JPH061751B2 - Anode material for electrolytic capacitors - Google Patents

Anode material for electrolytic capacitors

Info

Publication number
JPH061751B2
JPH061751B2 JP60154964A JP15496485A JPH061751B2 JP H061751 B2 JPH061751 B2 JP H061751B2 JP 60154964 A JP60154964 A JP 60154964A JP 15496485 A JP15496485 A JP 15496485A JP H061751 B2 JPH061751 B2 JP H061751B2
Authority
JP
Japan
Prior art keywords
base material
film
aluminum
pores
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60154964A
Other languages
Japanese (ja)
Other versions
JPS6215813A (en
Inventor
武 西崎
秀一 室岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP60154964A priority Critical patent/JPH061751B2/en
Publication of JPS6215813A publication Critical patent/JPS6215813A/en
Publication of JPH061751B2 publication Critical patent/JPH061751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • ing And Chemical Polishing (AREA)
  • Primary Cells (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、アルミニウム電解コンデンサ用陽極材料に
関する。
TECHNICAL FIELD The present invention relates to an anode material for an aluminum electrolytic capacitor.

なお、この明細書において、アルミニウムの語は、その
合金を含む意味において用いる。
In this specification, the term aluminum is used to include its alloy.

従来の技術と発明課題 近時、エレクトロニクス製品の小型化、高性能化に伴っ
て、これに使用される電解コンデンサも小型・高性能化
への要請が強く、そのためにも静電容量の一層の増大を
はかることが強く求められている。
2. Description of the Related Art Recently, as electronic products have become smaller and higher in performance, there is a strong demand for smaller and higher performance in electrolytic capacitors used in these products. There is a strong demand for an increase.

ところで、アルミニウム電解コンデンサにおける電極材
料の静電容量は、 C=ε・A/t C:静電容量 ε:誘電率 A:表面積 t:誘電体の皮膜厚 で示されるが、誘電体皮膜厚(t)は使用電圧によって
概ね限定されるものであるから、静電容量(C)の増大
は主として誘電率(ε)の増大と、表面積の拡大化によ
って考慮されなければならない。
By the way, the capacitance of the electrode material in the aluminum electrolytic capacitor is represented by C = ε · A / t C: capacitance ε: permittivity A: surface area t: film thickness of dielectric, but the dielectric film thickness ( Since t) is generally limited by the operating voltage, the increase in capacitance (C) must be taken into account mainly by the increase in dielectric constant (ε) and the increase in surface area.

従来、アルミニウム電解コンデンサ用の陽極材料として
は、高純度アルミニウム箔基材の表面をエッチングして
表面積を拡大したのち、ホウ酸アンモニウム溶液等の中
性水溶液中で陽極酸化処理し、上記基材表面に誘電体と
してのAl皮膜を形成したものが用いられている
が、エッチングによる基材表面膜の拡大は限界にきてお
り、その面からの静電容量の大幅な増大は見込み得ない
状況に至っている。
Conventionally, as an anode material for an aluminum electrolytic capacitor, the surface of a high-purity aluminum foil base material is etched to expand the surface area, and then anodized in a neutral aqueous solution such as an ammonium borate solution. Although an Al 2 O 3 film is used as a dielectric, the expansion of the base material surface film by etching has reached its limit, and a significant increase in capacitance from that surface can be expected. Has reached a situation where there is no such thing.

このことから、上式に基づき、誘電率の極めて大きな例
えばBaTiO(比誘電率ε:500〜6000)等
の誘電体皮膜を形成する手段が考えられるが、耐電圧、
リーク電流等の点で実用化され得ない。
From this, a means for forming a dielectric film such as BaTiO 3 (relative permittivity ε: 500 to 6000) having an extremely large permittivity based on the above equation is conceivable.
It cannot be put to practical use in terms of leakage current.

一方、アルミニウム箔基材上に、その酸化物がAl
より高い誘電率をもつような金属からなる皮膜を形成
し、これを陽極化成することによって静電容量の増大を
はかることも提案されているが、表面積の拡大という面
から不充分であり、近時要求される静電容量の増大に対
して充分な満足を与えるものではなかった。
On the other hand, the oxide is Al 2 O on the aluminum foil base material.
It has been proposed to form a film made of a metal having a dielectric constant higher than 3 and increase the capacitance by anodizing this, but it is insufficient from the viewpoint of increasing the surface area, It has not been sufficiently satisfactory for the increase in capacitance required recently.

この発明は、上記のような従来の技術を踏まえた上で、
拡面率の更なる可及的増大と、誘電率の向上をはかるこ
とにより、両者相俟って、従来品より更に一段と高い静
電容量を有し、コンデンサの小型化、高性能化を実現し
うるアルミニウムコンデンサ用陽極材料を提供すること
を目的とする。
This invention is based on the above-mentioned conventional technology,
By further increasing the surface area expansion ratio and improving the dielectric constant, both have a higher electrostatic capacity than the conventional product, realizing a smaller capacitor and higher performance. It is an object of the present invention to provide a positive electrode material for an aluminum capacitor.

課題解決のための手段 この発明は、上記の目的において、アルミニウム箔基材
表面を微細にかつ多数のポア(凹部)を有する状態に粗
面化し、その特に微細な凹凸による効果を基材表面に形
成される導電性金属皮膜面に現出せしめるものとするこ
とにより、表面積の充分な拡大化をはかると共に、上記
皮膜を、該皮膜の酸化膜と電解液とが電気的な弁作用を
生ずるような金属、即ち弁金属微粒子によって構成し、
かつ化成処理によって前記凹凸面上の弁金属微粒子皮膜
と前記ポア内の通常は基材アルミニウムが露出している
面とにそれぞれの酸化皮膜を形成せしめるものとするこ
とにより、両酸化皮膜が相俟って静電容量の増大に寄与
するように構成することにより、従来品より一段と優れ
た静電容量を発揮するアルミニウム電解コンデンサ用陽
極材料を提供し得たものである。
Means for Solving the Problems In the above-mentioned object, the present invention is to roughen the surface of an aluminum foil base material in a state of having fine and a large number of pores (recesses), and particularly to the base material surface by the effect of fine irregularities. By making it appear on the surface of the conductive metal film to be formed, the surface area can be sufficiently enlarged, and the above-mentioned film can be made to have an electrical valve action by the oxide film of the film and the electrolytic solution. Made of fine metal, that is, valve metal fine particles,
Moreover, both oxide films are combined by forming the respective oxide films on the valve metal fine particle film on the uneven surface and the surface of the pores where the substrate aluminum is usually exposed by chemical conversion treatment. Thus, the anode material for an aluminum electrolytic capacitor can be provided which exhibits a much better capacitance than conventional products by being configured to contribute to an increase in capacitance.

即ち、この発明の構成は、アルミニウム箔基材の表面
が、微細な凹凸を有し、かつこの微細凹凸面中に、最大
深さ25μm以下、最大内径100μm以下のポアが1
00個/cm2以上の密度で分布する態様に粗面化されて
おり、上記アルミニウム基材の少なくとも前記微細凹凸
面上に、平均粒子径0.01〜1.0μmの弁金属微粒
子からなる厚さ0.05〜5.0μmの金属皮膜が形成
されると共に、上記金属皮膜面上及び前記ポアの内面
に、それぞれの表面の金属による厚さ10〜3000Å
の酸化皮膜が形成されてなることを特徴とする電解コン
デンサ用陽極材料を要旨とするものである。
That is, according to the constitution of the present invention, the surface of the aluminum foil substrate has fine irregularities, and the pores having the maximum depth of 25 μm or less and the maximum inner diameter of 100 μm or less are formed in the fine irregularities.
It is roughened in a manner that it is distributed with a density of 00 pieces / cm 2 or more, and a thickness of valve metal fine particles having an average particle diameter of 0.01 to 1.0 μm on at least the fine uneven surface of the aluminum base material. A metal coating having a thickness of 0.05 to 5.0 μm is formed, and the thickness of the metal on the surface of the metal coating and the inner surface of the pore is 10 to 3000 Å.
The subject matter is an anode material for an electrolytic capacitor, characterized in that the oxide film is formed.

この発明において、金属皮膜を構成する弁金属とは、前
記のようにそれを酸化してできた膜と電解液とが電気的
な弁作用を生じ、該膜と電解液との組合わせに整流性を
発現する金属であり、最も一般的にはTi、Ta、A
l、Nbを挙げることができるものであり、その他更に
同様の性質を有するものとしてMg、Zr、Zn、B
i、Si、Hf、TiにBとSnを加えた合金、Tiに
PbとSbを加えた合金、TiにCrとVを加えた合金
等を挙げることができる。
In the present invention, the valve metal forming the metal film means that the film formed by oxidizing it and the electrolytic solution cause an electrical valve action, and the combination of the film and the electrolytic solution is rectified. Is a metal that develops properties, and most commonly Ti, Ta, A
l, Nb, and other similar properties, such as Mg, Zr, Zn and B.
Examples of the alloy include i, Si, Hf, an alloy of B and Sn added to Ti, an alloy of Pb and Sb added to Ti, and an alloy of Cr and V added to Ti.

添附図面の参照のもとに、この発明の構成を更に詳しく
説明すれば次のとおりである。
The structure of the present invention will be described in more detail with reference to the accompanying drawings.

アルミニウム箔基材(1)の表面を粗面化して微細な凹
凸(3)を形成するのは、前述のようにその凹凸効果を
基材に形成される弁金属の微粒子からなる金属皮膜
(2)の表面に波及せしめて皮膜の拡面率の向上を助長
するためである。また、基材(1)に多数のポア(4)
を形成するのは、基材の表面積のより一層の拡大化を図
ると共に、電解液のぬれ性の向上を図るためである。こ
のような基材表面の粗面化と、ポア(4)の形成は、エ
ッチング操作によって同時に達成しうる。かかるエッチ
ングは、化学的あるいは電気化学的な湿式エッチング法
のほか、サンドプラスト加工、ヘアライン加工、あるい
はプラズマエッチングのような乾式エッチング法を採用
することも可能である。ポア(4)の断面形状はもとよ
り不定形のものであり、代表的な断面形状としては例え
ば内径が深さにかかわらず略一定な円筒形、開口部の内
径が狭い壷形、あるいは底部から開口部に至るにつれて
内径が広くなっている椀形等が挙げられる。ポア(4)
の寸法は、最大深さ25μm以下、最大内径100μm
以下とすることを必要とする。即ち、最大深さが25μ
mを越え、あるいは又、最大内径が100μmを越える
と、基材(1)に電極材料としての所要の機械的強度を
保持し難いものとなる欠点が派生する。また、ポア
(4)は基材(1)の拡面率増大のうえから、比較的小
径のものを可及的高密度に分布せしめるものとすること
が好ましく、従って、少なくとも、100個/cm2以上
の密度で分布せしめるものとすべきである。100個/
cm2未満の分布密度では、拡面率の増大効果に劣るのみ
ならず、陽極表面へめ電解液のぬれ性に劣るものとな
る。ポア(4)の内面は必ずしも粗面化されたものであ
ることを必要としないが、静電容量の増大化を図るうえ
からは該内面も微細な凹凸粗面に形成される方が望まし
い。なお、この明細書でいう粗面化による微細な凹凸
は、基材表面のポアの部分はもちろん、同表面のうねり
成分等を含まない微視的な凹凸をいうものである。
The surface of the aluminum foil base material (1) is roughened to form the fine irregularities (3) because the metal film (2) made of fine particles of valve metal formed on the base material has the irregularity effect as described above. This is because it spreads to the surface of) and promotes the improvement of the surface expansion rate of the film. Moreover, a large number of pores (4) are formed on the base material (1)
Is formed in order to further increase the surface area of the base material and to improve the wettability of the electrolytic solution. Such roughening of the surface of the substrate and formation of the pores (4) can be simultaneously achieved by an etching operation. For such etching, it is possible to employ a chemical or electrochemical wet etching method, as well as a dry etching method such as sand plast processing, hairline processing, or plasma etching. The cross-sectional shape of the pore (4) is of course indefinite, and typical cross-sectional shapes include, for example, a cylindrical shape with a constant inner diameter regardless of depth, a jar shape with a narrow inner diameter of the opening, or an opening from the bottom. A bowl shape or the like having an inner diameter that increases as it reaches the portion is given. Pore (4)
Has a maximum depth of 25 μm or less and a maximum inner diameter of 100 μm
You need to: That is, the maximum depth is 25μ
If it exceeds m, or if the maximum inner diameter exceeds 100 μm, there arises a drawback that it becomes difficult to maintain the required mechanical strength of the base material (1) as an electrode material. In addition, it is preferable that the pores (4) have a relatively small diameter and can be distributed as densely as possible in order to increase the surface expansion rate of the base material (1). Therefore, at least 100 pores / cm. It should be distributed with a density of 2 or more. 100 /
If the distribution density is less than cm 2, not only is the effect of increasing the surface expansion ratio poor, but the wettability of the electrolyte solution on the anode surface is also poor. The inner surface of the pore (4) does not necessarily need to be roughened, but it is desirable that the inner surface is also formed into a finely roughened rough surface in order to increase the capacitance. The fine irregularities due to the roughening in this specification mean microscopic irregularities that do not include the undulation component of the surface as well as the pores on the surface of the substrate.

基材(1)の表面に被覆形成される導電性の金属皮膜
(2)の材料は、前記弁金属が用いられるものである
が、なかでもTi、Ta、Al、Nb等の金属を用いる
のが一般的であり、特にTiの使用は静電容量の面で、
更にはコンデンサの長寿命化、高信頼性の面からも好ま
しい結果を得ることができる。この弁金属微粒子からな
る金属皮膜(2)は、図面に示すように少なくとも前記
ポア(4)を除く基材(1)の表面部分の全体、即ち微
細な凹凸面(3)の全体に被覆形成されることが必要で
あるが、勿論、同時に前記ポア(4)の内面にも被覆形
成される方が、静電容量の更なる増大を図り得る点で好
ましい。かかる皮膜を構成する弁金属微粒子の平均粒子
径は、拡面率向上の点から0.01〜1.0μmの範囲
とすべきである。即ち、0.01未満では皮膜が平滑化
されて拡大効果に寄与るところが少ないし、また逆に
1.0μmを越えて粗大化しても却って拡面効果に乏し
く静電容量の小さいものとなってしまうからである。ま
た皮膜の厚さは0.05〜5.0μmの範囲とすべきで
ある。0.05μm未満ては、同じく皮膜の粗面化によ
る拡面効果を期待し得ないからであり、逆に5.0μm
を越えても使用弁金属材料の増大、コスト上昇、作業性
の悪化に見合うだけの効果が得られないからである。
The above-mentioned valve metal is used as the material of the conductive metal film (2) formed on the surface of the base material (1), but among them, metals such as Ti, Ta, Al, Nb are used. Is generally used, and especially the use of Ti in terms of capacitance,
Further, favorable results can be obtained in terms of the long life of the capacitor and high reliability. As shown in the drawing, the metal film (2) composed of the valve metal fine particles covers at least the entire surface portion of the base material (1) except the pores (4), that is, the entire fine concavo-convex surface (3). However, it is, of course, preferable that the inner surface of the pore (4) is simultaneously coated so that the electrostatic capacity can be further increased. The average particle diameter of the valve metal fine particles constituting such a coating should be in the range of 0.01 to 1.0 μm from the viewpoint of improving the surface expansion ratio. That is, if it is less than 0.01, there are few places where the film is smoothed and contributes to the expansion effect, and conversely, if it exceeds 1.0 μm and is coarsened, the surface expansion effect is rather poor and the electrostatic capacity is small. Because it will be. Also, the thickness of the coating should be in the range of 0.05 to 5.0 μm. If the thickness is less than 0.05 μm, the surface expansion effect due to the roughening of the coating cannot be expected, and conversely 5.0 μm.
Even if it exceeds the above, it is not possible to obtain an effect commensurate with an increase in the metal material used for the valve, an increase in cost, and a deterioration in workability.

このような微粒子金属皮膜(2)の基材(1)表面への
被覆形成方法としては、真空蒸着法、不活性ガス中蒸着
法、スパッタリング法、イオンプレーティング法を用い
ることができる。なお、このようなチタン皮膜の蒸着形
成処理は、コイル状の基材を巻き取りながら半連続的に
行いうるものである。
As a method for forming a coating of the fine particle metal film (2) on the surface of the substrate (1), a vacuum vapor deposition method, a vapor deposition method in an inert gas, a sputtering method, or an ion plating method can be used. It should be noted that such a titanium film vapor deposition forming process can be performed semi-continuously while winding the coiled base material.

陽極材料の最表面に形成される酸化皮膜(5)(6)
は、弁金属の微粒子からなる前記金属皮膜(2)を形成
した基材(1)の表面を、ホウ酸、ホウ酸アンモニウ
ム、酒石酸アンモニウムなどの中性溶液を用いて陽極化
成することによって行われるものであり、金属皮膜
(2)面上と、金属皮膜を有しないポア(4)内部の基
材アルミニウム表面との両者に、同時にそれぞれの表面
を構成している金属の酸化物として形成されるものであ
る。かかる酸化皮膜(5)(6)は、陽極材料の誘電体
として少なくとも10Å以上に形成することを必要とす
るが、特に低圧用陽極箔としては3000Å以下の厚さ
に形成されることをもって必要かつ充分であり、それ以
上の厚さとすることは事実上無益である。
Oxide film formed on the outermost surface of the anode material (5) (6)
Is performed by anodizing the surface of the base material (1) on which the metal coating (2) composed of fine particles of valve metal is formed using a neutral solution such as boric acid, ammonium borate, or ammonium tartrate. And is formed as an oxide of the metal forming the respective surfaces on both the surface of the metal film (2) and the surface of the base material aluminum inside the pores (4) having no metal film at the same time. It is a thing. The oxide films (5) and (6) are required to be formed as a dielectric of an anode material to have a thickness of at least 10 Å or more, but especially for a low-voltage anode foil to be formed to a thickness of 3000 Å or less. Sufficient and thicker is practically useless.

発明の効果 この発明に係るアルミニウム電解コンデンサ用陽極材料
は上述のとおり、アルミニウム箔基材の表面が、微細な
凹凸を有し、かつこの微細凹凸面中に、最大深さ25μ
m以下、最大内径100μm以下のポアが100個/cm
2以上の密度で分布する態様に粗面化されており、上記
アルミニウム基材の少なくとも前記微細凹凸面上に、平
均粒子径0.01〜1.0μmの弁金属微粒子からなる
厚さ0.05〜5.0μmの金属皮膜が形成されている
ことにより、該皮膜による表面積拡大効果と相俟って、
従来品に較べ顕著な実効表面積の拡大化をはかることが
でき、ひいては静電容量の拡大に大きく貢献を果しう
る。加えて、上記弁金属微粒子からなる皮膜面上と、ア
ルミニウム箔基材のポア内面とに形成されたそれぞれの
酸化皮膜の両方が、静電容量に寄与するため、弁金属の
選択によってその酸化皮膜の誘電率を高いものとし、単
位面積当りに愈々大きな静電容量を有するものとなすこ
とができる。もとよりこの静電容量はアルミニウム箔基
材の表面を単にエッチングにより粗面化し、陽極化成し
てアルミニウム酸化皮膜を形成した従来の陽極材料に較
べてはるかに高いものであり、従って、電解コンデンサ
の一層の小型化、高性能化をはかることが可能となる。
EFFECTS OF THE INVENTION As described above, the aluminum electrolytic capacitor anode material according to the present invention has a surface of the aluminum foil base material having fine irregularities, and a maximum depth of 25 μm in the fine irregularities.
m or less, 100 pores with a maximum inner diameter of 100 μm or less / cm
It is roughened in a manner that it is distributed at a density of 2 or more, and has a thickness of 0.05 which is composed of valve metal fine particles having an average particle diameter of 0.01 to 1.0 μm on at least the fine irregular surface of the aluminum base material. The formation of a metal coating of ~ 5.0 μm, combined with the effect of increasing the surface area by the coating,
Compared with conventional products, the effective surface area can be remarkably increased, which in turn can greatly contribute to the increase in capacitance. In addition, both the oxide film formed on the surface of the valve metal fine particles and the oxide film formed on the inner surface of the pores of the aluminum foil base material contribute to the capacitance. Can have a high dielectric constant and can have an extremely large capacitance per unit area. Of course, this capacitance is much higher than the conventional anode material in which the surface of the aluminum foil base material is simply roughened by etching and anodized to form an aluminum oxide film. It is possible to reduce the size and improve the performance.

また、表面に多数のポアを有する基材が用いられている
ことにより、陽極表面への電解液のねれ性が一段ど良好
なものとなり、ひいてはコンデンサの耐久性、初期性能
の保持性を向上しうる。
In addition, the use of a base material that has a large number of pores on the surface further improves the wetting of the electrolyte solution to the anode surface, which in turn improves the durability of the capacitor and the retention of initial performance. You can.

実施例 次に、この発明の実施例を比較例との対比において示
す。
Example Next, an example of the present invention will be shown in comparison with a comparative example.

実施例1 厚さ0.1mm、純度99.99%のアルミニウム箔を、
液温60℃の2.5wt%塩酸溶液中に浸漬し、20A/
cm2の電流密度で300秒間交流電解エッチングを施し
た。このエッチング後のアルミニウム箔基材の表面は、
全面的に平均0.5μm以下の微細な凹凸が形成される
と共に、深さ20μm程度、内径30μm程度の多数の
エッチングポアが150個/cm2以上の分布密度に形成
されたものであり、表面拡大率は約50倍程度のもので
あった。次いで、上記エッチング箔基材表面に、5×1
-3Torrのアルゴンガス中でチタンを蒸発させ、平均粒
子径0.6μmのチタン微粒子による、最大厚さ1.0
μmのチタン蒸着皮膜を形成した。そして更にこの基材
を、液温30℃の10wt%ホウ酸アンモニウム溶液中で
直流10Vを印加して陽極化成を施し、上記のチタン蒸
着皮膜の表面、及びチタンの蒸着されていないポア内の
アルミニウム基材露出面に各々の酸化皮膜を形成した。
Example 1 An aluminum foil having a thickness of 0.1 mm and a purity of 99.99% was
Immerse in a 2.5 wt% hydrochloric acid solution at a liquid temperature of 60 ° C., 20 A /
AC electrolytic etching was performed for 300 seconds at a current density of cm 2 . The surface of the aluminum foil substrate after this etching is
The surface has fine irregularities of 0.5 μm or less on average, and a large number of etching pores with a depth of about 20 μm and an inner diameter of about 30 μm formed at a distribution density of 150 / cm 2 or more. The expansion ratio was about 50 times. Then, on the surface of the etching foil substrate, 5 × 1
Titanium was evaporated in an argon gas of 0 -3 Torr to form a titanium fine particle having an average particle diameter of 0.6 μm and a maximum thickness of 1.0.
A titanium vapor-deposited film of μm was formed. Then, this base material is further subjected to anodization by applying a direct current of 10 V in a 10 wt% ammonium borate solution having a liquid temperature of 30 ° C., and the surface of the titanium vapor-deposited film and the aluminum in the pores on which titanium is not vapor-deposited. Each oxide film was formed on the exposed surface of the base material.

比較例1 実施例1との対比例として、それと同様のエッチング箔
基材を用い、チタン蒸着皮膜を形成しないことのほかは
実施例1と全く同様にして陽極化成処理を行った。
Comparative Example 1 In contrast to Example 1, the same anodizing treatment was performed as in Example 1 except that the same etching foil substrate was used and the titanium vapor deposition film was not formed.

実施例2 厚さ0.1mm、純度99.99%のアルミニウム箔を液
温60℃の3wt%塩酸水溶液中に浸漬し、化学エッチン
グを施した。このエッチング後の箔基材は、表面に表面
粗さ平均0.5μm以下の微細な凹凸が形成されるとと
もに、深さ10μm程度、内径20μm程度の多数のエ
ッチングポアが100個/cm2以上の分布密度に形成さ
れたものであった。また基材の表面拡大率は約30倍で
あった。次いで、上記エッチング箔基材表面に、2×10
-5Torrの真空度でタンタルを蒸発させ、平均粒子径0.
5μmの微粒子による最大厚さ0.8μmタンタル蒸着
皮膜を形成した。そして更にこの基材を、液温35℃の
5wt%酒石酸アンモニウム溶液中で直流20Vの電圧を
印加して陽極化成し、上記タンタル蒸発皮膜面上及びタ
ンタルの蒸着されていないポア内面のアルミニウム基材
露出面の両表面に各々の酸化皮膜を形成した。
Example 2 An aluminum foil having a thickness of 0.1 mm and a purity of 99.99% was immersed in a 3 wt% hydrochloric acid aqueous solution having a liquid temperature of 60 ° C. and chemically etched. After the etching, the foil base material has fine irregularities with an average surface roughness of 0.5 μm or less on the surface, and a large number of etching pores with a depth of about 10 μm and an inner diameter of about 20 μm of 100 / cm 2 or more. It was formed in a distribution density. The surface expansion ratio of the substrate was about 30 times. Then, on the etching foil substrate surface, 2 × 10
Tantalum was evaporated at a vacuum degree of -5 Torr to obtain an average particle size of 0.
A tantalum vapor-deposited film having a maximum thickness of 0.8 μm was formed from fine particles of 5 μm. This substrate is further anodized in a 5 wt% ammonium tartrate solution at a liquid temperature of 35 ° C. by applying a voltage of DC 20 V, and the aluminum substrate on the surface of the tantalum evaporation coating and on the inner surface of the pores on which tantalum is not deposited. Each oxide film was formed on both surfaces of the exposed surface.

比較例2 実施例2との対比例として、それと同じエッチングアル
ミニム箔を用い、タンタル蒸着皮膜を形成しないで実施
例2と同様の陽極化成処理を施した。
Comparative Example 2 In contrast to Example 2, the same anodized aluminum foil was used and the same anodization treatment as in Example 2 was performed without forming a tantalum vapor deposition film.

実施例3 厚さ0.1mm、純度99.99%のアルミニウム箔を、
液温60℃の3wt%塩酸水溶液中に浸漬し、20A/5
0cm2の電流密度で300秒間直流電解エッチングを施
した。この基材の表面は微細に粗面化されかつ150個
/cm2以上の分布密度に多数のエッチングポアを有する
ものであり、表面積拡大率は約40倍のものであった。
次いでこの基材表面に1×10-3Torrの真空度のアルゴ
ンガス中でアルミニウムを蒸発させ、平均粒子径0.5
μmの微粒子による最大皮膜厚さ0.5μmのアルミニ
ウム蒸着皮膜を形成した。次にこの基材を液温30℃の
ホウ酸水溶液中で直流50Vの電圧を印加して陽極化成
処理し、アルミニウム蒸着皮膜の表面及びアルミニウム
蒸着皮膜を有しないポア内の基材アルミニウム露出面の
両表面に各々の酸化皮膜を形成した。
Example 3 An aluminum foil having a thickness of 0.1 mm and a purity of 99.99% was
Immerse in a 3 wt% hydrochloric acid aqueous solution at a liquid temperature of 60 ° C., 20 A / 5
DC electrolytic etching was performed for 300 seconds at a current density of 0 cm 2 . The surface of this substrate was finely roughened and had a large number of etching pores at a distribution density of 150 / cm 2 or more, and the surface area expansion ratio was about 40 times.
Then, aluminum is evaporated on the surface of the base material in an argon gas having a vacuum degree of 1 × 10 −3 Torr to obtain an average particle diameter of 0.5.
An aluminum vapor-deposited film having a maximum film thickness of 0.5 μm was formed by using fine particles of μm. Next, this substrate is subjected to anodization treatment by applying a DC voltage of 50 V in a boric acid aqueous solution at a liquid temperature of 30 ° C., and the surface of the aluminum vapor-deposited film and the aluminum-exposed face of the substrate in the pores not having the aluminum vapor-deposited film Each oxide film was formed on both surfaces.

比較例3 実施例3と対比するもので、それと同じエッチングアル
ミニウム箔基材を用い、アルミニウム蒸着皮膜を形成し
ないで実施例1と同様の陽極化成処理を施した。
Comparative Example 3 In contrast to Example 3, the same anodized aluminum foil substrate was used and the same anodization treatment as in Example 1 was performed without forming an aluminum vapor deposition film.

上記実施例1〜3及び比較例1〜3で得られた電解コン
デンサ用陽極材料の各々の試料につき、それらの静電容
量を液温30℃、ホウ酸アルミニウム水溶液中で測定し
た。結果を下記の表の右欄部分に示す。
The capacitance of each sample of the anode material for electrolytic capacitors obtained in Examples 1 to 3 and Comparative Examples 1 to 3 was measured in an aqueous solution of aluminum borate at a liquid temperature of 30 ° C. The results are shown in the right column of the table below.

上表の結果から明らかなように、この発明による電解コ
ンデンサ用陽極材料は、単にアルミニウム箔基材表面で
エッチングで粗面化したのち陽極化成処理して酸化皮膜
を形成した従来品相当のものに較べ、顕著に優れた静電
容量を有するものであることを確認し得た。
As is clear from the results in the table above, the anode material for electrolytic capacitors according to the present invention is equivalent to a conventional product in which an aluminum foil base material surface is simply roughened by etching and then anodized to form an oxide film. By comparison, it was confirmed that it had a remarkably excellent capacitance.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明に係る電解コンデンサ用陽極材料の表
面部の構成を示す模式的断面図である。 (1)…基材、(2)…金属皮膜、(3)…微細な凹
凸、(4)…ポア、(5)(6)…酸化皮膜。
FIG. 1 is a schematic sectional view showing a structure of a surface portion of an anode material for an electrolytic capacitor according to the present invention. (1) ... Substrate, (2) ... Metal film, (3) ... Fine irregularities, (4) ... Pore, (5) (6) ... Oxide film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム箔基材の表面が、微細な凹凸
を有し、かつこの微細凹凸面中に、最大深さ25μm以
下、最大内径100μm以下のポアが100個/cm2
上の密度で分布する態様に粗面化されており、 上記アルミニウム基材の少なくとも前記微細凹凸面上
に、平均粒子径0.01〜1.0μmの弁金属微粒子か
らなる厚さ0.05〜5.0μmの金属皮膜が形成され
ると共に、 上記金属皮膜面上及び前記ポアの内面に、それぞれの表
面の金属による厚さ10〜3000Åの酸化皮膜が形成
されてなることを特徴とする電解コンデンサ用陽極材
料。
1. The surface of an aluminum foil base material has fine irregularities, and the pores having a maximum depth of 25 μm or less and a maximum inner diameter of 100 μm or less are 100 or more / cm 2 in the fine irregularity surface. The aluminum base material is roughened in a distributed manner, and has a thickness of 0.05 to 5.0 μm made of valve metal fine particles having an average particle diameter of 0.01 to 1.0 μm on at least the fine uneven surface of the aluminum base material. An anode material for an electrolytic capacitor, characterized in that a metal film is formed and an oxide film having a thickness of 10 to 3000 Å is formed on the surface of the metal film and on the inner surface of the pores by the metal on each surface.
JP60154964A 1985-07-12 1985-07-12 Anode material for electrolytic capacitors Expired - Lifetime JPH061751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154964A JPH061751B2 (en) 1985-07-12 1985-07-12 Anode material for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154964A JPH061751B2 (en) 1985-07-12 1985-07-12 Anode material for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPS6215813A JPS6215813A (en) 1987-01-24
JPH061751B2 true JPH061751B2 (en) 1994-01-05

Family

ID=15595752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154964A Expired - Lifetime JPH061751B2 (en) 1985-07-12 1985-07-12 Anode material for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JPH061751B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006013812A1 (en) * 2004-08-05 2008-05-01 松下電器産業株式会社 Method for producing aluminum electrode foil for capacitor and aluminum foil for etching
KR101120872B1 (en) * 2007-04-20 2012-02-27 후지쯔 가부시끼가이샤 Electrode foil, process for producing the electrode foil, and electrolytic capacitor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306614A (en) * 1987-06-08 1988-12-14 Nichicon Corp Manufacture of aluminum electrode for electrolytic capacitor
JP2007035902A (en) * 2005-07-27 2007-02-08 Nichicon Corp Method of manufacturing anode foil for aluminum electrolytic capacitor
JP4984031B2 (en) * 2005-09-30 2012-07-25 日本ケミコン株式会社 Electrode capacitor electrode material
JP4879040B2 (en) * 2006-03-31 2012-02-15 三洋電機株式会社 Solid electrolytic capacitor
JP2008166602A (en) * 2006-12-28 2008-07-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP4992475B2 (en) * 2007-02-28 2012-08-08 富士通株式会社 Capacitor manufacturing method
JP5104008B2 (en) * 2007-04-20 2012-12-19 富士通株式会社 Electrolytic capacitor
JP5104007B2 (en) * 2007-04-20 2012-12-19 富士通株式会社 Electrode foil and manufacturing method thereof
JP5659756B2 (en) * 2010-12-09 2015-01-28 パナソニックIpマネジメント株式会社 Electrode foil, manufacturing method thereof and capacitor
JP6735510B2 (en) * 2016-03-25 2020-08-05 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2758155A1 (en) * 1977-12-27 1979-06-28 Siemens Ag METHOD OF MANUFACTURING AN ELECTROLYTE CONDENSER
JPS55145335A (en) * 1979-04-28 1980-11-12 Nichicon Capacitor Ltd Method of fabricating electrode foil for electrolytic condenser
JPS5683921A (en) * 1979-12-13 1981-07-08 Showa Aluminium Co Ltd Aluminum foil for electrolytic condenser and method of manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006013812A1 (en) * 2004-08-05 2008-05-01 松下電器産業株式会社 Method for producing aluminum electrode foil for capacitor and aluminum foil for etching
KR101120872B1 (en) * 2007-04-20 2012-02-27 후지쯔 가부시끼가이샤 Electrode foil, process for producing the electrode foil, and electrolytic capacitor
US8213159B2 (en) 2007-04-20 2012-07-03 Fujitsu Limited Electrode foil, method of manufacturing electrode foil, and electrolytic capacitor

Also Published As

Publication number Publication date
JPS6215813A (en) 1987-01-24

Similar Documents

Publication Publication Date Title
EP0940828B1 (en) Method for producing foil electrodes
KR100647181B1 (en) Solid electrolyte capacitor and its manufacturing method
JPH061751B2 (en) Anode material for electrolytic capacitors
US20110272288A1 (en) Method for fabricating carbon nanotube aluminum foil electrode
JP2745875B2 (en) Cathode materials for electrolytic capacitors
US7404887B2 (en) Electrodes for electrolytic capacitors and method for producing them
JPH059790A (en) Production of base substance having metal oxide on surface
US6865071B2 (en) Electrolytic capacitors and method for making them
JPH03150822A (en) Aluminum electrode for electrolytic capacitor
JPS59167009A (en) Method of producing electrode material for electrolytic condenser
US4323950A (en) Electrolytic capacitor with high-purity aluminized cathode
JPH0263284B2 (en)
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
JP2012193420A (en) Method for manufacturing electrode foil, method for manufacturing electrolytic capacitor, and electrode foil and electrolytic capacitor
WO2015076079A1 (en) Capacitor
JPH0260048B2 (en)
US20050013092A1 (en) Capacitor anode formed of metallic columns on a substrate
JPH079870B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
JP2734233B2 (en) Electrode materials for electrolytic capacitors
JPH0748462B2 (en) Method for manufacturing aluminum electrode material for electrolytic capacitor
JPH03150824A (en) Aluminum electrode for electrolytic capacitor
JPH0625895A (en) Formation of oxide film on surface of metallic material
JPH042109A (en) Aluminum electrode for electrolytic capacitor
WO2000058979A1 (en) Solid electrolytic capacitor and production method thereof
JPH079868B2 (en) Electrode material for electrolytic capacitors

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term