本体装置に
固定設置した最初の1回だけ、少なくとも2点の教示作
業を行い、本体装置の座標軸とロボットの座標軸との角
度および原点の変位を幾何学的計算により求め、ロボッ
トの動作座標を自動生成し、以降は本体装置側座標を指
定して本体装置を操作するというロボットの使用方法を
提供するものである。2点の教示点は必要により増加さ
せ統計処理により求めてもよい。
That is, according to the present invention, the teaching work of at least two points is performed only once at the first time when the robot is fixedly installed in the main body apparatus, and the angle between the coordinate axis of the main body apparatus and the coordinate axis of the robot and the displacement of the origin are geometrically determined. The present invention provides a method of using a robot, in which operation coordinates of a robot are automatically generated by calculation, and thereafter, the coordinates of the main body apparatus are designated to operate the main body apparatus. The two teaching points may be increased by need and calculated by statistical processing.

【0006】以下図によって本発明を説明すると、図1
において、ロボットの直角座標軸を(x,y)、本体装
置の直角座標軸を(X,Y)とし、教示点Pn を各々の
座標系で表示し(xn ,yn )、(Xn ,Yn )とす
る。ロボットと本体装置の水平面を平行であると仮定す
ると、平面上の座標軸の差異は2点で決定することがで
きるから、2点P1 、P2 の各座標値から本体装置とロ
ボットの座標の変換係数が求められる。すなわちθを本
体装置座標軸とロボット座標軸との交角、(x0 、y
0 )を本体装置座標の原点のロボット座標とすると、ロ
ボット座標(x,y)は、P点の本体装置座標(X,
Y)を用いて数1の(1),(2)で表現できる。
The present invention will be described below with reference to the drawings.
, The rectangular coordinate axis of the robot is (x, y), the rectangular coordinate axis of the main body device is (X, Y), and the teaching point P n is displayed in each coordinate system (x n , y n ), (X n , Y n ). Assuming that the horizontal planes of the robot and the main body are parallel to each other, the difference between the coordinate axes on the plane can be determined at two points. Therefore, from the coordinate values of the two points P 1 and P 2 , the coordinates of the main body and the robot can be determined. The conversion coefficient is obtained. That is, θ is the intersection angle between the main body device coordinate axis and the robot coordinate axis, (x 0 , y
0 ) is the robot coordinate of the origin of the main unit coordinates, the robot coordinate (x, y) is the main unit coordinate (X, Y) of the point P.
It can be expressed by (1) and (2) of Equation 1 using Y).

【0007】[0007]

【数1】 [Equation 1]

【0008】数1における変換係数θ、x0 、y0 は、
教示点P1 、P2 の本体装置座標値、ロボット座標値を
用いれば、数2の(3),(4),(5)により求める
ことができる。
The conversion coefficients θ, x 0 , y 0 in the equation 1 are
If the main body device coordinate values and the robot coordinate values of the teaching points P 1 and P 2 are used, the values can be obtained by the equations (3), (4), and (5).

【0009】[0009]

【数2】 [Equation 2]

【0010】θ、x0 、y0 を初期設定プログラムで得
た後、本体装置座標(X,Y)を指定すれば、数1の
(1),(2)式による座標変換プロクラムにてロボッ
ト座標(x,y)を算出し、ロボットで本体装置を操作
することができる。
If θ, x 0 , y 0 are obtained by the initial setting program and the main body unit coordinates (X, Y) are designated, the robot is converted by the coordinate conversion program according to the equations (1) and (2). The coordinates (x, y) can be calculated and the robot can operate the main body device.

【0011】本実施例は2次元の変換であるが、3次元
であっても同様の処理で実施可能である。もちろん本発
明はロボットのみに適用されるものではなく、数値制御
される空間操作機能をもつ装置に適宜利用できることは
論をまたない。
Although the present embodiment is a two-dimensional conversion, the same processing can be performed with a three-dimensional conversion. Of course, the present invention is not applied only to a robot, and it is needless to say that the present invention can be appropriately used for a device having a spatially operated function that is numerically controlled.

【0012】[0012]

【実施例】図2はワーク1を一つづつコンベア2に移載
する装置を示す。3は水平多関節型の産業用ロボットで
あり、その動作範囲は、本体装置に設置されたトレー受
台4上のトレー4aの全範囲をカバーし、かつコンベア
2の投入位置もカバーしている。トレー4aはトレー受
台4と位置決めピン4bを介して着脱可能な構造で、本
体装置との位置関係は維持されており、その上にワーク
1を所定の精度で複数個載置する構造である。ロボット
3の座標横軸x、座標縦軸yとトレー受台4上に設置し
たトレー4aの座標横軸X、座標縦軸Yの間では、座標
面x−yと座標面X−Yを水平に設置してあっても、各
座標軸x,Xを厳密に平行には設置できない。
FIG. 2 shows an apparatus for transferring the works 1 one by one onto a conveyor 2. Reference numeral 3 is a horizontal articulated type industrial robot, the operating range of which covers the entire range of the tray 4a on the tray cradle 4 installed in the main body device, and also covers the loading position of the conveyor 2. . The tray 4a has a structure that is attachable to and detachable from the tray pedestal 4 through the positioning pins 4b, the positional relationship with the main body device is maintained, and a plurality of works 1 are placed on the tray 4a with a predetermined accuracy. . Between the coordinate horizontal axis x and the coordinate vertical axis y of the robot 3 and the coordinate horizontal axis X and the coordinate vertical axis Y of the tray 4a installed on the tray pedestal 4, the coordinate plane xy and the coordinate plane XY are horizontal. However, the coordinate axes x and X cannot be installed exactly parallel to each other.

【0013】図3はトレー受台4上にトレー4aを設置
した状態での点P1 とP2 の2点を、ロボット3のハン
ド3aを用いて教示し、本体装置の座標軸とロボットの
座標軸との角度および原点の変位を幾何学的計算により
求め、ロボットの動作座標を自動生成するプログラムの
フローチャートである。
FIG. 3 teaches two points P 1 and P 2 when the tray 4a is installed on the tray cradle 4 by using the hand 3a of the robot 3, and the coordinate axes of the main body apparatus and the robot are coordinate axes. 7 is a flow chart of a program for automatically generating the motion coordinates of the robot by obtaining the angle between and and the displacement of the origin by geometric calculation.

【0014】本実施例において、本体装置8台、ワーク
の品種数25種に適用したところ、従来方式での教示点
数は、各品種別トレーに各3点必要となるため、3(教
示点/トレー)×25(品種)×8(台)=600の教
示点を教示するのに要する述べ時間は30分/点が実績
であるので、300時間となる。一方本発明によれば2
(点/号機)×8(台)=16の教示点で済むため、8
時間で終了する。したがって1/30の時間となり飛躍
的効果が達成された。なお本体装置の数または品種数が
増加すれば、より大きな効果が期待できる。
In the present embodiment, when the present invention is applied to eight main units and the number of kinds of work pieces is 25, the teaching point in the conventional method is 3 (each of the teaching points / The actual time required for teaching the teaching points of (tray) × 25 (product type) × 8 (unit) = 600 is 30 minutes / point, which is 300 hours. On the other hand, according to the present invention, 2
(Points / Units) x 8 (Units) = 16 teaching points, so 8
Finish in time. Therefore, the time was 1/30, and the dramatic effect was achieved. Note that a greater effect can be expected if the number of main devices or the number of product types increases.

【0015】[0015]

【発明の効果】本発明によるときは、ロボットを本体装
置に固定設置した最初に、1回だけ少なくとも2点の教
示作業を行い、以降は教示作業は不要となるため、教示
工数の削減、教示熟練者の少数化、教示危険作業からの
作業者の解放、教示時間の短縮化による本体装置の稼働
率の向上にいちじるしい効果があるとともに、複数台の
本体装置の各座標系が微妙に相違していても、同一の各
品種向けプログラムが使用されるため、多品種少量生産
に対応でき、動作プログラムの共有化、標準化が可能と
なり、同プログラム作成工数も削減できる。
According to the present invention, since the teaching work of at least two points is performed only once after the robot is fixedly installed on the main body device, and the teaching work is not required thereafter, the teaching man-hours can be reduced and teaching can be performed. This has a remarkable effect on improving the operating rate of the main unit by reducing the number of experts, freeing workers from teaching dangerous work, and shortening the teaching time, and the coordinate systems of multiple main units differ slightly. However, since the same program for each product is used, it is possible to support high-mix low-volume production, share and standardize operation programs, and reduce the number of man-hours for creating the programs.

【図面の簡単な説明】[Brief description of drawings]

【図1】ロボット座標軸と本体装置座標軸の関係および
両座標軸に対する教示点P1 、P2 の位置を示す座標
図。
FIG. 1 is a coordinate diagram showing a relationship between a robot coordinate axis and a main body apparatus coordinate axis and positions of teaching points P 1 and P 2 with respect to both coordinate axes.

【図2】本発明の一実施例を示す産業用ロボットの要部
斜視図。
FIG. 2 is a perspective view of a main part of an industrial robot showing an embodiment of the present invention.

【図3】プログラムのフローチャート。FIG. 3 is a flowchart of a program.

【符号の説明】[Explanation of symbols]

1 ワーク 2 コンベア 3 ロボット 4 トレー受台 4a トレー 4b 位置決めピン P1 教示点 P2 教示点 X 本体装置座標の横軸 Y 本体装置座標の縦軸 X11 点の本体装置座標の横座標 Y11 点の本体装置座標の縦座標 X22 点の本体装置座標の横座標 Y22 点の本体装置座標の縦座標 x0 本体装置座標の原点のロボット座標における横座
標 y0 本体装置座標の原点のロボット座標における縦座
標 x ロボット座標の横軸 y ロボット座標の縦軸 x11 点のロボット座標の横座標 y11 点のロボット座標の縦座標 x22 点のロボット座標の横座標 y22 点のロボット座標の縦座標
1 Work 2 Conveyor 3 Robot 4 Tray cradle 4a Tray 4b Positioning pin P 1 Teaching point P 2 Teaching point X Horizontal axis of main unit coordinate Y Y vertical axis of main unit coordinate X 1 P 1 horizontal coordinate of main unit coordinate Y 1 P 1 point ordinate of main unit coordinate X 2 P 2 point abscissa of main unit coordinate Y 2 P 2 point ordinate of main unit coordinate x 0 Horizontal coordinate in robot coordinate of origin of main unit coordinate y 0 Vertical coordinate of robot coordinate at origin of main unit coordinate x Horizontal axis of robot coordinate y Vertical axis of robot coordinate x 1 P 1 point horizontal coordinate of robot coordinate y 1 P 1 vertical coordinate of robot coordinate x 2 P 2 point Abscissa of robot coordinates of y 2 P ordinate of robot coordinates of 2 points

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 産業用ロボットにより本体装置を操作す
る際、少なくとも2箇所の教示作業により産業用ロボッ
トと本体装置の位置座標の変換係数を決定し、以降は本
体装置の位置座標を指定してこれを自動的に産業用ロボ
ットの位置座標に変換し本体装置を操作することを特徴
とする産業用ロボットの使用方法。
1. When operating a main body device by an industrial robot, a conversion coefficient of position coordinates of the industrial robot and the main body device is determined by teaching work at at least two places, and thereafter, position coordinates of the main body device are designated. A method of using an industrial robot, characterized by automatically converting this into position coordinates of the industrial robot and operating the main unit.
JP2189192A 1992-01-10 1992-01-10 Using method for industrial robot Pending JPH06180608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189192A JPH06180608A (en) 1992-01-10 1992-01-10 Using method for industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189192A JPH06180608A (en) 1992-01-10 1992-01-10 Using method for industrial robot

Publications (1)

Publication Number Publication Date
JPH06180608A true JPH06180608A (en) 1994-06-28

Family

ID=12067735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189192A Pending JPH06180608A (en) 1992-01-10 1992-01-10 Using method for industrial robot

Country Status (1)

Country Link
JP (1) JPH06180608A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997873A (en) * 1982-11-26 1984-06-05 株式会社東芝 Method of correcting positional displacement of work in robot
JPS60196808A (en) * 1984-03-21 1985-10-05 Hitachi Ltd Method for correcting teaching position of robot
JPS60200313A (en) * 1984-03-23 1985-10-09 Matsushita Electric Ind Co Ltd Robot coordinate corrector
JPS62139003A (en) * 1985-12-13 1987-06-22 Mitsubishi Electric Corp Robot system provided with external work position detecting sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997873A (en) * 1982-11-26 1984-06-05 株式会社東芝 Method of correcting positional displacement of work in robot
JPS60196808A (en) * 1984-03-21 1985-10-05 Hitachi Ltd Method for correcting teaching position of robot
JPS60200313A (en) * 1984-03-23 1985-10-09 Matsushita Electric Ind Co Ltd Robot coordinate corrector
JPS62139003A (en) * 1985-12-13 1987-06-22 Mitsubishi Electric Corp Robot system provided with external work position detecting sensor

Similar Documents

Publication Publication Date Title
US4659971A (en) Robot controlling system
JP2895672B2 (en) Multiple robot control method
EP0123214B1 (en) Operation teaching method and apparatus for industrial robot
CA1233224A (en) Method and apparatus for controlling manipulator and workpiece positioner
US4899095A (en) Robot control system
US20180345492A1 (en) Direct teaching method of robot
EP0974884A3 (en) Robot controller
JP3070329B2 (en) Industrial robot system
JPH02262982A (en) Setting method for tool center point
US20180319013A1 (en) Controller and control method of robot, and robot system
US20150165623A1 (en) Method For Programming An Industrial Robot In A Virtual Environment
US11312019B2 (en) Method for work piece calibration and robot system using the same
EP0328687A1 (en) Calibration system for visual sensor system
CN109916346A (en) A kind of detection device and detection method of the workpiece flatness of view-based access control model system
JPH06180608A (en) Using method for industrial robot
JPS5916286B2 (en) Operation control method for industrial robots
JP3065579B2 (en) Robot interference check method
Feddema et al. Feature-based visual servoing of robotic systems
JP2703767B2 (en) Robot teaching data creation method
WO2018051601A1 (en) Workpiece processing system
JPH05324034A (en) Method for controlling robot
Mizukawa et al. Robotic task and system design for task directed robotics case study: deburring task
JP2518177B2 (en) Mutual interference check method for robots
KR100288318B1 (en) How to use 8-axis robot for corner working
JPH03174996A (en) Apparatus for making laser beam maching data