JPH06180145A - Hot water supply device - Google Patents

Hot water supply device

Info

Publication number
JPH06180145A
JPH06180145A JP4337590A JP33759092A JPH06180145A JP H06180145 A JPH06180145 A JP H06180145A JP 4337590 A JP4337590 A JP 4337590A JP 33759092 A JP33759092 A JP 33759092A JP H06180145 A JPH06180145 A JP H06180145A
Authority
JP
Japan
Prior art keywords
temperature
hot water
heat exchanger
outlet
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4337590A
Other languages
Japanese (ja)
Other versions
JP2655385B2 (en
Inventor
Hidehiko Takagi
秀彦 高木
Hiroyuki Yamada
弘之 山田
Hideki Kitagawa
秀樹 北川
Takeshi Kato
猛 加藤
Masayoshi Eguchi
正義 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP4337590A priority Critical patent/JP2655385B2/en
Priority to KR1019930026550A priority patent/KR960006267B1/en
Publication of JPH06180145A publication Critical patent/JPH06180145A/en
Application granted granted Critical
Publication of JP2655385B2 publication Critical patent/JP2655385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To improve the accuracy of control of a hot water supply temperature by setting a pseudo outlet temperature lower the longer a period of time lapsed after suspension of hot water supply and calculating an active amount of a flow ratio regulating valve on the basis of an inlet temperature and a pseudo outlet temperature of a heat exchanger so that the temperature of the mixed hot water becomes a set temperature. CONSTITUTION:A hot water supply device comprises a can body 10a provided with a heat exchanger 11 for hot water supply, a can body 10b provided with a heat exchanger 12 for bath heating and juxtaposed with the can body 10a. A bypass circuit 2 bypassing a circuit 1 to be heated is made to joint the outlet side of the heat exchanger 11 for hot water supply, and a flow ratio regulating valve 3 is provided on the confluent point. When supplying of hot water is suspended, the temperature obtained by subtracting a correction value Th from an outlet temperature To of the heat exchange 11 is set as a pseudo outlet temperature Tg after supplying of hot water is suspended. The correction value Th is increased with time so as to update the pseudo outlet temperature Tg with the lapse of time. Furthermore, an active amount of the flow ratio regulating valve 3 is found on the basis of an inlet temperature Ti and the pseudo outlet temperature Tg of the heat exchanger 11 so that the temperature of a mixed hot water becomes a set temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】給湯器、特に、熱交換器を介する
被加熱回路からの湯と、熱交換器を迂回するバイパス回
路からの水とを混合させて設定温度の湯を得る形式の給
湯器に関するものである。
[Industrial application] Hot water supply, especially hot water of a type that obtains hot water of a set temperature by mixing hot water from a heated circuit through a heat exchanger with water from a bypass circuit bypassing the heat exchanger It is related to vessels.

【0002】[0002]

【従来技術及び課題】上記形式の給湯器は、概略図1に
示すような構成である。被加熱回路(1) には、バーナ
(B) によって加熱される熱交換器(11)がある。この被加
熱回路(1) の熱交換器(11)の上流側と下流側とがバイパ
ス回路(2) によって連通接続され、これらの合流点に流
量比調整弁(3) が挿入される。この流量比調整弁(3) の
動作位置はサーボモータ(31)によって調整される。この
調整によって被加熱回路(1) とバイパス回路(2) との流
量比率が調節されることから、被加熱回路(1) の出口温
度を一定に維持したままで、出湯温度が設定温度に維持
できる。
2. Description of the Related Art A water heater of the above type has a structure as schematically shown in FIG. The heated circuit (1) has a burner
There is a heat exchanger (11) heated by (B). The upstream side and the downstream side of the heat exchanger (11) of the heated circuit (1) are communicatively connected by a bypass circuit (2), and a flow ratio adjusting valve (3) is inserted at the confluence of these. The operating position of the flow ratio adjusting valve (3) is adjusted by the servo motor (31). This adjustment adjusts the flow rate ratio between the heated circuit (1) and the bypass circuit (2), so that the outlet temperature of the heated circuit (1) is kept constant and the tap water temperature is maintained at the set temperature. it can.

【0003】サーボモータ(31)は、制御装置(C3)によっ
て制御されて前記動作を行なう。この制御装置(C3)は、
給湯時には、例えば、熱交換器(11)の入口側温度(Ti)、
出湯温度(混合湯温)、出湯設定温度(Ts)に基いて、出
湯温度が設定温度となるようにサーボモータ(31)の動作
量を設定する。このサーボモータ(31)の動作量に応じて
流量比調整弁(3) の動作位置が設定されて被加熱回路
(1) とバイパス回路(2)との分配比率が設定される。す
ると、出湯温度が設定温度に維持される。
The servo motor (31) is controlled by the controller (C 3 ) to perform the above-mentioned operation. This controller (C 3 )
At the time of hot water supply, for example, the inlet side temperature (Ti) of the heat exchanger (11),
The operation amount of the servo motor (31) is set so that the tapping temperature is the set temperature based on the tapping temperature (mixed hot water temperature) and the tapping temperature setting (Ts). The operating position of the flow ratio control valve (3) is set according to the operation amount of this servo motor (31), and the circuit to be heated is
The distribution ratio between (1) and the bypass circuit (2) is set. Then, the outlet heated water temperature is maintained at the set temperature.

【0004】従って、上記のように、出湯温度(混合湯
温)が設定温度となるように流量比調整弁(3) を制御す
ることにより、設定温度を変えた場合でも熱交換器の過
渡状態を少なくでき、直ちに出湯温度を設定温度に維持
できる。ところが、給湯器の運転を停止した後、運転を
再開したときには、前記制御だけでは、設定温度の湯が
取り出せない。
Therefore, as described above, by controlling the flow rate ratio adjusting valve (3) so that the outlet heated water temperature (mixed hot water temperature) becomes the set temperature, the transient state of the heat exchanger is changed even when the set temperature is changed. Can be reduced, and the tap water temperature can be immediately maintained at the set temperature. However, when the operation of the water heater is stopped and then restarted, hot water at the set temperature cannot be taken out only by the above control.

【0005】出湯停止後においては、給排気用のファン
が一定時間作動することにより、または、自然放冷によ
って被加熱回路内の温水が経時的に冷却される。そし
て、給湯再開後は経時的に冷却された前記温水とバイパ
ス回路(2) からの冷水とが混合される。ところが、この
被加熱回路(1) 内の残留温水の冷却度合は、被加熱回路
(1) の全域において一定とはならない。
After the hot water is stopped, the hot water in the circuit to be heated is cooled with time by operating the fan for supplying and exhausting air for a certain period of time or by spontaneous cooling. After the hot water supply is restarted, the hot water cooled with time and the cold water from the bypass circuit (2) are mixed. However, the degree of cooling of the residual hot water in the heated circuit (1) depends on the heated circuit.
It is not constant over the whole range of (1).

【0006】従って、上記制御装置(C3)の動作によって
出湯温度が制御されたとしても、給湯再開直後は、出湯
温度が設定温度(Ts)に一致しにくい。この時の出湯温度
(混合湯温)は、被加熱回路(1) 内の温水の温度条件を
正確に反映したものではないからである。例えば、熱交
換器(11)の出口側温度(To)がある特定の温度であって
も、被加熱回路(1) 内の中央部の湯温がこより高い温度
となっていることがある。このとき、給湯再開後に出口
側温度(To)が急変する。このように、定常状態に安定す
るまでの間、出口側温度(To)が極短時間で大きく変動す
ることからこれに追随した制御が出来ないこととなる。
Therefore, even if the hot water outlet temperature is controlled by the operation of the control device (C 3 ), the hot water outlet temperature is unlikely to match the set temperature (Ts) immediately after the hot water supply is restarted. This is because the hot water temperature (mixed hot water temperature) at this time does not accurately reflect the temperature condition of the hot water in the heated circuit (1). For example, even if the outlet side temperature (To) of the heat exchanger (11) is a certain temperature, the hot water temperature in the central portion of the heated circuit (1) may be higher than this temperature. At this time, the outlet side temperature (To) suddenly changes after the hot water supply is restarted. In this way, the outlet side temperature (To) greatly fluctuates in an extremely short time until it stabilizes in the steady state, so that it is impossible to perform control following it.

【0007】本発明は、『熱交換器(11)を具備する被加
熱回路(1) と、前記熱交換器(11)の上流側にて被加熱回
路(1) から分岐させて熱交換器(11)の下流側にて被加熱
回路(1) に合流するバイパス回路(2) と、前記被加熱回
路(1) とバイパス回路(2) との流量比率を調節する流量
比調整弁(3) とを具備する給湯器』において、出湯停止
直後一定時間内の出湯温度制御の精度を向上させること
をその課題とする。
The present invention relates to a "heated circuit (1) having a heat exchanger (11) and a heat exchanger which is branched from the heated circuit (1) on the upstream side of the heat exchanger (11). A bypass circuit (2) that joins the heated circuit (1) on the downstream side of (11) and a flow ratio adjusting valve (3) that adjusts the flow rate ratio between the heated circuit (1) and the bypass circuit (2). ) And a hot water supply device), the object is to improve the accuracy of hot water temperature control within a fixed time immediately after the hot water is stopped.

【0008】[0008]

【技術的手段】上記課題を解決するための本発明の技術
的手段は、『出湯停止時、熱交換器(11)の出口側温度(T
o)から後記する補正値(Th)を差し引いた温度を出湯停止
後の疑似出口側温度(Tg)とする演算装置(C1)と、出湯停
止時の熱交換器(11)の入口側温度(Ti)と前記疑似出口側
温度(Tg)とに基いて混合湯温が設定温度となるように前
記流量比調整弁(3) の動作量を演算する制御装置(C2)と
を設け、前記補正値(Th)は、出湯停止後経時的に増大す
るように演算されて時間経過に従って疑似出口側温度(T
g)が更新されるようにし、前記制御装置(C2)は出湯再開
後の一定時間内のみ前記流量比調整弁(3) を前記動作量
に維持するようにした』ことである。
[Technical Means] The technical means of the present invention for solving the above-mentioned problem is to say, "When the hot water supply is stopped, the temperature (T
The calculation unit (C 1 ) that determines the temperature obtained by subtracting the correction value (Th) described below from (o) as the simulated outlet temperature (Tg) after the hot water is stopped, and the inlet temperature of the heat exchanger (11) when the hot water is stopped. (Ti) and the control device (C 2 ) for calculating the operation amount of the flow ratio control valve (3) so that the mixed hot water temperature becomes the set temperature based on the pseudo outlet temperature (Tg), The correction value (Th) is calculated so as to increase with time after the tapping is stopped, and the pseudo outlet temperature (T
g) is updated, and the control device (C 2 ) keeps the flow ratio adjusting valve (3) at the operation amount only within a fixed time after the hot water is restarted.

【0009】[0009]

【作用】上記技術的手段は次のように作用する。出湯停
止後、出湯再開までの間では、被加熱回路(1) 内の残留
湯の温度が経時的に低下する。疑似出口側温度(Tg)は出
湯停止時の出口側温度(To)から補正値(Th)を差し引いた
温度として与えられる。出湯停止後、前記補正値(Th)は
経時的に増大するように演算される。この疑似出口側温
度(Tg)は経時的に更新される。
The above technical means operates as follows. After the tapping is stopped and before the tapping is restarted, the temperature of the residual hot water in the heated circuit (1) decreases with time. The pseudo outlet side temperature (Tg) is given as a temperature obtained by subtracting the correction value (Th) from the outlet side temperature (To) when the tapping is stopped. After the tapping is stopped, the correction value (Th) is calculated so as to increase with time. This pseudo outlet temperature (Tg) is updated over time.

【0010】つまり、出湯停止からの経過時間が長い程
疑似出口側温度(Tg)は低く設定される。従って、この疑
似出口側温度は、被加熱回路(1) 内の残留湯の平均温度
に略一致する。一方、制御装置(C2)は、熱交換器(11)の
入口側温度(Ti)と前記疑似出口側温度(Tg)とに基いて混
合湯温が設定温度(Ts)になるように流量比調整弁(3)の
動作量を演算する。
That is, the longer the elapsed time from the stop of hot water discharge, the lower the pseudo outlet temperature (Tg) is set. Therefore, this pseudo outlet temperature substantially matches the average temperature of the residual hot water in the heated circuit (1). On the other hand, the control device (C 2 ) controls the flow rate so that the mixed hot water temperature becomes the set temperature (Ts) based on the inlet side temperature (Ti) of the heat exchanger (11) and the pseudo outlet side temperature (Tg). Calculate the operation amount of the ratio adjustment valve (3).

【0011】出湯が再開されると、この制御装置(C2)か
らの出力により流量比調整弁(3) が制御されて被加熱回
路(1) とバイパス回路(2) との流量比率が設定される。
出湯再開後、流量比調整弁(3) は一定時間だけ動作量に
維持されて、前記一定時間が経過すると、通常の制御状
態に復帰する。つまり、出湯再開後の出口側温度(To)が
不安定な時期には、予め経験的に求められた被加熱回路
(1) 内の実際の残留湯温と実質的に略一致した疑似出口
側温度(Tg)に基いて制御されることとなる。
When tapping is resumed, the flow ratio adjusting valve (3) is controlled by the output from the control device (C 2 ) to set the flow ratio between the heated circuit (1) and the bypass circuit (2). To be done.
After the hot water is resumed, the flow rate adjusting valve (3) is maintained at the operation amount for a fixed time, and after the fixed time elapses, the normal control state is restored. In other words, when the outlet temperature (To) is unstable after the hot water is resumed, the circuit to be heated that has been empirically obtained in advance is
(1) It is controlled based on the pseudo outlet temperature (Tg) that substantially matches the actual residual hot water temperature inside.

【0012】[0012]

【効果】出湯再開後の出湯温度又は出口側温度(To)が不
安定な時期には、予め経験的に求められた被加熱回路
(1) 内の実際の残留湯温と実質的に略一致した疑似出口
側温度(Tg)に基いて制御されるから、出湯停止後出湯を
再開したときの出湯温度と設定温度(Ts)との差が生じに
くい。
[Effect] The heated circuit that has been empirically obtained in advance during the time when the outlet temperature or outlet temperature (To) is unstable after the tapping is restarted.
(1) Since the control is based on the simulated outlet temperature (Tg) that substantially matches the actual residual hot water temperature inside, the hot water temperature and set temperature (Ts) when the hot water is restarted after the hot water is stopped Difference is unlikely to occur.

【0013】[0013]

【実施例】次に、上記した本発明の実施例を図面に従っ
て詳述する。この実施例の給湯器は、図2に示すよう
に、給湯用の熱交換器(11)を装備させた缶体(10a) と風
呂用の熱交換器(12)を装備させた缶体(10b) とを並設し
た構成とするとともに、各缶体の底部に給気用ファン
(F) (F) を設けた構成である。
Embodiments of the present invention described above will now be described in detail with reference to the drawings. As shown in FIG. 2, the water heater of this embodiment has a can body (10a) equipped with a heat exchanger (11) for hot water supply and a can body () equipped with a heat exchanger (12) for a bath. 10b) is installed side by side, and the air supply fan is installed at the bottom of each can.
(F) (F) is provided.

【0014】熱交換器(12)の被加熱回路は浴槽に連通接
続され、運転時には循環ポンプによって、強制循環され
る。熱交換器(11)の出口側には、被加熱回路(1) を迂回
するバイパス回路(2) が合流して、この合流点に流量比
調整弁(3) が挿入される。合流点の下流側は前記浴槽を
含めて複数の給湯場所に給湯される。
The circuit to be heated of the heat exchanger (12) is communicatively connected to the bath and is forcedly circulated by a circulation pump during operation. On the outlet side of the heat exchanger (11), a bypass circuit (2) that bypasses the heated circuit (1) joins, and a flow ratio adjusting valve (3) is inserted at this joining point. On the downstream side of the confluence, hot water is supplied to a plurality of hot water supply locations including the bathtub.

【0015】流量比調整弁(3) は、サーボモータ(31)に
よって駆動され、このサーボモータの給湯時の動作は、
入口側温度(Ti)、出湯温度、及び設定温度(Ts)によって
制御動作量が演算され、給湯停止時及び給湯開始直後の
動作は入口側温度(Ti)、設定温度(Ts)及び後記する疑似
出口側温度(Tg)によって制御動作量が演算される。この
実施例では、出口側温度(To)としては、被加熱回路(1)
における熱交換器(11)の出口側に設けた検知センサ(S2)
よって検知された検知温度が採用される。入口側温度(T
i)は、熱交換器(11)の上流側で被加熱回路(1) とバイパ
ス回路(2)との分岐点の上流側に設けた検知センサ(S1)
によって検知される。設定温度(Ts)は、湯温設定器(33)
からの信号として入力される。また、出湯温度は被加熱
回路(1) とバイパス回路(2) との合流点の下流側に設け
た検知センサ(S3)によって検知される。
The flow ratio adjusting valve (3) is driven by the servo motor (31), and the operation of the servo motor during hot water supply is
The control operation amount is calculated based on the inlet side temperature (Ti), hot water temperature, and set temperature (Ts) .The operation at the time when hot water supply is stopped and immediately after hot water supply is started is the inlet side temperature (Ti), set temperature (Ts), and The control operation amount is calculated by the outlet temperature (Tg). In this embodiment, as the outlet side temperature (To), the heated circuit (1)
Sensor (S 2 ) provided on the outlet side of the heat exchanger (11) in
Therefore, the detected temperature detected is adopted. Inlet temperature (T
i) is a detection sensor (S 1 ) provided upstream of the heat exchanger (11) and upstream of the branch point between the heated circuit (1) and the bypass circuit (2).
Detected by. Set temperature (Ts) is the hot water temperature setter (33)
Is input as a signal from. Further, the outlet heated water temperature is detected by a detection sensor (S 3 ) provided on the downstream side of the confluence of the heated circuit (1) and the bypass circuit (2).

【0016】流量比調整弁(3) としては、図3に示すよ
うに、被加熱回路(1) とバイパス回路(2) との合流点に
挿入した回動弁(32)の回動角度θを調節する形式の弁装
置が採用される。この流量比調整弁(3) は、被加熱回路
(1) から回動弁(32)への回路の開度と、バイパス回路
(2) から回動弁(32)への回路の開度とを同時に変化させ
るものであり、被加熱回路(1) とバイパス回路(2) とを
介する水量の和を図4に示すように変化させる構成であ
る。
As shown in FIG. 3, the flow rate adjusting valve (3) has a turning angle θ of a turning valve (32) inserted at the confluence of the heated circuit (1) and the bypass circuit (2). A valve device of the type that adjusts is adopted. This flow ratio adjustment valve (3) is
Opening the circuit from (1) to the rotary valve (32) and bypass circuit
The opening of the circuit from (2) to the rotary valve (32) is changed at the same time, and the sum of the amounts of water passing through the heated circuit (1) and the bypass circuit (2) is shown in Fig. 4. It is a configuration that changes.

【0017】そして、前記回動弁(32)の軸部がサーボモ
ータ(31)によって回転駆動される構成であり、この回動
角度θが動作信号として制御装置(C) からサーボモータ
(31)に入力される。この回動角度θは、0度から270
度までの範囲に設定される。この回動角度θによって被
加熱回路(1) とバイパス回路(2) との流量比率が設定さ
れることとなるが、この実施例では、給湯時は、入口側
温度(Ti)、出湯温度及び設定温度(Ts)に基いて、図4に
おける、被加熱回路(1) とバイパス回路(2)との分配比
率が決定される。
The shaft portion of the rotary valve (32) is rotationally driven by the servo motor (31), and the rotary angle θ is an operation signal from the control device (C) to the servo motor.
It is input in (31). This rotation angle θ ranges from 0 degrees to 270
It is set in the range up to degrees. This rotation angle θ sets the flow rate ratio between the circuit to be heated (1) and the bypass circuit (2) .In this embodiment, when hot water is supplied, the inlet side temperature (Ti), hot water temperature and The distribution ratio between the heated circuit (1) and the bypass circuit (2) in FIG. 4 is determined based on the set temperature (Ts).

【0018】具体的には、熱交換器(11)の出口側温度(T
o)を設定温度(Ts)が変化しても変らない予め定めた所定
温度(例えば入口側温度(Ti)+55℃)になるように、
熱交換器(11)の入口側温度(Ti)と設定温度(Ts)とに基い
て分配比を決定すると共に、出湯温度、入口側温度(T
i)、及び分配比により熱交換器(11)の出口側温度(To)を
算出し、算出した出口側温度(To)と予め定めた所定温度
との偏差に一定の比率で比例制御する補正量を前記分配
比に加減算することにより分配比を制御している。
Specifically, the temperature at the outlet side of the heat exchanger (11) (T
o) to a predetermined temperature that does not change even if the set temperature (Ts) changes (for example, inlet temperature (Ti) + 55 ° C),
The distribution ratio is determined based on the inlet temperature (Ti) of the heat exchanger (11) and the set temperature (Ts), and the outlet temperature and inlet temperature (T
i) and the distribution ratio, the outlet side temperature (To) of the heat exchanger (11) is calculated, and the deviation is proportionally controlled to the deviation between the calculated outlet side temperature (To) and a predetermined temperature at a constant ratio. The distribution ratio is controlled by adding and subtracting the amount to and from the distribution ratio.

【0019】このように、給湯時は出口側温度(To)が所
定温度となるように流量比調整弁(3) を制御しているた
め、設定温度(Ts)を変えた場合でも熱交換器の過渡状態
を少なくでき、直ちに出湯温度を設定温度にすることが
出来る。また、算出した出口側温度(To)と予め定めた所
定温度との偏差に応じた補正量を加減算して流量比調整
弁(3) を制御するため出湯管から吐出する湯の温度低下
を過不足なく防止できる。
As described above, since the flow rate adjusting valve (3) is controlled so that the outlet side temperature (To) becomes a predetermined temperature during hot water supply, even if the set temperature (Ts) is changed, the heat exchanger is changed. The transient state of can be reduced, and the tap water temperature can be immediately set to the set temperature. In addition, the temperature decrease of the hot water discharged from the hot water outlet pipe is excessive because the flow rate ratio adjusting valve (3) is controlled by adding and subtracting the correction amount according to the deviation between the calculated outlet temperature (To) and the predetermined temperature. It can be prevented without shortage.

【0020】次に、給湯停止時に及び給湯再開直後のサ
ーボモータ(31)の動作について説明する。給湯停止時に
は、制御装置(C) によって後述する演算装置(C1)により
求めた疑似出口側温度(Tg)と熱交換器(11)の入口側温度
(Ti)とに基いて出湯温度(混合湯温)が設定温度になる
ように流量比調整弁(3) の動作を行なう。
Next, the operation of the servo motor (31) when the hot water supply is stopped and immediately after the hot water supply is restarted will be described. When the hot water supply is stopped, the simulated outlet temperature (Tg) and the inlet temperature of the heat exchanger (11) obtained by the controller (C 1 ) described later by the controller (C)
Based on (Ti), the flow ratio control valve (3) is operated so that the outlet heated water temperature (mixed heated water temperature) becomes the set temperature.

【0021】演算装置(C1)は、出湯停止後、出湯を再開
したときの前記出口側温度(To)に対応する温度を推測す
る。つまり、検知センサ(S2)からの検知温度として与え
られる出口側温度(To)はキャンセルされて、この演算装
置(C1)から出力される疑似出口側温度(Tg)が前記出口側
温度(To)として入力される。この疑似出口側温度(Tg)
は、次式によって与えられ、演算装置(C1)において演算
される。
The arithmetic unit (C 1 ) estimates the temperature corresponding to the outlet side temperature (To) when the tapping is restarted after the tapping is stopped. That is, the outlet side temperature (To) given as the detected temperature from the detection sensor (S 2 ) is canceled, and the pseudo outlet side temperature (Tg) output from this arithmetic unit (C 1 ) is the outlet side temperature ( To) is entered. This pseudo outlet temperature (Tg)
Is given by the following equation, and is calculated in the arithmetic unit (C 1 ).

【0022】(Tg)=(To)−(Th) ここで、前記補正値(Th)は器具の仕様に基いて実験的に
定められており、この実施例では、図5のように変化す
るように設定している。つまり、設定時間(H)(この実
施例では5分)が経過するまでは、出湯停止後の経過時
間に比例して前記補正値(Th)が増大し、前記設定時間が
経過すると、一定の値に維持される。
(Tg) = (To) − (Th) Here, the correction value (Th) is experimentally determined based on the specifications of the instrument, and in this embodiment, it changes as shown in FIG. Is set. That is, until the set time (H) (5 minutes in this embodiment) elapses, the correction value (Th) increases in proportion to the elapsed time after the hot water supply is stopped. Maintained at the value.

【0023】このようにして与えられる補正値(Th)に基
いて疑似出口側温度(Tg)が上記した式によって演算され
るが、この疑似出口側温度(Tg)は出湯停止後の単位時間
が経過する度に更新されて記憶され、この記憶値が制御
装置(C) に入力される。この演算装置(C1)及び制御装置
(C) による制御の実際を図6に示すフローチャートに基
いて説明する。
The pseudo outlet side temperature (Tg) is calculated by the above-mentioned formula based on the correction value (Th) given in this way. The pseudo outlet side temperature (Tg) is the unit time after the hot water is stopped. It is updated and stored each time it passes, and this stored value is input to the control device (C). This arithmetic unit (C 1 ) and control unit
The actual control by (C) will be described with reference to the flowchart shown in FIG.

【0024】出湯が停止されると、タイマー (A)がリセ
ットされ、同時にこのときに検知された温度センサ(S2)
の検知温度が出口側温度(To)としてメモリ(T1)に記憶さ
れる。この後、10秒経過すると補正値(Th)は、図5に
基いて、ステップ(41)においてタイマー(A) の計時時間
(At)の関数として与えられる。この補正値(Th)に基い
て、上記式により疑似出口側温度(Tg)が演算されて、こ
の演算値がメモリ(T2)に記憶される。このとき、計時時
間(At)が設定時間(H) (=5分)を越えると、前記補正
値(Th)は変化せず、ステップ(41)からステップ(42)まで
を実行することなく、出湯再開されるまで待機される。
When the tapping is stopped, the timer (A) is reset, and at the same time, the temperature sensor (S 2 ) detected at this time
The detected temperature is stored in the memory (T 1 ) as the outlet temperature (To). After this, 10 seconds later, the correction value (Th) is based on FIG. 5, and the time measured by the timer (A) is measured in step (41).
Given as a function of (At). Based on this correction value (Th), the pseudo outlet temperature (Tg) is calculated by the above equation, and this calculated value is stored in the memory (T 2 ). At this time, when the measured time (At) exceeds the set time (H) (= 5 minutes), the correction value (Th) does not change, and the steps (41) to (42) are not executed, Wait until the hot water is resumed.

【0025】尚、図9に示すように、出湯が停止される
と同時に検知センサ(S1)により検知された入口側温度(T
i)をメモリ(T3)に記憶し、この記憶値に基づいて制御す
る構成とすれば、出湯停止後に熱交換器からの伝熱によ
って入口側温度(Ti)が変化しても、この影響を受けない
こととなって制御動作が安定する。出湯が再開される
と、疑似出口側温度(Tg)と熱交換器(11)の入口側温度(T
i)とに基いて、出湯温度が設定温度となるように動作量
を演算すると共に、この演算値に基いて回動弁(32)の開
度が設定されて、被加熱回路(1) とバイパス回路(2)と
の流量比率が決定される。この状態が2.5秒間継続
し、その後は、前述した通常の制御状態に復帰する。
As shown in FIG. 9, the inlet temperature (T 1 ) detected by the detection sensor (S 1 ) at the same time when the hot water discharge is stopped.
i ) is stored in the memory (T 3 ) and controlled based on this stored value, even if the inlet side temperature (T i ) changes due to heat transfer from the heat exchanger after the hot water is stopped, this Since it is not affected, the control operation becomes stable. When tapping is restarted, the temperature on the simulated outlet side (Tg) and the temperature on the inlet side of the heat exchanger (11) (T
Based on i), the operation amount is calculated so that the hot water outlet temperature becomes the set temperature, and the opening degree of the rotary valve (32) is set based on this calculated value. The flow rate ratio with the bypass circuit (2) is determined. This state continues for 2.5 seconds and then returns to the normal control state described above.

【0026】この後、出湯が停止されると、上記一連の
動作が実行される。この実施例では、給湯用の熱交換器
(11)を装備させた缶体(10a) と風呂用の熱交換器(12)を
装備させた缶体(10b) とを並設した構成としてあるか
ら、給湯器と風呂とが同時に使用されていた場合と、給
湯器のみが使用されていた場合とで、出湯停止時におけ
る被加熱回路(1) の経時的温度低下度合が相違する。
After this, when the hot water discharge is stopped, the above series of operations are executed. In this example, a heat exchanger for hot water supply
Since the can body (10a) equipped with (11) and the can body (10b) equipped with the heat exchanger (12) for the bath are arranged side by side, the water heater and the bath are used at the same time. There is a difference in the degree of temperature decrease with time in the heated circuit (1) when the hot water supply is stopped, depending on whether the hot water supply is used or not.

【0027】このような複合器具の場合、両方が同時に
使用されている状態で、一方の運転が停止されたとして
も、他方のファンの作動の為、逆流が発生しないよう
に、停止された側の給気用ファン(F) が運転継続状態に
維持されるからである。つまり、同時使用後に給湯器の
みの運転が停止された場合には、給気用ファン(F) によ
って強制的に熱交換器(11)が空冷されるからである。
In the case of such a compound instrument, even if the operation of one is stopped while both are being used at the same time, the other side is stopped so that the backflow does not occur due to the operation of the other fan. This is because the air supply fan (F) is maintained in the continuous operation state. That is, when the operation of only the water heater is stopped after the simultaneous use, the heat exchanger (11) is forcibly cooled by the air supply fan (F).

【0028】従って、この場合には単独使用の運転停止
の場合に比べて、補正値(Th)を大きくする必要がある。
このことから、この実施例では、単独使用時の場合の補
正値(Th)は、図5の実線で示す値に設定され、給湯器と
風呂とが同時に使用されている、同時使用時の場合に
は、同図の破線で示す補正値に設定される。いずれの補
正値を選択するかは、出湯停止前の使用条件によって決
定される。図6のフローチャートは単独使用時の場合の
制御プログラムであるが、出湯停止前の条件によって補
正値を変えるには、図7に示すステップを追加する。
Therefore, in this case, it is necessary to increase the correction value (Th) as compared with the case where the operation is stopped alone.
From this, in this embodiment, the correction value (Th) when used alone is set to the value shown by the solid line in FIG. 5, and when the water heater and bath are used at the same time, Is set to the correction value indicated by the broken line in FIG. Which correction value is selected is determined by the usage conditions before the hot water supply is stopped. The flow chart of FIG. 6 shows a control program for a single use, but the steps shown in FIG. 7 are added to change the correction value depending on the condition before the tapping stop.

【0029】図6のフローチャートにおけるステップ(4
1)〜ステップ(42)までの疑似出口側温度(Tg)の演算動作
を実行するに先立って、出湯停止前の状態が同時使用状
態か単独使用状態かを判定する判断するステップ(44)を
挿入する。このステップでは、出湯停止された状態にお
いて、風呂側の給気ファン(F) が運転状態にあるか否か
が判定される。この給気ファン(F) が運転状態にあれ
ば、出湯停止前が同時使用状態であり、この給気ファン
(F) が運転停止状態であれば単独使用状態である。
The steps (4
Prior to executing the calculation operation of the pseudo outlet side temperature (Tg) from 1) to step (42), a step (44) for determining whether the state before the tapping stop is the simultaneous use state or the single use state is performed. insert. In this step, it is determined whether or not the air supply fan (F) on the bath side is in the operating state with the hot water supply stopped. If this air supply fan (F) is in operation, it will be in use at the same time before the hot water is stopped.
If (F) is in the operation stop state, it is in a single use state.

【0030】そして、単独使用であれば次のステップ(4
1a) が実行されて図5の実線のグラフに基いた演算が行
なわれて補正値(Th)が演算され、同時使用であれば、ス
テップ(41b) が実行されて図5の実線のグラフに基いた
演算が行なわれて補正値(Th)が演算される。そして、そ
の後は図6の場合と同様の制御動作が実行される。この
ように、図6の一部を図7のように変更した場合には、
複合型の器具における出湯再開時点での一層正確な出湯
温度制御が可能である。
If it is used alone, the next step (4
1a) is executed and the correction value (Th) is calculated by the calculation based on the solid line graph of FIG. 5. If they are used simultaneously, step (41b) is executed and the solid line graph of FIG. Based on the calculation, the correction value (Th) is calculated. Then, after that, the same control operation as in the case of FIG. 6 is executed. Thus, when a part of FIG. 6 is changed to FIG. 7,
It is possible to more accurately control the temperature of tap water when the tap water is restarted in the composite type equipment.

【0031】尚、上記補正値(Th)の最大値は、熱交換器
(11)の入口側温度(Ti)によって変動することがある。例
えば、実際の器具について実験した場合、補正値(Th)の
最大値と入口側温度(Ti)との関係を図8のような傾向に
設定した場合に出湯再開時点での出湯温度制御の精度が
向上した。図8において、実線のグラフは、出湯停止前
の状態が単独使用状態であるときの関係を示し、破線の
グラフは出湯停止前の状態が同時使用であるときの関係
を示す。
The maximum value of the above correction value (Th) is the heat exchanger.
It may fluctuate depending on the inlet temperature (Ti) in (11). For example, in the case of experimenting with actual equipment, when the relationship between the maximum value of the correction value (Th) and the inlet temperature (Ti) is set to the tendency as shown in FIG. Has improved. In FIG. 8, the solid line graph shows the relationship when the state before the hot water stop is the single use state, and the broken line graph shows the relationship when the state before the hot water stop is the simultaneous use.

【0032】尚、この実施例では熱交換器(11)の出口側
温度(To)を計測によって求めたが、この出口側温度は、
この種の出湯温度調節装置では、入口側温度(Ti)より5
0℃〜60℃高い温度に維持されるように制御される。
従って、疑似出口側温度(Tg)の演算の際の出口側温度(T
o)として、検知センサ(S1)の検知温度に50℃〜60℃
を加えた温度を採用するようにしてもよい。また、他の
制御に採用されるデータを利用しても良い。
In this example, the outlet side temperature (To) of the heat exchanger (11) was obtained by measurement.
With this type of hot water temperature control device, 5 from the inlet temperature (Ti)
The temperature is controlled so as to be maintained at 0 ° C to 60 ° C higher.
Therefore, when calculating the pseudo outlet temperature (Tg), the outlet temperature (Tg
o), the detection temperature of the detection sensor (S 1 ) is 50 ℃ to 60 ℃
You may make it employ | adopt the temperature which added. Further, data used for other control may be used.

【0033】その他次のような変更が可能である。この
実施例では、流量比調整弁(3) は被加熱回路(1) 側の流
量とバイパス回路(2) 側の流量との和をも変更して流量
比を調整しているが、これに変えて、総流量が変化する
ことなく流量比率のみを調節する流量比率調整弁とする
ことも可能である。
In addition, the following changes are possible. In this embodiment, the flow rate adjusting valve (3) also adjusts the flow rate by changing the sum of the flow rate on the heated circuit (1) side and the flow rate on the bypass circuit (2) side. Instead, it is possible to use a flow rate adjusting valve that adjusts only the flow rate without changing the total flow rate.

【0034】又、上記実施例では、流量比調整弁(3) を
被加熱回路(1) とバイパス回路(2)との合流点に挿入し
たが、これを分岐点に挿入するように変更してもよい。
In the above embodiment, the flow rate adjusting valve (3) is inserted at the confluence of the heated circuit (1) and the bypass circuit (2), but it is changed so as to be inserted at the branch point. May be.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来例の説明図FIG. 1 is an explanatory diagram of a conventional example.

【図2】本願発明の概略説明図FIG. 2 is a schematic explanatory view of the present invention.

【図3】流量比調整弁(3) の要部断面図[Fig. 3] Cross-sectional view of the main part of the flow ratio adjusting valve (3)

【図4】回動弁(32)の回転角度θと分配比率設定流量
(L) との関係図
[Fig. 4] Rotation angle θ of the rotary valve (32) and distribution ratio set flow rate
Relationship diagram with (L)

【図5】補正値(Th)と出湯停止時からの経過時間との関
係を示すグラフ
FIG. 5 is a graph showing the relationship between the correction value (Th) and the elapsed time from the time when the hot spring is stopped.

【図6】制御装置(C) 及び演算装置(C1)が実行するプロ
グラムのフローチャート図
FIG. 6 is a flowchart of a program executed by the control device (C) and the arithmetic device (C 1 ).

【図7】これの一部の改良例の説明図FIG. 7 is an explanatory diagram of a part of an improved example.

【図8】補正値(Th)の最大値を入口側温度(Ti)によって
変える場合の両者の関係図
FIG. 8 is a diagram showing the relationship between the maximum correction value (Th) and the temperature (Ti) on the inlet side.

【図9】制御装置(C) の他の例のフローチャートFIG. 9 is a flowchart of another example of the control device (C).

【符号の説明】[Explanation of symbols]

(11)・・・熱交換器 (1) ・・・被加熱回路 (2) ・・・バイパス回路 (3) ・・・流量比調整弁 (C1)・・・演算装置 (C2)・・・制御装置 (To)・・・出口側温度 (Th)・・・補正値 (Tg)・・・疑似出口側温度 (Ti)・・・入口側温度(11) ・ ・ ・ Heat exchanger (1) ・ ・ ・ Heated circuit (2) ・ ・ ・ Bypass circuit (3) ・ ・ ・ Flow ratio adjusting valve (C 1 ) ・ ・ ・ Computing device (C 2 ) ・..Control device (T o ) ... Outlet temperature (Th) ... Correction value (Tg) ... Pseudo outlet temperature (Ti) ... Inlet temperature

フロントページの続き (72)発明者 加藤 猛 名古屋市中川区福住町2番26号 リンナイ 株式会社内 (72)発明者 江口 正義 名古屋市中川区福住町2番26号 リンナイ 株式会社内Front page continued (72) Inventor Takeshi Kato 2-26 Fukuzumicho, Nakagawa-ku, Nagoya City Rinnai Co., Ltd. (72) Masayoshi Eguchi 2-26 Fukuzumicho, Nakagawa-ku, Nagoya City Rinnai Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱交換器(11)を具備する被加熱回路(1)
と、前記熱交換器(11)の上流側にて被加熱回路(1) から
分岐させて熱交換器(11)の下流側にて被加熱回路(1) に
合流するバイパス回路(2) と、前記被加熱回路(1) とバ
イパス回路(2) との流量比率を調節する流量比調整弁
(3) とを具備する給湯器において、出湯停止時、熱交換
器(11)の出口側温度(To)から後記する補正値(Th)を差し
引いた温度を出湯停止後の疑似出口側温度(Tg)とする演
算装置(C1)と、出湯停止時の熱交換器(11)の入口側温度
(Ti)と前記疑似出口側温度(Tg)とに基いて混合湯温が設
定温度となるように前記流量比調整弁(3) の動作量を演
算する制御装置(C2)とを設け、前記補正値(Th)は、出湯
停止後経時的に増大するように演算されて時間経過に従
って疑似出口側温度(Tg)が更新されるようにし、前記制
御装置(C2)は出湯再開後の一定時間内のみ前記流量比調
整弁(3) を前記動作量に維持するようにした給湯器。
1. A heated circuit (1) comprising a heat exchanger (11)
And a bypass circuit (2) that branches from the heated circuit (1) on the upstream side of the heat exchanger (11) and joins the heated circuit (1) on the downstream side of the heat exchanger (11). A flow ratio adjusting valve for adjusting the flow ratio between the heated circuit (1) and the bypass circuit (2)
(3) When the hot water supply is stopped, the temperature obtained by subtracting the correction value (Th) described below from the outlet side temperature (To) of the heat exchanger (11) at the simulated outlet side temperature ( Tg) computing unit (C 1 ) and inlet side temperature of heat exchanger (11) when hot water is stopped
(Ti) and the control device (C 2 ) for calculating the operation amount of the flow ratio control valve (3) so that the mixed hot water temperature becomes the set temperature based on the pseudo outlet temperature (Tg), The correction value (Th) is calculated so as to increase with time after the tapping is stopped so that the pseudo outlet side temperature (Tg) is updated over time, and the control device (C 2 ) is A water heater in which the flow ratio adjusting valve (3) is maintained at the operating amount only within a certain period of time.
【請求項2】 出湯停止時点で記憶された検知温度を入
口側温度(Ti)とするようにした請求項1に記載の給湯器
2. The water heater according to claim 1, wherein the detected temperature stored at the time of stopping the hot water discharge is the inlet side temperature (Ti).
JP4337590A 1992-10-15 1992-12-17 Water heater Expired - Fee Related JP2655385B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4337590A JP2655385B2 (en) 1992-10-15 1992-12-17 Water heater
KR1019930026550A KR960006267B1 (en) 1992-12-17 1993-12-06 Hot water supply device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27757692 1992-10-15
JP4-277576 1992-10-15
JP4337590A JP2655385B2 (en) 1992-10-15 1992-12-17 Water heater

Publications (2)

Publication Number Publication Date
JPH06180145A true JPH06180145A (en) 1994-06-28
JP2655385B2 JP2655385B2 (en) 1997-09-17

Family

ID=26552458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337590A Expired - Fee Related JP2655385B2 (en) 1992-10-15 1992-12-17 Water heater

Country Status (1)

Country Link
JP (1) JP2655385B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271048A (en) * 1988-09-06 1990-03-09 Rinnai Corp Controller for hot water supplying apparatus
JPH0377421A (en) * 1989-08-19 1991-04-03 Mitsubishi Electric Corp Hysteresis circuit
JPH0421101A (en) * 1990-05-16 1992-01-24 Fanuc Ltd Saturated processing system for learning controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271048A (en) * 1988-09-06 1990-03-09 Rinnai Corp Controller for hot water supplying apparatus
JPH0377421A (en) * 1989-08-19 1991-04-03 Mitsubishi Electric Corp Hysteresis circuit
JPH0421101A (en) * 1990-05-16 1992-01-24 Fanuc Ltd Saturated processing system for learning controller

Also Published As

Publication number Publication date
JP2655385B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
JP6939190B2 (en) Heating and hot water supply device
JPH06180145A (en) Hot water supply device
JPS60245947A (en) Hot-water supply control device
KR960006267B1 (en) Hot water supply device
JP3164712B2 (en) Circulating water heater
JPH05346228A (en) Controller for combustion equipment
JP3144729B2 (en) Circulating warm water heater
JPH0718589B2 (en) Water amount control device for water heater
JP2820583B2 (en) Water heater temperature control device
JP3282169B2 (en) Combustion device fan motor control system
JP3854700B2 (en) Hot water control device for hot water heater of bypass mixing system
JP3377063B2 (en) Water heater
JP3845099B2 (en) Water heater heating control device
JPH0325026Y2 (en)
JP3240203B2 (en) Water heater and its combustion control method
JP3033415B2 (en) Hot water supply control device
JP3322750B2 (en) Circulating water heater
JPS5944542A (en) Apparatus for controlling supply of hot water
JP3098721B2 (en) Combined combustion device
JPH02123408A (en) Temperature controller for heater
JP3589687B2 (en) Combustion control method at the time of re-watering of water heater
JP3642083B2 (en) Water heater
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JPH02267454A (en) Hot water supplying device
JPH085059A (en) Hot water supply system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees