JPH0271048A - Controller for hot water supplying apparatus - Google Patents

Controller for hot water supplying apparatus

Info

Publication number
JPH0271048A
JPH0271048A JP22268488A JP22268488A JPH0271048A JP H0271048 A JPH0271048 A JP H0271048A JP 22268488 A JP22268488 A JP 22268488A JP 22268488 A JP22268488 A JP 22268488A JP H0271048 A JPH0271048 A JP H0271048A
Authority
JP
Japan
Prior art keywords
amount
water
temperature
hot water
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22268488A
Other languages
Japanese (ja)
Other versions
JPH0715338B2 (en
Inventor
Ikuro Adachi
郁朗 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP63222684A priority Critical patent/JPH0715338B2/en
Publication of JPH0271048A publication Critical patent/JPH0271048A/en
Publication of JPH0715338B2 publication Critical patent/JPH0715338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To correct the time delay of a feedback due to the increase or decrease in water quantity and to uniformly evaluate an integration correcting amount over the whole water quantity by providing variation amount in the correcting amount by integration control means proportionally to water quantity. CONSTITUTION:Difference (deviation amount) between a set temperature Ts set by a controller 44 and hot water temperature To detected by a fed hot water temperature sensor 53 is corrected by an integration control with an integration correcting amount I, and an integration constant is so set to (b)XW that the variation amount of the amount I is proportional to water quantity W. The calculation of the amount I is represented by an equation of In=In-1+ bWn(Ts-To), where FFn is feed-forward amount calculated this time. If the water quantity W is large, the flowing speed of water flowing through a heat exchanger 33 is fast, and the time delay of a feedback is small. Thus, when a deviation amount is generated between the temperatures Ts and To in a state that the quantity W is large, the variation amount of the amount I is increased in response to the large quantity W by setting the integration constant to bXW. That is, the amount I is increased in response to the increase in the quantity W.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、出湯温度と設定温度との偏差量を積分制御手
段を用いて補正する給湯器の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for a water heater that corrects a deviation amount between a hot water outlet temperature and a set temperature using an integral control means.

[従来の技術] 給湯器には、加熱量(燃焼量)を制御装置によって制御
するものがある。制御装置による燃焼量の制御は、水量
、設定温度、入水温度などによって燃焼量を決定するフ
ィードフォワード制御と、結果から燃焼量を補正するフ
ィードバック制御とを組み合わせて行うものが考えられ
る。
[Prior Art] Some water heaters have a heating amount (combustion amount) controlled by a control device. The control of the combustion amount by the control device may be performed by combining feedforward control that determines the combustion amount based on the amount of water, set temperature, inlet water temperature, etc., and feedback control that corrects the combustion amount based on the result.

このフィードバック制御には、設定温度と出湯温度との
偏差量を補正する積分制御が考えられる。
This feedback control may include integral control that corrects the amount of deviation between the set temperature and the tapped water temperature.

[発明が解決しようとする課題] 一方、給湯器は、燃焼によって得られた熱と水との熱交
換を行う熱交換器を備える。そして、制御装置が、燃焼
量を変化させてから、実際に燃焼量が変化したのを検出
する時間は、熱交換器を流れる水の流速に対応している
。つまり、流速の変化に応じて、応答速度が変化する。
[Problems to be Solved by the Invention] On the other hand, a water heater includes a heat exchanger that exchanges heat obtained by combustion with water. The time from when the control device changes the combustion amount to when it detects that the combustion amount has actually changed corresponds to the flow rate of water flowing through the heat exchanger. In other words, the response speed changes according to the change in flow velocity.

このため、水量を考慮せずに積分制御を行った場合、水
量が増加すると、流速が早くなり、積分補正量が水量に
比較して相対的に少なくなる。逆に水量が減少すると、
流速が遅くなり、積分補正量が水量に比較して相対的に
多くなってしまう。
For this reason, when integral control is performed without considering the amount of water, as the amount of water increases, the flow velocity increases and the integral correction amount becomes relatively small compared to the amount of water. Conversely, when the amount of water decreases,
The flow velocity becomes slow and the integral correction amount becomes relatively large compared to the amount of water.

つまり、従来の積分制御は、水量が変化すると、適正な
積分補正量が得られない問題点を備えていた。
In other words, the conventional integral control has the problem that an appropriate integral correction amount cannot be obtained when the amount of water changes.

本発明は、上記事情に濫みてなされたもので、その目的
は、水量に応じた積分補正量とすることのできる給湯器
の制御装置の提供にある。
The present invention was made in view of the above-mentioned circumstances, and an object thereof is to provide a water heater control device that can make an integral correction amount according to the amount of water.

[課題を解決するための手段] 本発明は上記目的を達成するため、第1図に示すように
、加熱手段1と、該加熱手段1の発生する熱と水とを熱
交換する熱交換器2と、前記加熱1段1の制御を行う制
御装置3とを備えた給湯器において、前記制御装置σ3
は、水量を検出する水量検出センサ4を備えるとともに
、出湯温度と設定温度との偏差量を積分制御によっ゛C
補正する積分制御手段5を備え、謹積分制御手段5によ
る積分補正量の変化量を、前記水量検出センサ4によっ
て検出された水量に比例させたことを技術的手段とする
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a heating means 1 and a heat exchanger for exchanging heat generated by the heating means 1 with water, as shown in FIG. 2, and a control device 3 that controls the first heating stage 1, the control device σ3
is equipped with a water quantity detection sensor 4 that detects the water quantity, and also measures the deviation amount between the hot water temperature and the set temperature by integral control.
The technical means includes an integral control means 5 for correction, and the amount of change in the integral correction amount by the integral control means 5 is made proportional to the amount of water detected by the water amount detection sensor 4.

[作用] 本発明は、積分制御手段による積分補正量の変化量を、
水量に比例さぜな。これにより、水量が増加すると積分
補正量が増加し、水量が減少すると積分補正量が減少す
る。
[Function] The present invention adjusts the amount of change in the integral correction amount by the integral control means,
It's proportional to the amount of water. As a result, when the amount of water increases, the integral correction amount increases, and when the amount of water decreases, the integral correction amount decreases.

この結果、水量の増減によるフィードバックの時間遅れ
を修正し、積分補正量を全水量にD゛って均一に評価す
ることができる。
As a result, it is possible to correct the feedback time delay due to increase/decrease in the amount of water, and to uniformly evaluate the integral correction amount over the entire amount of water.

[発明の効果コ 本発明によれば、水量に応じた積分補正)1を得ること
ができるため、水量が変動しても、常に適切な積分補正
量とすることができる。つまり、設定温度と出湯温度と
の1m差量が水量に関係なく補正されるため、出湯温度
を設定温度とすることができる。
[Effects of the Invention] According to the present invention, it is possible to obtain integral correction according to the amount of water. Therefore, even if the amount of water changes, it is possible to always obtain an appropriate amount of integral correction. In other words, since the 1-meter difference between the set temperature and the hot water outlet temperature is corrected regardless of the amount of water, the hot water outlet temperature can be set as the set temperature.

[実施例] 次に、本発明をバイパスミキシング式給湯器に適用した
実施例を図面を用いて説明する。
[Example] Next, an example in which the present invention is applied to a bypass mixing water heater will be described with reference to the drawings.

第2図にバイパスミキシング式のガス給湯器の概略図を
示す。
Figure 2 shows a schematic diagram of a bypass mixing type gas water heater.

このガス給湯器は、大別し°C燃料の燃焼を行う燃焼部
10と、ガス供給配管20と、水配管30と、制御装置
40とから構成されている。
This gas water heater is broadly divided into a combustion section 10 that burns °C fuel, a gas supply pipe 20, a water pipe 30, and a control device 40.

燃焼部10は、本発明の加熱手段で、セラミック製の表
面燃焼式バーナ11を内部に配設した燃焼ケース12と
、この燃焼ケース12内に燃焼用の空気を供給する送風
機13とからなり、送風機13によって燃焼ケース12
内に導かれた燃焼用の空気は、燃焼後、燃焼ガスとして
図示しない排気口より排出される。
The combustion section 10 is a heating means of the present invention, and consists of a combustion case 12 in which a ceramic surface combustion type burner 11 is disposed, and a blower 13 that supplies air for combustion into the combustion case 12. Combustion case 12 by blower 13
After combustion, the combustion air guided inside is discharged as combustion gas from an exhaust port (not shown).

ガス供給配管20は、送風機13の遠心式ファン14の
内周に開口するノズル21へ、燃料のガスを供給するも
ので、上流11111より元電磁弁22、主電磁弁23
、比例弁24が順次設けられている。比例弁24の下流
は2つに分岐され、一方には切替用電磁弁25、他方に
はオリフィス26が設けられている。なお、元電磁弁2
2、主電磁弁23および切替用電磁弁25は、通電制御
によってガス供給配管20を開閉するもので、比例弁2
4は通電量に応じて開口比が変化し、ノズル21に供給
されるガス盪を調節するものである6 水配管30は、一方が水の供給源に接続され、他方が給
湯口に接続されるもので、バーナ11のガスの燃焼によ
って発生する熱と内部を流れる水とを熱交換し、内部を
通過する水を加熱する熱交換器31と、この熱交換器3
1をバイパスするバイパス水路32とを備える。
The gas supply pipe 20 supplies fuel gas to a nozzle 21 that opens on the inner circumference of the centrifugal fan 14 of the blower 13, and connects the original solenoid valve 22 and the main solenoid valve 23 from upstream 11111.
, a proportional valve 24 are sequentially provided. The downstream side of the proportional valve 24 is branched into two parts, one of which is provided with a switching solenoid valve 25 and the other with an orifice 26. In addition, the original solenoid valve 2
2. The main solenoid valve 23 and the switching solenoid valve 25 open and close the gas supply pipe 20 by controlling the energization, and the proportional valve 2
4 has an aperture ratio that changes depending on the amount of electricity, and adjusts the amount of gas supplied to the nozzle 21. 6. The water pipe 30 has one end connected to a water supply source and the other end connected to a hot water supply port. The heat exchanger 31 exchanges heat generated by combustion of gas in the burner 11 with water flowing inside the burner 11 and heats the water passing through the inside, and the heat exchanger 3
1.

熱交換器31とバイパス水路32との分岐路の上流の水
配管30には、熱交換器31とバイパス水路32とに流
入する水圧が変化しても、流入する水量を一定に保つガ
バナ弁の機能と、水量を調節する水量調節弁の機能とが
組み合わされた電動水量制御袋W、33が設けられてい
る。また、バイパス水路32には、バイパス水路32を
通過する水量を調節するとともに、バイパス水路32を
開閉可能な絞り弁34が設けられている。
The water pipe 30 upstream of the branch path between the heat exchanger 31 and the bypass waterway 32 is equipped with a governor valve that keeps the amount of water flowing into the heat exchanger 31 and the bypass waterway 32 constant even if the water pressure flowing into the heat exchanger 31 and the bypass waterway 32 changes. An electric water flow control bag W, 33 is provided which has a combination of the function and the function of a water flow control valve for adjusting the water flow. Further, the bypass waterway 32 is provided with a throttle valve 34 that can adjust the amount of water passing through the bypass waterway 32 and open and close the bypass waterway 32 .

なお、電動水量制御装置33の絞り比は、熱交換器31
およびバイパス水路32へ流入する水の総量を規制する
ため、絞り弁34と同しか、絞り弁34より小さく設け
られている。また、電動水量制御装置33と絞り弁34
は、水蜜を調節する手段として、水路を開開」能な弁体
をギアドモータを用いて駆動している。
Note that the throttle ratio of the electric water flow control device 33 is the same as that of the heat exchanger 31.
And in order to regulate the total amount of water flowing into the bypass waterway 32, it is provided to be the same as or smaller than the throttle valve 34. In addition, an electric water flow control device 33 and a throttle valve 34
As a means to adjust the water content, a geared motor is used to drive a valve element that can open and open a waterway.

制御装置40は、第3図に示すように、マイクロコンピ
ュータ41、リレー回路42および駆動回路43から構
成されるもので、使用者によって操作されるコントロー
ラ44や各種センサの出力に応じて、バーナ11に着火
を行うスパーカ45、元電磁弁22、主電磁弁23、比
例弁24、切替用電磁弁25、電動水量制御装置33、
絞り弁34を通電制御するものである。
As shown in FIG. 3, the control device 40 is composed of a microcomputer 41, a relay circuit 42, and a drive circuit 43, and controls the burner 11 according to the outputs of a controller 44 and various sensors operated by the user. a sparker 45 for igniting, a main solenoid valve 22, a main solenoid valve 23, a proportional valve 24, a switching solenoid valve 25, an electric water flow control device 33,
The throttle valve 34 is energized and controlled.

制御装置40の各種センサは、バーナ11の炎の検出お
よび空燃比を検出するためのフレームロッド46および
サーモカップル47、電動水1制御装置33および絞り
弁34の弁体に連動し、開度を検出するポテンショメー
タ48.49、送風機13の風量を回転速度によって検
出する風量検出センサ50、熱交換器31およびバイパ
ス水路32に流入する水温を検出する入水温センサ51
、熱交換器31を通過した湯温を検出する湯温センサ5
2、熱交換器31およびバイパス水路32を通過し、混
合された湯温を検出する出湯温センサ53、熱交換器3
1およびバイパス水路32に流入する水量を検出する水
量検出センサ54を備える。
Various sensors of the control device 40 are linked to a flame rod 46 and a thermocouple 47 for detecting the flame of the burner 11 and the air-fuel ratio, the electric water 1 control device 33, and the valve body of the throttle valve 34 to control the opening degree. potentiometers 48 and 49 for detection, an air volume detection sensor 50 for detecting the air volume of the blower 13 based on its rotational speed, and an inlet water temperature sensor 51 for detecting the temperature of water flowing into the heat exchanger 31 and the bypass waterway 32.
, a hot water temperature sensor 5 that detects the temperature of hot water that has passed through the heat exchanger 31
2. A hot water temperature sensor 53 that passes through the heat exchanger 31 and the bypass waterway 32 and detects the temperature of the mixed hot water, and the heat exchanger 3
1 and a water amount detection sensor 54 that detects the amount of water flowing into the bypass waterway 32.

なお、風量検出センサ50は、送風機13のモータに連
動する回転体を備え、この回転体の回転に応じたパルス
信号を発生する。また、水量検出センサ54は、水の流
れによって回転する回転体を備え、この回転体の回転に
応じたパルス信号を発生する。
Note that the air volume detection sensor 50 includes a rotating body that is interlocked with the motor of the blower 13, and generates a pulse signal according to the rotation of the rotating body. Further, the water amount detection sensor 54 includes a rotating body that rotates with the flow of water, and generates a pulse signal according to the rotation of the rotating body.

そして、コンピュータ41は、風量検出センサ50およ
び水量検出センサ54の発生するパルス信号の間隔より
、送風機13の回転速度や、回転体の回転速度を検出し
、風量や水量を検出する。
Then, the computer 41 detects the rotational speed of the blower 13 and the rotational speed of the rotating body from the interval of pulse signals generated by the airflow detection sensor 50 and the water amount detection sensor 54, and detects the airflow and water volume.

次に、コンピュータ41による燃焼制御、および水量制
御について簡単に説明する。
Next, combustion control and water amount control by the computer 41 will be briefly explained.

使用者が給湯口に接続されたカランを操作し、水配管3
0に水流が生じると、水量検出センサ54内の回転体が
回転し、燃焼が開始される。燃焼開始後の燃焼量は、コ
ントローラ44によっ”C設定された設定温度が得られ
るように、各種センサによって得られた水量、入水温度
、熱交換器31を通過した湯温、ミキシング湯温く出湯
温度)等より決定され、送風機13は決定された燃焼量
に応じた風量をバー→・11に供給するように電圧が制
御される。
The user operates the switch connected to the hot water supply inlet, and the water pipe 3
When a water flow is generated at zero, the rotating body within the water amount detection sensor 54 rotates, and combustion is started. The amount of combustion after the start of combustion is calculated based on the amount of water obtained by various sensors, the temperature of water entering, the temperature of the hot water that has passed through the heat exchanger 31, the temperature of the mixing water, and the temperature of the mixing water and the hot water exiting so that the set temperature set by the controller 44 is obtained. temperature), etc., and the voltage of the blower 13 is controlled so as to supply the air volume to the bar 11 in accordance with the determined combustion amount.

つまり、燃焼1イコ一ル送風機13の送風量とされる。In other words, it is the amount of air blown by the combustion 1 equal blower 13.

そして、送風機13の回転速度やバーナ11の炎の温度
に応じたガス呈が得られるように、比例弁24および切
替用電磁弁25が通′な制御される。なお、燃焼量は、
熱交換器31を通過した湯温が、燃焼によって発生した
水(ドレン水)が熱交換器31に付着しない温度(例え
ば60℃)以上に維持されるように設定される。
Then, the proportional valve 24 and the switching solenoid valve 25 are normally controlled so that a gas profile corresponding to the rotational speed of the blower 13 and the temperature of the flame of the burner 11 is obtained. In addition, the amount of combustion is
The temperature of the hot water passing through the heat exchanger 31 is set to be maintained above a temperature (for example, 60° C.) at which water generated by combustion (drain water) does not adhere to the heat exchanger 31.

絞り弁34は、入水温度、設定温度、熱交換器31を通
過した湯温、出湯温度より算出された適切な開度で固定
される。なおこの固定は、バイパス水路32を流れる水
量が、熱交換器31を流れる水量の倍となるように設定
されている。つまり、バイパス水路32と熱交換器31
との流〕m抵抗の比は、絞り弁34により約2:1とさ
れる。また、絞り弁34の開度の固定は、入水量が少な
い場合や、出湯温度を低下させる場合に解除され、入水
量、出湯温度に応じて算出された開度となるように絞り
弁34が通電制御される。
The throttle valve 34 is fixed at an appropriate opening calculated from the incoming water temperature, the set temperature, the temperature of the hot water that has passed through the heat exchanger 31, and the outlet temperature. Note that this fixation is set so that the amount of water flowing through the bypass waterway 32 is twice the amount of water flowing through the heat exchanger 31. In other words, the bypass waterway 32 and the heat exchanger 31
The ratio of the flow and the resistance is approximately 2:1 by the throttle valve 34. Further, the opening degree of the throttle valve 34 is fixed when the amount of water entering is small or when the temperature of hot water coming out is lowered, and the opening degree of the throttle valve 34 is fixed so that the opening degree is calculated according to the amount of water entering and the temperature of hot water coming out. Energization is controlled.

また、電動水量制御装置33は、出湯温度が得られるの
に必要な最大流量を越えないように通電制御される。
Further, the electric water flow rate control device 33 is controlled to be energized so as not to exceed the maximum flow rate required to obtain the hot water temperature.

次に、制御装置40による燃焼量の算出について詳述す
る。なお、本発明の積分間圧手段は、マイクロコンピュ
ータ41内にプログラムされている。
Next, calculation of the combustion amount by the control device 40 will be described in detail. Note that the integral pressure means of the present invention is programmed in the microcomputer 41.

制御装W140によって求められる本実施例の燃焼Ji
Qは、フィードフォワードJIFFと、熱交容量補正量
にと、空燃比補正t]゛と、比例袖正量Pと、積分補正
111とを加算したもので、 Q=Fr+に+”I’+P+Iの式で表される。
Combustion Ji of this example determined by control device W140
Q is the sum of the feedforward JIFF, the heat exchange capacity correction amount, the air-fuel ratio correction t]゛, the proportional side correction amount P, and the integral correction 111, and Q=Fr++"I'+P+I It is expressed by the formula.

このように、燃焼量QをFr+K +−T I−P+I
とすることにより、使用者の設定した出湯温度を、常に
安定して供給することができる。
In this way, the combustion amount Q is determined as Fr+K +-T I-P+I
By doing so, the hot water temperature set by the user can be stably supplied at all times.

フィードフォワードiFFは、コントローラ44で設定
された設定温度1Sと入水温度センサ51によって検出
された入水温度Tiとの差と、水量検出センサ54によ
って検出され、セ水″MWと、熱交換器31の熱交換効
率1/eHとによって算出される。
The feedforward iFF detects the difference between the set temperature 1S set by the controller 44 and the inlet water temperature Ti detected by the inlet water temperature sensor 51, the water flow rate detected by the water amount detection sensor 54, and the water "MW" of the heat exchanger 31. It is calculated by heat exchange efficiency 1/eH.

これは、FF= (Ts−Ti ) w、’err (
1)式で表される。
This is FF= (Ts-Ti) w,'err (
1) It is expressed by the formula.

熱交容量補正ff1Kは、コントローラ44で設定され
た設定温度Tsと出湯温センサ53によって検出された
出湯温度]0との差(偏差量)と、使用される熱交換器
31に応じて予め設定された熱容量Mと、熱交換器31
とバイパス水1432とのバイパス比に応じた定数aと
から算出される。
The heat exchange capacity correction ff1K is preset according to the difference (deviation amount) between the set temperature Ts set by the controller 44 and the outlet hot water temperature detected by the outlet hot water temperature sensor 53 (deviation amount) and the heat exchanger 31 used. The heat capacity M and the heat exchanger 31
and a constant a corresponding to the bypass ratio of the bypass water 1432.

これは、K=a <Ts−To) Mの式で表される。This is expressed by the formula K=a<Ts-To)M.

空燃比補正ji、]”は、空燃比補正により増減される
ガス量を補正するもので、空燃比補正による補正量Nの
符号を反転させたらのである。
The air-fuel ratio correction ji,]'' is for correcting the amount of gas increased or decreased by the air-fuel ratio correction, and is obtained by inverting the sign of the correction amount N due to the air-fuel ratio correction.

これは、T = −Nの式で表される。This is expressed by the formula T=-N.

比例補正量Pの算出は、コン)〜ローラ44で設定され
た設定温度ISと出湯温センサ53によって検出した出
湯温度Toとの差(偏χ址)と、水量検出センサ54に
よって検出された水量Wと、比例定数Eとから算出され
る。
The proportional correction amount P is calculated based on the difference (deviation) between the set temperature IS set by the roller 44 and the outlet temperature To detected by the outlet temperature sensor 53, and the amount of water detected by the water amount detection sensor 54. It is calculated from W and the proportionality constant E.

これは、P=E (Ts−To) Wの式で表される。This is expressed by the formula P=E (Ts-To)W.

なお本実施例ではE=0.8荊後が適止である。Note that in this embodiment, E=0.8 after is appropriate.

積分補正1は、コントローラ44で設定された設定温度
Tsと出湯温センサ53によって検出した出湯温度]0
との差(偏差量)をH1分制御によっ゛C補正するもの
で、積分補正量■の変化量が水量Wに比例するように、
積分定数をbxwとする。そして、この積分補正量■の
算出は、 I、 =I、、 十bW、、(Ts−To)の式で表さ
れる。なお、■、は今回の算出する積分補正量で、In
−1前回の算出した積分補正量を示す。
Integral correction 1 is based on the set temperature Ts set by the controller 44 and the hot water temperature detected by the hot water temperature sensor 53]0
The difference (deviation amount) between the
Let bxw be the integral constant. Calculation of this integral correction amount (■) is expressed by the following equation: I, =I, 10bW, (Ts-To). In addition, ■ is the integral correction amount calculated this time, and In
-1 Indicates the previously calculated integral correction amount.

次に、積分補正量Iの変化量を水量Wに比例させた具体
的な例を示す。
Next, a specific example in which the amount of change in the integral correction amount I is made proportional to the amount of water W will be shown.

水31wが多い場合は、熱交換器31を流れる水の流速
が早く、フィードバックの時間遅れが小さい。
When there is a large amount of water 31w, the flow rate of the water flowing through the heat exchanger 31 is fast, and the feedback time delay is small.

このなめ、水量Wが多い状態で、設定温度Tsと出湯温
度■0とに偏差1が発生すると、積分定数をbxwとす
ることで、積分油止量工の変化量が多い水Fiwに応じ
て増加する。つまり、水量Wの増加に応じて積分補正量
Iが増加する。
In this case, when a deviation of 1 occurs between the set temperature Ts and the outlet temperature ■0 in a state where the water volume W is large, by setting the integral constant to bxw, it is possible to To increase. That is, the integral correction amount I increases as the water amount W increases.

また、水MWが少ない場合は、熱交換器31を流れる水
の流速が遅く、フィードバックの時間遅れが大きい。こ
のため、水1Wが少ない状態で、設定温度TSと出湯温
度Toとに偏差量が発生すると、積分定数をbxwとす
ることで、積分補正ilIの変化量が少ない水量Wに応
じて減少1−る。つまり、水kFWの減少に応じて積分
補正411が減少する。
Further, when the water MW is small, the flow rate of water flowing through the heat exchanger 31 is slow, and the feedback time delay is large. Therefore, if a deviation occurs between the set temperature TS and the outlet temperature To when water 1W is small, by setting the integral constant to bxw, the change in the integral correction ilI will decrease by 1- according to the small water amount W. Ru. In other words, the integral correction 411 decreases as the water kFW decreases.

本実施例によれば、積分定数をbxwとすることで、フ
ィードバックの時間遅れを修正し、全水量に亘って積分
間圧1i11をほぼ均一に評価することができる。また
、水星Wに応じた積分補正量1とすることで、設定温度
TSと出湯温度丁0との偏差量が水IWに関係なく補正
され、出湯温度10を設定温度Tsに修正することがで
きる。
According to this embodiment, by setting the integral constant to bxw, the feedback time delay can be corrected, and the integral pressure 1i11 can be evaluated almost uniformly over the entire water amount. In addition, by setting the integral correction amount to 1 according to Mercury W, the deviation amount between the set temperature TS and the hot water outlet temperature 0 is corrected regardless of the water IW, and the hot water outlet temperature 10 can be corrected to the set temperature Ts. .

(変形例) PID制御の積分制御に本発明を適用しても良い バイパス水路を備えた給湯器を例に示したが、バイパス
水路を有しない給湯器に本発明を適用しても良い6 また、燃料にガスを用いた例を示したが、灯油など、他
の燃料を用いても良い。
(Modification) Although the present invention has been shown as an example of a water heater with a bypass waterway to which the present invention may be applied to integral control of PID control, the present invention may also be applied to a water heater without a bypass waterway6. Although an example using gas as the fuel has been shown, other fuels such as kerosene may also be used.

さらに、加熱手段として燃料の燃焼によつC熱を得る燃
焼部を用いたが、電気ヒータなど他の発熱手段を用いて
も良い。
Further, although a combustion section that obtains C heat by burning fuel is used as a heating means, other heat generating means such as an electric heater may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図はバイ
パスミキシング式のガス給湯器の概略構成図、第3図は
制御装置の概略ブロック図である。 図中 1・・・加熱手段  2・・・熱交換器3・・・
制御装置  4・・・水量検出センサ5・・・積分制御
手段
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a schematic configuration diagram of a bypass mixing type gas water heater, and FIG. 3 is a schematic block diagram of a control device. In the diagram: 1...Heating means 2...Heat exchanger 3...
Control device 4... Water amount detection sensor 5... Integral control means

Claims (1)

【特許請求の範囲】 1)加熱手段と、該加熱手段の発生する熱と水とを熱交
換する熱交換器と、前記加熱手段の制御を行う制御装置
とを備えた給湯器において、 前記制御装置は、 水量を検出する水量検出センサを備えるとともに、出湯
温度と設定温度との偏差量を積分制御によって補正する
積分制御手段を備え、 該積分制御手段による積分補正量の変化量を、前記水量
検出センサによって検出された水量に比例させたことを
特徴とする給湯器の制御装置。
[Scope of Claims] 1) A water heater comprising a heating means, a heat exchanger that exchanges heat generated by the heating means with water, and a control device that controls the heating means, comprising: The apparatus includes a water amount detection sensor that detects the water amount, and an integral control means that corrects the deviation amount between the hot water tap temperature and the set temperature by integral control, and calculates the amount of change in the integral correction amount by the integral control means as the water amount. A control device for a water heater, characterized in that the water heater is proportional to the amount of water detected by a detection sensor.
JP63222684A 1988-09-06 1988-09-06 Water heater controller Expired - Lifetime JPH0715338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222684A JPH0715338B2 (en) 1988-09-06 1988-09-06 Water heater controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222684A JPH0715338B2 (en) 1988-09-06 1988-09-06 Water heater controller

Publications (2)

Publication Number Publication Date
JPH0271048A true JPH0271048A (en) 1990-03-09
JPH0715338B2 JPH0715338B2 (en) 1995-02-22

Family

ID=16786297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222684A Expired - Lifetime JPH0715338B2 (en) 1988-09-06 1988-09-06 Water heater controller

Country Status (1)

Country Link
JP (1) JPH0715338B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180145A (en) * 1992-10-15 1994-06-28 Rinnai Corp Hot water supply device
JP2013029277A (en) * 2011-07-29 2013-02-07 Rinnai Corp Heat source device
JP2013036652A (en) * 2011-08-05 2013-02-21 Rinnai Corp Water heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071849A (en) * 1983-09-28 1985-04-23 Omron Tateisi Electronics Co Burning control device of water heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071849A (en) * 1983-09-28 1985-04-23 Omron Tateisi Electronics Co Burning control device of water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180145A (en) * 1992-10-15 1994-06-28 Rinnai Corp Hot water supply device
JP2013029277A (en) * 2011-07-29 2013-02-07 Rinnai Corp Heat source device
JP2013036652A (en) * 2011-08-05 2013-02-21 Rinnai Corp Water heater

Also Published As

Publication number Publication date
JPH0715338B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JPS62280516A (en) Combution device
JPH0271048A (en) Controller for hot water supplying apparatus
KR940004184B1 (en) Combustion control device of how water feeder
JPH0271050A (en) Controller for hot water supplying apparatus
JPH0633903B2 (en) Bypass mixing type water heater
JPH01302063A (en) Water quantity controller for hot water supplying apparatus
KR930004524B1 (en) Controller for combustion device
JPH0271044A (en) Controller for hot water supplying apparatus
JPH0718588B2 (en) Water heater controller
KR930004527B1 (en) Combustion device
JPH0367918A (en) Controller of burner
JP2615152B2 (en) Bypass mixing water heater
JPH0271049A (en) Controller for hot water supplying apparatus
JPH0378528B2 (en)
JPH0268419A (en) Burner control device
JPH0237249A (en) Water rate control device in hot-water heater
JPS60101447A (en) Hot water temperature controlling device of dual water circuit-in-two heater type hot water supplying space heater
KR910002739B1 (en) Combustion device
JPH0571846B2 (en)
JPH0297820A (en) Control device for forced draft type combustion device
JPH0749117A (en) Combustion control device
JPH0250046A (en) Bypass mixing type hot water feeder
JPH0250048A (en) Bypass mixing type hot water feeder
JPH0198818A (en) Control device for gas hot water feeder
JPS63108114A (en) Combustion device