JPH06176325A - Composite thin-film magnetic head - Google Patents

Composite thin-film magnetic head

Info

Publication number
JPH06176325A
JPH06176325A JP32287792A JP32287792A JPH06176325A JP H06176325 A JPH06176325 A JP H06176325A JP 32287792 A JP32287792 A JP 32287792A JP 32287792 A JP32287792 A JP 32287792A JP H06176325 A JPH06176325 A JP H06176325A
Authority
JP
Japan
Prior art keywords
upper yoke
thin film
magnetic head
yoke
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32287792A
Other languages
Japanese (ja)
Inventor
Atsuo Mukai
厚雄 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP32287792A priority Critical patent/JPH06176325A/en
Publication of JPH06176325A publication Critical patent/JPH06176325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To produce the composite type thin-film magnetic head for DCCs formed with heads for digital signals and heads for analog signals on the same substrate at a good yield with good characteristics. CONSTITUTION:A lower yoke 2 is formed to meet an analog track width and an upper yoke 9 is divided and formed to meet the plural digital track widths. A first MR element 6 for the digital signals is divided to meet the width of the upper yoke 9 and is formed right under the upper yoke 9 and an MR element 2 for the analog signals is formed to meet the width of the lower yoke 2 right above the upper yoke 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、DCC等の磁気信号
再生装置に用いられる複合型薄膜磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite type thin film magnetic head used in a magnetic signal reproducing device such as a DCC.

【0002】[0002]

【従来の技術】近年、磁気記録の高密度化に伴い、再生
出力が高いことと媒体の速度に関係なく一定の出力が得
られる等の特徴を有する磁気抵抗効果型ヘッド(MRヘ
ッド)が多く使用されている。一般的なヨーク型MRヘ
ッドを図7に示す。同図(A)はヘッドの斜視図、図7
(B)は断面図を示す。非磁性材料よりなる基板101
上に、磁性材料よりなる下部ヨーク102、SiO2
Al2 3 等よりなる絶縁薄膜103、導電材料よりな
るバイアス線104、絶縁薄膜105、MR素子10
6、磁気ギャップ108を形成するための絶縁薄膜10
7、前後の上部ヨーク109a,109bが形成されて
いる。また、MR素子106の両端部には、高抗磁力膜
112が形成されリード線導体膜111が接続されてい
る。さらにこの上にSiO2 ,Al2 3 等の絶縁薄膜
よりなるパッシベーション膜110が形成されている。
一般的なヨーク型MRヘッドはこのように前後の上部ヨ
ーク109a,109bの間隙部にMR素子を配置して
信号磁界をMR素子に供給するようにしている。
2. Description of the Related Art In recent years, with the increase in density of magnetic recording, many magnetoresistive heads (MR heads) are characterized by high reproduction output and constant output regardless of medium speed. It is used. A general yoke type MR head is shown in FIG. FIG. 7A is a perspective view of the head, and FIG.
(B) shows a sectional view. Substrate 101 made of non-magnetic material
A lower yoke 102 made of a magnetic material, SiO 2 ,
Insulating thin film 103 made of Al 2 O 3, etc., bias line 104 made of a conductive material, insulating thin film 105, MR element 10
6. Insulating thin film 10 for forming magnetic gap 108
7. Front and rear upper yokes 109a and 109b are formed. Further, a high coercive force film 112 is formed on both ends of the MR element 106, and the lead wire conductor film 111 is connected thereto. Further, a passivation film 110 made of an insulating thin film such as SiO 2 or Al 2 O 3 is formed on this.
In a general yoke type MR head, the MR element is arranged in the gap between the front and rear upper yokes 109a and 109b in this way to supply a signal magnetic field to the MR element.

【0003】ところで、近年磁気記録されたアナログオ
ーディオ信号とディジタルオーディオ信号を両方再生で
きるオーディオ用磁気再生装置(いわゆるDCC)の開
発が盛んになっている。この用途に供するため、アナロ
グ信号を再生するMRヘッドとディジタル信号を再生す
るMRヘッドを組み合わせて、独立した再生機能を有す
る複合型薄膜磁気ヘッドが提案されている。その一例と
して、上記アナログ再生用ヘッドチップとディジタル再
生用ヘッドチップとを別の基板上で製造し、両者の位置
合わせをして貼り合わせたもの(コンビヘッド)があ
る。しかし、この複合型薄膜磁気ヘッドは、製造工程に
おいて両ヘッドのギャップの平行出し、位置合わせに極
めて高い精度が要求され量産が困難であった。
By the way, in recent years, a magnetic reproducing apparatus for audio (so-called DCC) capable of reproducing both an analog audio signal and a digital audio signal magnetically recorded has been actively developed. For this purpose, a composite thin film magnetic head having an independent reproducing function by combining an MR head for reproducing an analog signal and an MR head for reproducing a digital signal has been proposed. As an example thereof, there is a combination head (combi head) in which the analog reproducing head chip and the digital reproducing head chip are manufactured on different substrates, and the both are aligned and bonded. However, this composite type thin film magnetic head has been difficult to mass-produce because the gaps of both heads are parallelized in the manufacturing process and extremely high accuracy is required for alignment.

【0004】この問題点を解決する例として、アナログ
信号再生ヘッドとディジタル信号再生ヘッドを同一基板
上に形成する複合型ヘッドが提案されている。この一例
の断面図を図8に示す。この複合型薄膜磁気ヘッドは図
7に示した構造のMRヘッドを2段に積み重ねて構成し
たものである。図7と同一部分には同一符号を付して説
明を省略する。この複合型ヘッドは基板上に2種の再生
ヘッドを順に積み重ねて製造するから、通常の薄膜磁気
ヘッドに比べて製造工程が倍以上に長くなり、基板上に
積層する薄膜の層数、厚みが大幅に増加する。このため
基板の変形の増大,層間剥離、ゴミの混入などによる不
良品の発生する確率が増大し、ウエハプロセス、アッセ
ンブリプロセスの歩留りが2種の再生ヘッドを単独に別
基板上に作製する場合に比較して、大幅に低下する欠点
があった。
As an example of solving this problem, there has been proposed a composite type head in which an analog signal reproducing head and a digital signal reproducing head are formed on the same substrate. A cross-sectional view of this example is shown in FIG. This composite type thin film magnetic head is constructed by stacking two MR heads having the structure shown in FIG. The same parts as those in FIG. 7 are designated by the same reference numerals and the description thereof will be omitted. Since this composite type head is manufactured by stacking two types of reproducing heads on a substrate in order, the manufacturing process is more than twice as long as that of an ordinary thin film magnetic head, and the number and thickness of the thin films laminated on the substrate are increased. Increase significantly. As a result, the probability of defective products due to increased deformation of the substrate, delamination, mixing of dust, etc. increases, and the yield of the wafer process and the assembly process is increased when two types of reproducing heads are separately manufactured on different substrates. In comparison, there was a drawback that it was significantly reduced.

【0005】さらに、この問題点を解決するために、ア
ナログ信号再生ヘッドとディジタル信号再生ヘッドを同
一基板上にテープ摺動面より見て前後に配置した複合型
再生ヘッドが提案された。この一例の断面図を図9に示
す。この図9ではアナログ信号再生ヘッド(MR素子1
06″のヘッド)のコアとディジタル信号再生ヘッド
(MR素子106のヘッド)のヨークの一部を共用する
構造にすることにより、導体層,MR素子,ヨーク,層
間絶縁膜およびパッシベーション膜が同一膜により同時
に形成される。
Further, in order to solve this problem, there has been proposed a composite reproducing head in which an analog signal reproducing head and a digital signal reproducing head are arranged on the same substrate in front of and behind the tape sliding surface. A cross-sectional view of this example is shown in FIG. In FIG. 9, an analog signal reproducing head (MR element 1
(6) head) and a part of the yoke of the digital signal reproducing head (head of the MR element 106) are shared so that the conductor layer, the MR element, the yoke, the interlayer insulating film and the passivation film are the same film. Are formed at the same time.

【0006】[0006]

【発明が解決しようとする課題】上記した複合型再生ヘ
ッドではヘッドを構成する層の大部分を同一薄膜、同一
加工により同時に形成することが可能になるため、大幅
に作製工程を削減することができる。しかしながら、構
造上アナログ用MR素子はテープ摺動面からほぼ100
μm程度離れた部分に位置するので、媒体から導かれる
信号磁界の大部分が基板側へ漏洩しMR素子に導かれる
信号磁界は著しく低下する。このため従来のMRヘッド
に比べて再生出力が大幅に低下するという問題点があっ
た。特に高周波領域における再生出力の低下は著しく実
用に供しうるものではなかった。
In the above-described composite reproducing head, most of the layers constituting the head can be formed at the same time by the same thin film and the same processing, so that the number of manufacturing steps can be greatly reduced. it can. However, due to the structure, the analog MR element is almost 100 from the tape sliding surface.
Since they are located at a portion separated by about μm, most of the signal magnetic field guided from the medium leaks to the substrate side, and the signal magnetic field guided to the MR element is significantly lowered. Therefore, there is a problem that the reproduction output is significantly reduced as compared with the conventional MR head. Especially, the reduction of the reproduction output in the high frequency region was not practically applicable.

【0007】この発明は上記課題を解決するため、2種
の再生ヘッドを同一基板上に、共通の工程により同時に
作製可能な構造を有するとともに、実用に十分な再生出
力を得られる複合型薄膜磁気ヘッドを提供することを目
的とする。
In order to solve the above problems, the present invention has a structure capable of simultaneously producing two types of reproducing heads on the same substrate by a common process, and is capable of obtaining a reproducing output sufficient for practical use. The purpose is to provide a head.

【0008】[0008]

【課題を解決するための手段】この出願の請求項1の発
明は、ギャップから取り込んだ信号磁界の閉磁路を形成
する上部ヨーク,下部ヨークを備え、上部ヨークに形成
された間隙付近にMR素子を配置して、前記信号磁界を
MR素子の抵抗変化として検出する薄膜磁気ヘッドにお
いて、前記上部ヨークをトラック幅方向に複数個に分割
し、MR素子を前記間隙の直下および直上に2層形成す
るとともに、両層のMR素子を上部ヨーク毎の分割位置
に合わせてそれぞれ1乃至複数個に分割したことを特徴
とする。
The invention according to claim 1 of the present application comprises an upper yoke and a lower yoke which form a closed magnetic path of a signal magnetic field taken in from a gap, and an MR element near the gap formed in the upper yoke. In the thin film magnetic head for detecting the signal magnetic field as a change in resistance of the MR element, the upper yoke is divided into a plurality of pieces in the track width direction, and the MR element is formed in two layers immediately below and immediately above the gap. At the same time, it is characterized in that the MR elements of both layers are divided into one or a plurality according to the division position of each upper yoke.

【0009】この出願の請求項2の発明は、請求項1の
発明において、2層のMR素子のうち一方のMR素子を
他方のMR素子よりも多数に分割し、前記一方のMR素
子と上部ヨークとの間の絶縁層を前記他方のMR素子と
上部ヨークとの間の絶縁層よりも薄く形成したことを特
徴とする。
According to a second aspect of the present application, in the first aspect of the invention, one MR element of the two-layer MR element is divided into a greater number than the other MR element, and the one MR element and the upper MR element are divided. The insulating layer between the yoke and the yoke is formed thinner than the insulating layer between the other MR element and the upper yoke.

【0010】この出願の請求項3の発明は、請求項1の
発明において、MR素子を単磁区化する高抗磁力膜を、
2層のMR素子のいずれか一方の面上のみに形成したこ
とを特徴とする。
According to a third aspect of the present application, in the first aspect of the invention, a high coercive force film for making the MR element into a single magnetic domain is provided.
It is characterized in that it is formed on only one surface of the two-layer MR element.

【0011】[0011]

【作用】この発明の複合型薄膜磁気ヘッドでは、上部ヨ
ークの直下および直上にMR素子が形成されている。ヘ
ッドギャップから取り込まれた信号磁界は上部ヨークの
間隙部で2層のMR素子に分流するため、両方のMR素
子で信号磁界を抵抗変化として検出することが可能にな
る。また、上部ヨークがトラック幅方向に複数個に分割
されており上下のMR素子もこれに合わせて1〜複数個
に分割した。これによって異なるトラック幅の信号を検
出することが可能になる。
In the composite type thin film magnetic head of the present invention, the MR element is formed just below and directly above the upper yoke. Since the signal magnetic field taken in from the head gap is shunted to the two-layer MR element in the gap portion of the upper yoke, it is possible to detect the signal magnetic field as a resistance change in both MR elements. Further, the upper yoke is divided into a plurality of pieces in the track width direction, and the upper and lower MR elements are also divided into a plurality of pieces according to this. This makes it possible to detect signals with different track widths.

【0012】また、この発明では、2層のMR素子と上
部ヨークとの距離(絶縁層の厚さ)のうち多数に分割し
たMR素子側の距離を短くした。これによって、トラッ
ク幅が狭くなることに伴う信号磁界の減少を補うことが
できる。たとえば、2本のアナログトラックと9本のデ
ィジタルトラックを形成するDCC規格では、ディジタ
ル信号用MR素子−上部ヨーク:アナログ信号用MR素
子−上部ヨークを1:4にすると好ましい結果を得るこ
とができる。
Further, in the present invention, the distance on the MR element side, which is divided into a large number of the distances (thickness of the insulating layer) between the two-layer MR element and the upper yoke, is shortened. As a result, it is possible to compensate for the decrease in the signal magnetic field due to the narrowed track width. For example, in the DCC standard for forming two analog tracks and nine digital tracks, a desirable result can be obtained by setting the ratio of MR element for digital signal-upper yoke: MR element for analog signal-upper yoke to 1: 4. .

【0013】さらにこの発明では、高抗磁力膜を2層の
MR素子のいずれか一方の面上に形成した。2層のMR
素子が上下に近接して形成されているため、一方のMR
素子に高抗磁力膜を形成するのみで、他方にもその作用
が及び単磁区化が可能になる。これにより、一方の高抗
磁力膜形成工程を省略することが可能になる。
Further, in the present invention, the high coercive force film is formed on either surface of the two-layer MR element. 2-layer MR
Since the elements are formed close to each other vertically, one MR
Only by forming a high coercive force film on the element, the action can be exerted on the other side and a single magnetic domain can be formed. This makes it possible to omit one of the high coercive force film forming steps.

【0014】[0014]

【実施例】この発明の実施例を図面を参照して詳細に説
明する。
Embodiments of the present invention will be described in detail with reference to the drawings.

【0015】〔第1実施例〕図1はこの発明の第一の実
施例の構造を示す斜視図,図2は同断面図である。
[First Embodiment] FIG. 1 is a perspective view showing the structure of a first embodiment of the present invention, and FIG. 2 is a sectional view of the same.

【0016】この実施例の複合型再生ヘッドは、基板1
上に下部ヨーク2、絶縁膜3、バイアス導体4、絶縁膜
5、ディジタル信号用MR素子6a、ギャップ8を形成
するための絶縁薄膜7、前後の上部ヨーク9a,9bさ
らに絶縁薄膜を介してアナログ信号用MR素子6bを形
成している。さらにこの上にパッシベーション膜10が
形成されている。
The composite reproducing head of this embodiment has a substrate 1
The lower yoke 2, the insulating film 3, the bias conductor 4, the insulating film 5, the MR element 6a for digital signals, the insulating thin film 7 for forming the gap 8, the front and rear upper yokes 9a and 9b, and the insulating thin film are used as analogs. The signal MR element 6b is formed. Further, a passivation film 10 is formed on this.

【0017】図1に示すように上部ヨークはトラック幅
方向に6分割され、ディジタル信号用MR素子6も上部
ヨークに対応して別々に6個形成されている。各MR素
子6の両端には高抗磁力膜13が形成されるとともにシ
グナルリード11が接続されているため、これらのMR
素子6と下部ヨーク2,上部ヨーク9で上部ヨークの幅
L1で規定されるトラック幅の6トラックのディジタル
ヘッドが構成される。
As shown in FIG. 1, the upper yoke is divided into six in the track width direction, and six digital signal MR elements 6 are separately formed corresponding to the upper yoke. Since high coercive force films 13 are formed on both ends of each MR element 6 and signal leads 11 are connected to these MR elements 6,
The element 6, the lower yoke 2 and the upper yoke 9 constitute a 6-track digital head having a track width defined by the width L1 of the upper yoke.

【0018】一方、上部ヨーク9の上層に設けられたア
ナログ信号用MR素子12は6個に分割された上部ヨー
ク9の全てにわたって形成されている。シグナルリード
16はこのMR素子の両端に形成されている。したがっ
て、このMR素子12および下部ヨーク2,上部ヨーク
9などにより下部ヨーク2の幅L2で規定されるトラッ
ク幅の1トラックのヘッドを構成している。
On the other hand, the analog signal MR element 12 provided on the upper layer of the upper yoke 9 is formed over the entire upper yoke 9 divided into six pieces. The signal leads 16 are formed on both ends of this MR element. Therefore, the MR element 12, the lower yoke 2, the upper yoke 9, and the like constitute a one-track head having a track width defined by the width L2 of the lower yoke 2.

【0019】つぎに、この複合型薄膜磁気ヘッドの製造
方法について説明する。
Next, a method of manufacturing the composite type thin film magnetic head will be described.

【0020】アルミナその他のセラミック、ガラス等の
非磁性基板1上にNi−Fe,Fe−Al−Si(セン
ダスト),アモルファス等の磁性薄膜をメッキ,スパッ
タ,蒸着,CVD等の方法で1〜20μmの厚さに成膜
したのち、図2に示す下部コア2となるように上部コア
9bの端部と結合する位置まで延長した形状にイオンミ
リング、ウェットエッチング等の手段により加工する。
バイアス線4と下部コア2との間の絶縁層となる絶縁薄
膜3をSiO2 ,Al2 3 等をスパッタ,蒸着,CV
D等の方法で0.3〜5μmの厚さに被着する。さら
に、バイアス線4を構成するAl,Cu,Au,Agあ
るいはこれらの合金等の導体薄膜を蒸着,スパッタ,C
VD,メッキ等の方法により0.1〜5μmの厚さに成
膜し、フォトリソグラフィを用いてウェットエッチン
グ,スパッタエッチング等の方法により、バイアス線の
形状に加工する。その後、絶縁層5を上記絶縁層3と同
様の材料で同様の方法により0.3〜5μmの厚さに形
成する。
A magnetic thin film of Ni-Fe, Fe-Al-Si (sendust), amorphous or the like is formed on a non-magnetic substrate 1 such as alumina or other ceramic or glass by a method such as plating, sputtering, vapor deposition, or CVD to 1 to 20 μm. After being formed into a film having a thickness of 1 mm, it is processed by a means such as ion milling or wet etching into a shape extending to a position where it is connected to the end portion of the upper core 9b so as to form the lower core 2 shown in FIG.
The insulating thin film 3 serving as an insulating layer between the bias line 4 and the lower core 2 is sputtered with SiO 2 , Al 2 O 3 or the like, vapor-deposited, and CV.
A method such as D is applied to a thickness of 0.3 to 5 μm. Further, a conductive thin film such as Al, Cu, Au, Ag or an alloy thereof which constitutes the bias line 4 is deposited, sputtered, C
A film having a thickness of 0.1 to 5 μm is formed by a method such as VD or plating, and processed into a shape of a bias line by a method such as wet etching or sputter etching using photolithography. After that, the insulating layer 5 is formed with the same material as that of the insulating layer 3 to a thickness of 0.3 to 5 μm by the same method.

【0021】さらに、この上にNi−Feよりなる第1
のMR素子6を形成する。このMR素子6の両端部にM
R素子6を単磁区化するための高抗磁力膜13とリード
線11を成膜する。これらMR素子6,高抗磁力膜13
およびリード線11a,11bは所定の形状にフォトリ
ソグラフィを施したのちウェットエッチング,スパッタ
エッチ等の方法により加工する。この後、絶縁層3,5
を磁気ギャップが形成される形状に加工したのち、フロ
ント磁気ギャップ8およびMR素子6と上部ヨーク9と
の磁気ギャップとなる絶縁層14を成膜する。次に上部
ヨーク9を構成する磁性膜を下部コア2と同様の材料で
同様の方法で0.1〜5μmの厚さに成膜したのち、上
部ヨーク9a,9bの形状に加工する。
Furthermore, a first layer made of Ni--Fe is formed on the first layer.
The MR element 6 is formed. M at both ends of this MR element 6
A high coercive force film 13 and a lead wire 11 for forming the R element 6 into a single magnetic domain are formed. These MR element 6 and high coercive force film 13
Then, the lead wires 11a and 11b are processed by a method such as wet etching and sputter etching after performing photolithography in a predetermined shape. After this, insulating layers 3, 5
Is processed into a shape in which a magnetic gap is formed, and then an insulating layer 14 is formed which serves as a front magnetic gap 8 and a magnetic gap between the MR element 6 and the upper yoke 9. Next, a magnetic film forming the upper yoke 9 is formed with a material similar to that of the lower core 2 by a similar method to a thickness of 0.1 to 5 μm, and then processed into the shapes of the upper yokes 9a and 9b.

【0022】さらに、上部ヨークと第2のMR素子12
との磁気ギャップとなる絶縁層15を成膜したのち、N
i−Feよりなる第2のMR素子12を形成する。この
MR素子12の両端部および上部ヨーク9のトラック幅
方向の分割部(この実施例では合計7か所)に高抗磁力
膜17を形成する。また、MR素子12の両端部にリー
ド線16a,16bを形成する。これらの加工方法は第
1のMR素子の場合と同様である。
Further, the upper yoke and the second MR element 12
After forming an insulating layer 15 that will become a magnetic gap with
A second MR element 12 made of i-Fe is formed. High coercive force films 17 are formed on both end portions of the MR element 12 and on the divided portions of the upper yoke 9 in the track width direction (total of seven places in this embodiment). Further, lead wires 16a and 16b are formed on both ends of the MR element 12. These processing methods are the same as in the case of the first MR element.

【0023】続いてパッシベーション膜10を絶縁薄膜
3,5,14,15と同様の材料で同様の方法により成
膜し、磁気ヘッドが完成する。
Subsequently, the passivation film 10 is formed by using the same material as the insulating thin films 3, 5, 14 and 15 by the same method, and the magnetic head is completed.

【0024】上記磁気ヘッドでは、上部ヨーク9a→第
1のMR素子6→上部ヨーク9b→下部コア2の第1の
閉磁路と、上部ヨーク9a→第2のMR素子12→上部
ヨーク9b→下部コア2の第2の閉磁路が構成される。
In the above magnetic head, the upper yoke 9a → the first MR element 6 → the upper yoke 9b → the first closed magnetic path of the lower core 2 and the upper yoke 9a → the second MR element 12 → the upper yoke 9b → the lower portion. A second closed magnetic circuit of the core 2 is formed.

【0025】本実施例において磁気記録媒体から上部ヨ
ーク9aへ導かれた信号磁界は第1と第2のMR素子に
分流し、下部ヨーク2へ流れていくが、各MR素子に流
れる磁界の量は、上部ヨーク9と各MR素子との距離、
すなわち絶縁層14と絶縁層15との膜厚比で制御でき
る。
In this embodiment, the signal magnetic field guided from the magnetic recording medium to the upper yoke 9a is shunted to the first and second MR elements and then to the lower yoke 2, but the amount of the magnetic field flowing to each MR element. Is the distance between the upper yoke 9 and each MR element,
That is, it can be controlled by the film thickness ratio of the insulating layer 14 and the insulating layer 15.

【0026】〔第2〜第4実施例〕この発明の第2の実
施例の構造を図3に示す。図3は複合型薄膜磁気ヘッド
の斜視図である。この実施例の複合型薄膜磁気ヘッド
は、MR素子を単磁区化するための高抗磁力膜を第2の
MR素子12上にのみ配置している。上記高抗磁力膜1
7のHcは500エルステッドと高いため下層に形成さ
れた第1のMR素子6も十分単磁区化することができ
る。これにより、第1のMR素子6上に高抗磁力膜を形
成する工程を省略することができる。
[Second to Fourth Embodiments] FIG. 3 shows the structure of the second embodiment of the present invention. FIG. 3 is a perspective view of the composite type thin film magnetic head. In the composite type thin film magnetic head of this embodiment, a high coercive force film for making the MR element into a single magnetic domain is arranged only on the second MR element 12. The high coercive force film 1
Since Hc of 7 is as high as 500 Oersted, the first MR element 6 formed in the lower layer can be sufficiently made into a single magnetic domain. Thereby, the step of forming the high coercive force film on the first MR element 6 can be omitted.

【0027】この発明の第3の実施例の構造を図4に示
す。図4は複合型薄膜磁気ヘッドの斜視図である。この
実施例の複合型薄膜磁気ヘッドは上部ヨーク9の下層に
設けられた3個の上部ヨークでトラック幅が規定された
第1のMR素子6aと上部ヨークの上層に設けられた6
個の上部ヨークでトラック幅が規定された第2のMR素
子6bとから構成される。すなわちトラック幅L3を有
する2トラックのYMRヘッドとトラック幅L4を有す
る1トラックのYMRヘッドとが構成される。
The structure of the third embodiment of the present invention is shown in FIG. FIG. 4 is a perspective view of the composite type thin film magnetic head. The composite type thin film magnetic head of this embodiment has a first MR element 6a having a track width defined by three upper yokes provided in the lower layer of the upper yoke 9 and an upper layer 6 provided in the upper yoke.
The second MR element 6b has a track width defined by a plurality of upper yokes. That is, a two-track YMR head having a track width L3 and a one-track YMR head having a track width L4 are formed.

【0028】このように、1トラック内で上部ヨーク9
を複数個に分割することにより、トラック幅が広い場合
でもヨークの形状(アスペクト比)を適切に保つことが
できる。
Thus, in one track, the upper yoke 9
By dividing into a plurality of, the shape (aspect ratio) of the yoke can be appropriately maintained even when the track width is wide.

【0029】この発明の第4の実施例の構造を図5,図
6に示す。図5は薄膜磁気ヘッドのヘッドチップの平面
図、図6は同薄膜磁気ヘッドの外観図である。この複合
型薄膜磁気ヘッドは9個に分割した上部ヨーク9をヘッ
ドチップの中心に対して左右に配置している。そして、
1個の上部ヨーク9でトラック幅が規制される第1のM
R素子6を各上部ヨーク9ごとに設けて左右に各々9ト
ラックのヘッドとし、且つ、4個の上部ヨーク9でトラ
ック幅が規制される第2のMR素子12を左右2個づつ
設けて各々2トラックのヘッドとしている。すなわち、
トラック幅はDCC規格に合致する様設計できるので、
本発明によりDCC再生専用固定ヘッドへをこの方式に
よって製作することができる。テープ摺動面には図6に
示すように上部ヨーク9が18個配列した構造となる。
この実施例において、絶縁層14の厚さ(ディジタル信
号用の第1のMR素子6と上部ヨーク9までの距離)を
0.25μmとし、絶縁層15の厚さ(アナログ信号用
の第2のMR素子12と上部ヨーク9までの距離)を1
μmとした。この距離比(1:4)にすることによって
ディジタルヘッド,アナログヘッドとも適当な信号感度
を得ることができた。
The structure of the fourth embodiment of the present invention is shown in FIGS. FIG. 5 is a plan view of a head chip of the thin film magnetic head, and FIG. 6 is an external view of the thin film magnetic head. In this composite type thin film magnetic head, an upper yoke 9 divided into nine pieces is arranged on the left and right with respect to the center of the head chip. And
The first M in which the track width is restricted by one upper yoke 9
An R element 6 is provided for each upper yoke 9 to form a head with 9 tracks on the left and right, and two second MR elements 12 whose track widths are restricted by four upper yokes 9 are provided on each of the left and right sides. It is a 2-track head. That is,
Since the track width can be designed to meet the DCC standard,
According to the present invention, a fixed head dedicated to DCC reproduction can be manufactured by this method. As shown in FIG. 6, 18 upper yokes 9 are arranged on the tape sliding surface.
In this embodiment, the thickness of the insulating layer 14 (distance between the first MR element 6 for digital signals and the upper yoke 9) is 0.25 μm, and the thickness of the insulating layer 15 (second for analog signals). Set the distance between the MR element 12 and the upper yoke 9 to 1
μm. By setting this distance ratio (1: 4), appropriate signal sensitivity could be obtained for both the digital head and the analog head.

【0030】[0030]

【発明の効果】この発明の複合型薄膜磁気ヘッドによれ
ば、2種のトラック幅を有する薄膜磁気ヘッドを磁気媒
体から見て同一距離に形成することができる。さらに、
トラック幅の広狭に応じてヨークとMR素子との距離
(絶縁層の厚さ)を調整することにより、両方のヘッド
とも適当な出力を得るように設定することができる。こ
れにより、実用に十分に耐える複合型薄膜磁気ヘッドを
得ることができる。また、ヨーク,バイアスリード,高
抗磁力膜などの要部を2個のヘッドで共用することがで
きるため従来の複合型薄膜磁気ヘッドに比べて大幅に工
程および薄膜層数を削減できる。このため、歩留りおよ
び信頼性の向上に関して多大な効果がある。
According to the composite type thin film magnetic head of the present invention, thin film magnetic heads having two kinds of track widths can be formed at the same distance when viewed from the magnetic medium. further,
By adjusting the distance (thickness of the insulating layer) between the yoke and the MR element according to the width of the track, both heads can be set so as to obtain an appropriate output. As a result, it is possible to obtain a composite type thin film magnetic head that is sufficiently durable for practical use. Further, since the essential parts such as the yoke, the bias lead, and the high coercive force film can be shared by the two heads, the number of steps and the number of thin film layers can be significantly reduced as compared with the conventional composite type thin film magnetic head. Therefore, there is a great effect on the improvement of yield and reliability.

【0031】[0031]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である複合型薄膜磁気ヘ
ッドの斜視図
FIG. 1 is a perspective view of a composite type thin film magnetic head according to a first embodiment of the present invention.

【図2】同複合型薄膜磁気ヘッドの要部断面図FIG. 2 is a sectional view of an essential part of the same composite type thin film magnetic head.

【図3】本発明の第2の実施例である複合型薄膜磁気ヘ
ッドの斜視図
FIG. 3 is a perspective view of a composite type thin film magnetic head according to a second embodiment of the present invention.

【図4】本発明の第3の実施例である複合型薄膜磁気ヘ
ッドの斜視図
FIG. 4 is a perspective view of a composite type thin film magnetic head according to a third embodiment of the present invention.

【図5】本発明の第4の実施例である複合型薄膜磁気ヘ
ッドの構成を示す図
FIG. 5 is a diagram showing a configuration of a composite type thin film magnetic head according to a fourth embodiment of the present invention.

【図6】本発明の第4の実施例である複合型薄膜磁気ヘ
ッドの構成を示す図
FIG. 6 is a diagram showing a configuration of a composite type thin film magnetic head according to a fourth embodiment of the present invention.

【図7】従来の複合型薄膜磁気ヘッドの斜視図FIG. 7 is a perspective view of a conventional composite type thin film magnetic head.

【図8】従来の複合型薄膜磁気ヘッドの断面図FIG. 8 is a sectional view of a conventional composite type thin film magnetic head.

【図9】従来の複合型薄膜磁気ヘッドの断面図FIG. 9 is a sectional view of a conventional composite type thin film magnetic head.

【符号の説明】[Explanation of symbols]

6−第1の(ディジタル信号用)MR素子 9−上部ヨーク 12−第2の(アナログ信号用)MR素子 13,17−高抗磁力膜 14,15−(上部ヨークとMR素子との間の)絶縁層 6-First MR element (for digital signal) 9-Upper yoke 12-Second (for analog signal) MR element 13,17-High coercive force film 14,15- (between upper yoke and MR element) ) Insulation layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ギャップから取り込んだ信号磁界の閉磁
路を形成する上部ヨーク,下部ヨークを備え、上部ヨー
クに形成された間隙付近に磁気抵抗効果素子(以下「M
R素子」と称する。)を配置して、前記信号磁界をMR
素子の抵抗変化として検出する薄膜磁気ヘッドにおい
て、 前記上部ヨークをトラック幅方向に複数個に分割し、 MR素子を前記間隙の直下および直上に2層形成すると
ともに、両層のMR素子を上部ヨーク毎の分割位置に合
わせてそれぞれ1乃至複数個に分割したことを特徴とす
る複合型薄膜磁気ヘッド。
1. A magnetoresistive element (hereinafter referred to as "M") is provided with an upper yoke and a lower yoke that form a closed magnetic path of a signal magnetic field taken in from a gap, and near the gap formed in the upper yoke.
R element ". ) Is arranged to make the signal magnetic field MR
In a thin film magnetic head for detecting as a resistance change of an element, the upper yoke is divided into a plurality in the track width direction, two layers of MR elements are formed immediately below and immediately above the gap, and the MR elements of both layers are formed into an upper yoke. A composite thin-film magnetic head, characterized in that it is divided into one or a plurality of pieces according to each division position.
【請求項2】 前記2層のMR素子のうち一方のMR素
子を他方のMR素子よりも多数に分割し、前記一方のM
R素子と上部ヨークとの間の絶縁層を前記他方のMR素
子と上部ヨークとの間の絶縁層よりも薄く形成したこと
を特徴とする請求項1記載の複合型薄膜磁気ヘッド。
2. One of the two layers of MR elements is divided into a larger number of MR elements than the other MR element, and one of the M elements is divided.
2. The composite thin film magnetic head according to claim 1, wherein the insulating layer between the R element and the upper yoke is formed thinner than the insulating layer between the other MR element and the upper yoke.
【請求項3】 MR素子を単磁区化する高抗磁力膜を、
前記2層のMR素子のいずれか一方の面上のみに形成し
たことを特徴とする請求項1記載の薄膜磁気ヘッド。
3. A high coercive force film for making an MR element into a single magnetic domain,
The thin film magnetic head according to claim 1, wherein the thin film magnetic head is formed only on one surface of the two-layered MR element.
JP32287792A 1992-12-02 1992-12-02 Composite thin-film magnetic head Pending JPH06176325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32287792A JPH06176325A (en) 1992-12-02 1992-12-02 Composite thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32287792A JPH06176325A (en) 1992-12-02 1992-12-02 Composite thin-film magnetic head

Publications (1)

Publication Number Publication Date
JPH06176325A true JPH06176325A (en) 1994-06-24

Family

ID=18148615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32287792A Pending JPH06176325A (en) 1992-12-02 1992-12-02 Composite thin-film magnetic head

Country Status (1)

Country Link
JP (1) JPH06176325A (en)

Similar Documents

Publication Publication Date Title
US4901178A (en) Thin film magnetic head
US4195323A (en) Thin film magnetic recording heads
JPH07296331A (en) Magnetic head assembly having write pole structure having shield
JPH0475570B2 (en)
JPH0916925A (en) Induction and mr type hybrid magnetic head and its manufacture
JP2505465B2 (en) Yoke type thin film magnetic head
EP0519182B1 (en) Combined thin film magnetic head
JPH06176325A (en) Composite thin-film magnetic head
JPH06162437A (en) Composite type thin film magnetic head
JP2973850B2 (en) Method of manufacturing magnetoresistive thin film magnetic head
EP0585930A2 (en) Thin film magnetic head
JP2707758B2 (en) Method for manufacturing thin-film magnetic head
JPH0652517A (en) Thin film magnetic head and its manufacture
JPH06215331A (en) Composite type thin-film magnetic head
JP2529194B2 (en) Thin film magnetic head
JPH0817019A (en) Magneto-resistive head
JPS62164203A (en) Production of thin film magnetic head
JP2838456B2 (en) Composite thin-film magnetic head and method of manufacturing the same
JPH04305808A (en) Composite type multichannel thin-film magnetic head and magnetic recording and reproducing device
JPH0560166B2 (en)
JP3231510B2 (en) Magnetic head
JPS5971124A (en) Magneto-resistance effect magnetic head
JP2001084531A (en) Magnetoresistance effect type thin film magnetic head
JPS588051B2 (en) Magnetoresistive head
JPS63138516A (en) Thin film magnetic head