JPH06177064A - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPH06177064A
JPH06177064A JP32678792A JP32678792A JPH06177064A JP H06177064 A JPH06177064 A JP H06177064A JP 32678792 A JP32678792 A JP 32678792A JP 32678792 A JP32678792 A JP 32678792A JP H06177064 A JPH06177064 A JP H06177064A
Authority
JP
Japan
Prior art keywords
epitaxial growth
solution
liquid phase
growth
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32678792A
Other languages
Japanese (ja)
Inventor
Koichi Hasegawa
孝一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP32678792A priority Critical patent/JPH06177064A/en
Publication of JPH06177064A publication Critical patent/JPH06177064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain an epitaxial growth layer of III-V compound semiconductor containing Al with improved crystallizability. CONSTITUTION:When performing liquid phase epitaxial growth of III-V compound semiconductor, aluminum single substance or gallium or indium solution containing aluminum is placed into a reaction reactor, thus enabling aluminum to capture a small amount of oxygen or water content in atmosphere and hence obtaining an epitaxial growth layer with improved crystallizability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオードや受光素
子等に用いられるGaAs、GaP、InP等の化合物
半導体の液相エピタキシャル成長方法に係り、特に特性
の良好なエピタキシャルウェーハを得ることのできる液
相エピタキシャル成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid phase epitaxial growth method for compound semiconductors such as GaAs, GaP and InP used in light emitting diodes, light receiving elements and the like, and a liquid phase capable of obtaining an epitaxial wafer with particularly excellent characteristics. The present invention relates to an epitaxial growth method.

【0002】[0002]

【従来の技術】発光素子、受光素子、太陽電池等にはG
aP、GaAs、InP等の III−V族化合物半導体が
広く用いられている。たとえばGaPは緑色ないし赤色
の可視発光素子用として用いられている。通常はAlを
含まないものが一般的であるが、発光効率を高める目的
でAlを含むGaAlP系も開発されている。GaAs
は赤外の発光素子や受光素子、太陽電池等に広く用いら
れている。またAlを含んだGaAlAsは発光効率の
良い可視ないし赤外の発光素子、受光素子、レーザ素
子、太陽電池等への利用がはかられている。また、In
P系のInP、InGaP、InGaAsP等が受光素
子やレーザ素子として利用されつつある。InP系の場
合、Alを添加したAlInP系半導体が発光波長の調
整や発光効率の向上が可能なことから注目され、主とし
て気相成長法により作られている。
2. Description of the Related Art G is used for light emitting devices, light receiving devices, solar cells,
III-V group compound semiconductors such as aP, GaAs, and InP are widely used. For example, GaP is used for green to red visible light emitting devices. Usually, a material containing no Al is generally used, but a GaAlP-based material containing Al has also been developed for the purpose of improving light emission efficiency. GaAs
Is widely used for infrared light emitting elements, light receiving elements, solar cells, and the like. Further, GaAlAs containing Al is used for a visible or infrared light emitting element, a light receiving element, a laser element, a solar cell, etc., which has good luminous efficiency. Also, In
P-based InP, InGaP, InGaAsP and the like are being used as a light receiving element and a laser element. In the case of the InP type, an AlInP type semiconductor to which Al is added attracts attention because the emission wavelength can be adjusted and the emission efficiency can be improved, and is mainly produced by a vapor phase growth method.

【0003】GaP、GaAs、InP等の III−V族
化合物半導体エピタキシャルウェーハは通常液相エピタ
キシャル成長法により作製される。図4は液相エピタキ
シャル成長法で一般的に用いられるスライドボートの概
略図である。図において基板ホルダー1と成長用溶液溜
2は相対的に摺動可能となっている。基板ホルダー1の
基板保持部3にGaP、GaAs、InP等の単結晶基
板31を入れ成長用溶液溜2の溶液保持部4に成長用溶
液41を入れる。これをエピタキシャル成長炉(図示せ
ず)内にセットし、所定の温度まで昇温して成長用溶液
原料を溶解させた後、基板ホルダー1と溶液溜2をスラ
イドさせて成長用溶液41と単結晶基板31を接触させ
る。次に炉内の温度を下げて基板上にエピタキシャル層
を必要量成長させた後、再び基板ホルダー1と溶液溜2
をスライドさせて成長用溶液41と基板を分離する。複
数のエピタキシャル層を成長させる場合には成長用溶液
溜4’に成長用溶液41’を入れておき、基板との接
触、降温、分離をくり返してエピタキシャル層を積層さ
せる。
III-V group compound semiconductor epitaxial wafers of GaP, GaAs, InP, etc. are usually manufactured by the liquid phase epitaxial growth method. FIG. 4 is a schematic view of a slide boat generally used in the liquid phase epitaxial growth method. In the figure, the substrate holder 1 and the growth solution reservoir 2 are relatively slidable. A single crystal substrate 31 of GaP, GaAs, InP or the like is placed in the substrate holder 3 of the substrate holder 1 and a growth solution 41 is placed in the solution holder 4 of the growth solution reservoir 2. This is set in an epitaxial growth furnace (not shown), heated to a predetermined temperature to dissolve the growth solution raw material, and then the substrate holder 1 and the solution reservoir 2 are slid to grow the growth solution 41 and the single crystal. The substrate 31 is brought into contact. Next, the temperature in the furnace is lowered to grow a required amount of epitaxial layer on the substrate, and then the substrate holder 1 and the solution reservoir 2 are again used.
Is slid to separate the growth solution 41 from the substrate. When growing a plurality of epitaxial layers, the growth solution 41 'is put in the growth solution reservoir 4', and contact with the substrate, temperature lowering, and separation are repeated to stack the epitaxial layers.

【0004】[0004]

【発明が解決しようとする課題】エピタキシャル成長を
行なう場合、炉内に酸素、水分等が存在すると単結晶基
板や成長用溶液の酸化等により成長するエピタキシャル
層の結晶性が悪化し、電気特性に悪影響を与える。従っ
て通常は成長炉内にはAl−In−Ga3元溶液中をバ
ブリングさせることにより、酸素や水分を除去した高純
度に精製した還元性ガスあるいは不活性ガスを流す(A
ppl. Phys. Letter Vol.41
No.1(1982.7.1)P.P.89〜90参
照)が、微量の酸素や水分を完全に除くことは困難であ
る。本発明はこの微量の酸素、水分の影響を低減させる
ことを目的とするものである。
When epitaxial growth is carried out, the presence of oxygen, moisture, etc. in the furnace deteriorates the crystallinity of the growing epitaxial layer due to the oxidation of the single crystal substrate or the growth solution, and adversely affects the electrical characteristics. give. Therefore, normally, a reducing gas or an inert gas purified to a high purity from which oxygen and water are removed is caused to flow by bubbling the Al-In-Ga ternary solution in the growth furnace (A
ppl. Phys. Letter Vol. 41
No. 1 (1982.7.1) P.I. P. 89-90), but it is difficult to completely remove a trace amount of oxygen and water. The present invention aims to reduce the influence of this minute amount of oxygen and water.

【0005】[0005]

【課題を解決するための手段】上述の微量の酸素や水分
の影響を低減させる為研究を進めた結果、エピタキシャ
ル成長炉内にAlあるいはAlを含むGaまたはInの
溶液を載置することにより酸素や水分の影響を大幅に低
減できることを見出した。一例を示せば図1のようにス
ライドボートから独立した容器5に固体状のAlあるい
はAlのGa溶液またはIn容器51を入れ、スライド
ボートと共にエピタキシャル成長炉内にセットする。こ
の状態で炉内を昇温し、エピタキシャル成長を行なう。
容器5の材質はエピタキシャル成長を行なう時の温度に
耐えられるものであれば良いが、価格や加工の点から黒
鉛、石英、SiC等が適当である。
[Means for Solving the Problems] As a result of research to reduce the influence of the above-mentioned minute amounts of oxygen and moisture, as a result of placing Al or a Ga or In solution containing Al in an epitaxial growth furnace, oxygen and It was found that the influence of moisture can be significantly reduced. As an example, as shown in FIG. 1, a solid Al or a Ga solution of Al or an In container 51 is placed in a container 5 independent of a slide boat and set in an epitaxial growth furnace together with the slide boat. In this state, the temperature inside the furnace is raised to perform epitaxial growth.
The container 5 may be made of any material as long as it can withstand the temperature at which epitaxial growth is performed, but graphite, quartz, SiC, etc. are suitable from the viewpoint of price and processing.

【0006】固体状のAlを使用する場合は純度が高
く、小粒で表面積の大きいものを薄く広げて使用する。
小粒のAlは表面に薄い酸化物が付着しているので、G
aまたはIn溶液中に溶解させたものを使用すると良
い。GaまたはInを用いる理由はなるべく成長させる
結晶と同種類で融点が低く(m.p. Ga:29.8
℃、In:155℃)、Al溶解度を有しており、しか
もAlよりも酸素との親和力が小さいからである。
When solid Al is used, it has a high degree of purity, and it is used as a small grain having a large surface area and spread thinly.
Since a small oxide adheres to the surface of small Al particles, G
It is preferable to use the one dissolved in a or In solution. The reason for using Ga or In is the same as that of the crystal to be grown as much as possible, and the melting point is low (mp Ga: 29.8).
C., In: 155.degree. C.), Al solubility, and has a smaller affinity for oxygen than Al.

【0007】Alの適正濃度はボートの形状やAl溶液
を収容する容器の形状にもよるが、基板や成長用溶液の
ごく近傍にある場合は0.001wt%程度、遠方に配置
する場合は0.1wt%程度で効果がある。Alを含む溶
液を配置する場合も、なるべく浅い容器として表面積を
大きくした方が効果的である。
The proper concentration of Al depends on the shape of the boat and the shape of the container for containing the Al solution, but it is about 0.001 wt% when it is in the immediate vicinity of the substrate or the growth solution, and 0 when it is arranged far away. Effective at about 1 wt%. Also when arranging a solution containing Al, it is effective to make the surface area large as a shallow container as much as possible.

【0008】図2はAlあるいはAl溶液の容器5、
5’を成長用溶液溜2に形成した一例である。溶液溜2
に形成された容器5、5’にAlあるいはAlのGa溶
液またはIn溶液51を収容する。なお、図2では容器
5、5’は貫通していないが、エピタキシャル成長に支
障のない部分、例えば5’などは、溶液保持部4、4’
のように底を抜いて貫通させてもよい。図3は基板ホル
ダー1に容器5を形成した一例である。
FIG. 2 shows a container 5 of Al or Al solution,
5'is an example in which 5'is formed in the growth solution reservoir 2. Solution reservoir 2
Al or a Ga solution or an In solution 51 of Al is contained in the containers 5 and 5 ′ formed in 1. In FIG. 2, the containers 5 and 5 ′ are not penetrated, but the portions that do not hinder the epitaxial growth, such as 5 ′, are the solution holding portions 4 and 4 ′.
The bottom may be pulled out and penetrated. FIG. 3 shows an example in which the container 5 is formed on the substrate holder 1.

【0009】上述の例はAlあるいはAl溶液51を収
容する容器5を、スライドボートと独立に設置した場合
(図1)、溶液溜2に形成した場合(図2)及び基板ホ
ルダーに形成した場合(図3)を個別に示したが、これ
らを組み合わせてもよい。また、容器を形成する場所
は、図に示された部分に限定されるものではなく、エピ
タキシャル成長に支障のない部分であれば、どこに形成
してもかまわない。さらに、スライドボート法以外のデ
ィップ法等の他の液相エピタキシャル成長法においても
同様の効果がある。
In the above example, the container 5 containing Al or Al solution 51 is installed independently of the slide boat (FIG. 1), in the solution reservoir 2 (FIG. 2) and in the substrate holder. (FIG. 3) is shown individually, but these may be combined. Further, the place where the container is formed is not limited to the part shown in the figure, and may be formed anywhere as long as it does not hinder the epitaxial growth. Further, the same effect can be obtained in other liquid phase epitaxial growth methods such as the dip method other than the slide boat method.

【0010】[0010]

【作用】Alが酸素との親和力が大きいことを利用し
て、エピタキシャル成長炉内にAlあるいはAlを含む
GaまたはIn溶液を載置することにより炉内の微量の
酸素及び水分がAlと反応して、その濃度が低減するこ
とによる。
By utilizing the fact that Al has a high affinity with oxygen, a trace amount of oxygen and water in the furnace reacts with Al by placing Al or a Ga or In solution containing Al in the epitaxial growth furnace. , Because its concentration is reduced.

【0011】[0011]

【実施例】【Example】

実施例1 図1の装置を使用して基板保持部3にGaAsN型単結
晶基板をセットし、成長溶液保持部4に成長用原料とし
てGa30g、GaAs多結晶5g、Si100mgを
入れた。容器5にはGa30gとAl2gをセットし
た。これらをエピタキシャル成長炉内にセットし、炉内
に高純度に精製したH2 ガスを流しながら900℃まで
昇温した。900℃で1時間保持した後、単結晶基板と
成長用溶液を接触させて700℃まで0.5℃/分で降
温して自然反転法により基板上にN型GaAsエピタキ
シャル層とP型GaAsエピタキシャル層を連続して成
長させた後、基板と成長用溶液を分離し、室温まで放冷
した。
Example 1 Using the apparatus shown in FIG. 1, a GaAsN type single crystal substrate was set in the substrate holder 3, and Ga30 g, GaAs polycrystal 5 g, and Si100 mg were put in the growth solution holder 4 as growth raw materials. Ga30g and Al2g were set in the container 5. These were set in an epitaxial growth furnace, and the temperature was raised to 900 ° C. while flowing H 2 gas purified to a high purity into the furnace. After holding at 900 ℃ for 1 hour, contact the single crystal substrate with the growth solution and lower the temperature to 700 ℃ at 0.5 ℃ / min, then by natural inversion method, the N-type GaAs epitaxial layer and P-type GaAs epitaxial layer on the substrate. After successively growing the layers, the substrate and growth solution were separated and allowed to cool to room temperature.

【0012】実施例2 図2の容器5、5’にそれぞれGa30gとAl2gを
セットし、他は実施例1と同一条件でエピタキシャル成
長を行なった。
Example 2 30 g of Ga and 2 g of Al were set in the containers 5 and 5 ′ of FIG. 2, respectively, and the epitaxial growth was performed under the same conditions as in Example 1.

【0013】実施例3 図2の容器5、5’にそれぞれ1mmφのAlワーヤー
を5gづつ入れ、他は実施例1と同一条件でエピタキシ
ャル成長を行なった。
Example 3 5 g of 1 mmφ Al wire was placed in each of the containers 5 and 5 ′ shown in FIG. 2, and the epitaxial growth was performed under the same conditions as in Example 1 except for the above.

【0014】比較例 図2のスライドボートを用い、炉内にAlあるいはAl
溶液を載置せず、他は実施例1と同一条件でエピタキシ
ャル成長を行なった。
Comparative Example Using the slide boat of FIG. 2, Al or Al was placed in the furnace.
Epitaxial growth was performed under the same conditions as in Example 1 except that the solution was not placed.

【0015】実施例1〜3および比較例で得られたエピ
タキシャルウェーハについて各々電極を形成し、0.3
mm角に分離してGaAs赤外発光ダイオード素子を作
製した。それぞれの順方向電圧VF 20mAの不良率を
表1に示す。
Electrodes were formed on each of the epitaxial wafers obtained in Examples 1 to 3 and Comparative Example to obtain 0.3
A GaAs infrared light emitting diode element was manufactured by separating it into mm squares. Table 1 shows the defective rate of each forward voltage V F of 20 mA.

【0016】[0016]

【表1】 [Table 1]

【0017】表から明らかなように、炉内へのAlある
いはAlを含む溶液を載置することによりエピタキシャ
ルウェーハの特性が向上し、不良率が低減する。なお、
実施例ではGaAs赤外発光ダイオードの例を示した
が、GaP、InP等の他の半導体の液相エピタキシャ
ル成長にも適用できる。
As is apparent from the table, the characteristics of the epitaxial wafer are improved and the defect rate is reduced by placing Al or a solution containing Al in the furnace. In addition,
Although an example of a GaAs infrared light emitting diode is shown in the embodiment, it can be applied to liquid phase epitaxial growth of other semiconductors such as GaP and InP.

【0018】[0018]

【発明の効果】本発明によれば、液相エピタキシャル工
程で使用するキャリアーガス中の微量の酸素や水分の影
響を排除でき、結晶性の良いエピタキシャル成長層を安
定して得ることができる。その結果順方向電圧特性が向
上し、不良率の発生が少なくなり、製造歩留りが向上す
る。
According to the present invention, the influence of a small amount of oxygen and water in the carrier gas used in the liquid phase epitaxial process can be eliminated, and an epitaxial growth layer with good crystallinity can be stably obtained. As a result, the forward voltage characteristic is improved, the occurrence of defective rate is reduced, and the manufacturing yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する装置の一例を示す図で、Al
を収容する容器をスライドボートと独立して配置した例
を示す図である。
FIG. 1 is a diagram showing an example of an apparatus used in the present invention, in which Al
It is a figure which shows the example which has arrange | positioned the container which accommodates independently of the slide boat.

【図2】Al収容容器をスライドボート中に配置した例
を示す図である。
FIG. 2 is a diagram showing an example in which an Al container is arranged in a slide boat.

【図3】Al収容容器を基板ホルダー中に配置した例を
示す図である。
FIG. 3 is a diagram showing an example in which an Al container is arranged in a substrate holder.

【図4】従来の成長装置を示す図である。FIG. 4 is a diagram showing a conventional growth apparatus.

【符号の説明】[Explanation of symbols]

1 基板ホルダー 2 溶液溜 3 基板保持部 4、4’ 成長溶液保持部 5、5’ AlまたはAl溶液収容容器 31 基板 41、41’ 成長用溶液 51 AlまたはAl溶液 DESCRIPTION OF SYMBOLS 1 Substrate holder 2 Solution reservoir 3 Substrate holding part 4, 4'Growth solution holding part 5, 5'Al or Al solution storage container 31 Substrate 41, 41 'Growth solution 51 Al or Al solution

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に液相エピタキシャル法に
より III−V族半導体薄膜を成長させる方法において、
エピタキシャル成長炉内にAlあるいはAlを含むGa
またはIn溶液を載置することを特徴とする液相エピタ
キシャル成長方法。
1. A method for growing a Group III-V semiconductor thin film on a semiconductor substrate by a liquid phase epitaxial method,
Ga containing Al or Al in the epitaxial growth furnace
Alternatively, a liquid phase epitaxial growth method characterized by placing an In solution.
JP32678792A 1992-12-07 1992-12-07 Liquid phase epitaxial growth method Pending JPH06177064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32678792A JPH06177064A (en) 1992-12-07 1992-12-07 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32678792A JPH06177064A (en) 1992-12-07 1992-12-07 Liquid phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPH06177064A true JPH06177064A (en) 1994-06-24

Family

ID=18191705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32678792A Pending JPH06177064A (en) 1992-12-07 1992-12-07 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH06177064A (en)

Similar Documents

Publication Publication Date Title
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6849862B2 (en) III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
US6476420B2 (en) P-N homojunction-based structures utilizing HVPE growth III-V compound layers
US6599133B2 (en) Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US6479839B2 (en) III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
JP3356041B2 (en) Gallium phosphide green light emitting device
US6559467B2 (en) P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
US20020017650A1 (en) III-V compound semiconductor device with an InGaN1-x-yPxASy non-continuous quantum dot layer
JPH06177064A (en) Liquid phase epitaxial growth method
JPH0537018A (en) Compound semiconductor single crystal
US7550786B2 (en) Compound semiconductor epitaxial substrate
JPH10214993A (en) Epitaxial wafer and its manufacture as well as light-emitting diode
JP4211897B2 (en) Liquid phase epitaxial growth method
JPH08335555A (en) Fabrication of epitaxial wafer
JPH0575165A (en) Material and manufacture for homo-joint type gainp light emitting material
JPH1197740A (en) Epitaxial wafer for gap light emitting diode and gap light emitting diode
JP2579336B2 (en) Method for manufacturing blue light emitting diode
JP2783580B2 (en) Double hetero-type infrared light emitting device
JP2765120B2 (en) Liquid phase epitaxial growth method
JPS5918686A (en) Gallium phosphide light emitting diode
JP2646927B2 (en) Method for manufacturing semiconductor optical device and light emitting diode
JPH0351674B2 (en)
JPH0279422A (en) Liquid phase epitaxial growth device and growth method
JP4402217B2 (en) Epitaxial substrate for infrared light emitting device and light emitting device produced using the same