JPS63306614A - Manufacture of aluminum electrode for electrolytic capacitor - Google Patents

Manufacture of aluminum electrode for electrolytic capacitor

Info

Publication number
JPS63306614A
JPS63306614A JP14276287A JP14276287A JPS63306614A JP S63306614 A JPS63306614 A JP S63306614A JP 14276287 A JP14276287 A JP 14276287A JP 14276287 A JP14276287 A JP 14276287A JP S63306614 A JPS63306614 A JP S63306614A
Authority
JP
Japan
Prior art keywords
aluminum
titanium
electrolytic capacitor
ion plating
aluminum electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14276287A
Other languages
Japanese (ja)
Inventor
Takashi Mochizuki
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP14276287A priority Critical patent/JPS63306614A/en
Publication of JPS63306614A publication Critical patent/JPS63306614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain an aluminum electrode for an electrolytic capacitor capable of obtaining a large electrostatic capacity under no compulsion by a method wherein an aluminum-titanium alloy is formed on the surface of aluminum and a composite dielectric film where aluminum and titanium are mixed by anodic oxidation. CONSTITUTION:Titanium is attached to the surface of high-purity aluminum by an ion plating method; an aluminum-titanium alloy layer is formed on the surface. An oxide dielectric layer where aluminum and titanium are mixed is formed by an anodic oxidation process. Because a composition of the alloy can be selected freely, an amount of titanium to be injected by the ion plating method can be adjusted and an electrolytic capacity can be controlled. By this setup, it is possible to obtain an aluminum electrode for an electrolytic capacitor capable of obtaining a large electrostatic capacity under no compulsion.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解コンデンサに用いられるアルミニウム電極
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing aluminum electrodes used in electrolytic capacitors.

従来の技術 電解コンデンサの電極には、非常に薄い誘電体皮膜が電
気化学的に生成されるような金属が用いられ、現在はア
ルミニウムとタンタルが電極材料として工業化されてい
る。
BACKGROUND OF THE INVENTION The electrodes of electrolytic capacitors use metals in which very thin dielectric films are electrochemically produced, and aluminum and tantalum are currently being industrialized as electrode materials.

このうちアルミニウム電極の誘電体であるAlzO3の
比誘電率はおよそ7〜10であり、他の弁作用金属の比
誘電率よりも決して大きな値ではない。
Among these, the relative permittivity of AlzO3, which is the dielectric material of the aluminum electrode, is about 7 to 10, which is by no means larger than the relative permittivity of other valve metals.

たとえばTazosは比誘電率ε=25.2であり、T
ie、のε−66,1である。このためアルミニウム電
解コンデンサに用いられるアルミニウム箔は静電容量増
大のために高倍率エツチング処理を行い、表面積を増大
させている。
For example, Tazos has a dielectric constant ε=25.2 and T
ie, ε-66,1. For this reason, aluminum foil used in aluminum electrolytic capacitors is subjected to high-magnification etching treatment to increase the surface area in order to increase the capacitance.

このエツチング処理は箔厚を考慮し幾何学的に最も表面
積増大になるべく形状、すなわち理想エツチング状態に
すべく電気化学的あるいは化学的なエツチング方法の研
究が行われている。しかしながらエツチング技術はかな
り進歩し、現時点において現在の表面拡大率の2倍、3
倍とすることは単に表面を微細化させるのみでは不可能
になってきている。
In this etching process, studies are being conducted on electrochemical or chemical etching methods in order to take the foil thickness into consideration and achieve a shape that geometrically maximizes the surface area, that is, an ideal etching state. However, etching technology has progressed considerably, and at present the current surface magnification rate can be doubled or tripled.
It is becoming impossible to double the size simply by making the surface finer.

発明が解決しようとする問題点 また仮により微細化することに成功したとしても、高い
電圧になるとエツチング孔のいわゆる目詰り現象によっ
てエツチング形状は生かせず、静電容量の低下を招く。
Problems to be Solved by the Invention Even if it is possible to achieve finer etching, the etched shape cannot be maintained due to the so-called clogging phenomenon of the etched holes at high voltages, resulting in a decrease in capacitance.

さらに電解コンデンサを作成した時も電解液との界面接
触が低下し、箔抵抗の増大、tanδの増大、インピー
ダンス特性の低下など様々な緒特性の低下につながる。
Furthermore, when an electrolytic capacitor is produced, the interfacial contact with the electrolyte decreases, leading to a decrease in various mechanical properties such as an increase in foil resistance, an increase in tan δ, and a decrease in impedance characteristics.

一方陽臘酸化方法(化成方法)による静電容量の増大も
試みられている。これは純水ボイル処理によるベーマイ
ト皮膜と電気化学的生成皮膜との複合皮膜、ホウ酸溶液
による化成皮膜とリン酸溶液による化成皮膜との複合皮
膜、化成前処理に特殊薄膜を作成させ、該薄膜と電気化
学的皮膜との複合皮膜など様々な検討が行われている。
On the other hand, attempts have also been made to increase the capacitance by a positive oxidation method (chemical conversion method). This is a composite film of a boehmite film and an electrochemically generated film by boiling in pure water, a composite film of a chemical conversion film using a boric acid solution and a chemical conversion film using a phosphoric acid solution, and a special thin film created by a pre-chemical treatment. A variety of studies are being conducted, including composite coatings with electrochemical coatings and electrochemical coatings.

しかしながら大幅な静電容量の増加方法は見出されてい
ない。
However, no method has been found to significantly increase capacitance.

このように現時点に使用されている99.99%あるい
は99.9%の高純度アルミニウム箔を用いた改良では
大幅な静電容量の増大にはかなりの困難に直面している
。無理をして静電容量の増大を図っても漏れ電流の増大
、耐圧の低下を起こし良好な結果は得られない。
As described above, improvements using 99.99% or 99.9% high-purity aluminum foil currently in use face considerable difficulties in significantly increasing capacitance. Even if the capacitance is increased by force, the leakage current increases and the withstand voltage decreases, and good results cannot be obtained.

問題点を解決するための手段 本発明はこのような背景をもとに無理なく大きな静電容
量が得られる電解コンデンサ用アルミニウム電極の製造
方法を提供しようとするものである。
Means for Solving the Problems Based on this background, the present invention aims to provide a method for manufacturing aluminum electrodes for electrolytic capacitors, which allows reasonably large capacitance to be obtained.

最近イオン−ブレーティングを始めとするイオン注入法
の技術は大幅に進歩し、現在その実用例として半導体工
学において、基板物質に微量の不純物を高度に制御した
条件で混入させる等有効に用いられている。イオン−ブ
レーティング法は高エネルギー粒子の侵入により基板物
質の化学結合や結晶構造の破壊が起こるが、それと同時
に再結晶を生じ、表層中に準安定物が形成される。この
プロセスは衝突というランダムな過程で進行するため、
基板物質と添加元素の組合せは任意に選択できる。この
ことから金属へのイオン注入では通常の熱平衡での溶解
性を無視した組成からなる合金を作成することができる
Recently, ion implantation techniques such as ion-blating have made great progress, and are currently being used effectively in semiconductor engineering to mix minute amounts of impurities into substrate materials under highly controlled conditions. There is. In the ion-blating method, the chemical bonds and crystal structure of the substrate material are destroyed due to the penetration of high-energy particles, but at the same time, recrystallization occurs and metastable substances are formed in the surface layer. This process proceeds through random processes called collisions, so
The combination of substrate material and additive elements can be selected arbitrarily. Therefore, by ion implantation into metals, it is possible to create alloys with compositions that ignore solubility in normal thermal equilibrium.

すなわち、本発明はアルミニウムにチタンをイオンプレ
ーティングすることによりアルミニウム表面にアルミ−
チタン合金を形成させ、これを陽極酸化によりアルミと
チタンの混在複合誘電体膜を生成し、大幅に静電容量を
増大することができる電解コンデンサ用アルミニウム電
極の製造方法である。
That is, the present invention applies aluminum to the aluminum surface by ion plating titanium on aluminum.
This is a method for manufacturing aluminum electrodes for electrolytic capacitors that can significantly increase capacitance by forming a titanium alloy and then anodizing it to produce a composite dielectric film containing aluminum and titanium.

作用 イオン−ブレーティング法では上記したように合金組成
を自由に選択することが可能であるため、イオン−ブレ
ーティングによって打ち込むチタン量の調整ができ、静
電容量のコントロールが可能である。またエツチングさ
れたアルミニウムに対しても有効であり、かなりの静電
容量の増加が図れた。
In the active ion-blating method, the alloy composition can be freely selected as described above, so the amount of titanium implanted can be adjusted by ion-blating, and the capacitance can be controlled. It was also effective against etched aluminum, and a considerable increase in capacitance was achieved.

“  さらに従来まで試みられていたアルミニウム上へ
のチタン蒸着法や塗膜熱分解法では陽極酸化条件をかな
り限定しないと、直列に配した複合誘電体層となってし
まったり、大幅な静電容量低下を招いたり、チタンの陽
極酸化中の剥がれが誘発され、かなり困難な点があった
が、本発明法によるイオンプレーティングによる表面合
金では上述の問題は全く発生しない。また誘電体となる
べき金属酸化物の付着と異なり、付着する際の厚みを全
く気にしないですむという利点も有している。
“Furthermore, the titanium vapor deposition method and film pyrolysis method on aluminum that have been attempted so far require very limited anodic oxidation conditions, resulting in composite dielectric layers arranged in series, or a large capacitance. However, the above-mentioned problems do not occur at all with the surface alloy formed by ion plating according to the method of the present invention. Unlike the attachment of metal oxides, it also has the advantage that there is no need to worry about the thickness when attaching.

すなわち、アルミニウム金属上にチタンをイオンプレー
ティングするとチタン薄膜が生成するのではなく、アル
ミ−チタン合金が形成され、そこに陽極酸化を行うと酸
化アルミニウムと酸化チタンの混在複合皮膜が形成され
、高容量が得られる。
In other words, when titanium is ion plated on aluminum metal, an aluminum-titanium alloy is formed instead of a thin titanium film, and when anodized, a mixed composite film of aluminum oxide and titanium oxide is formed, resulting in a high Capacity is obtained.

実施例 純度99.99%、厚み70μmのアルミニウム箔を塩
酸を主体としたエツチング液を用い、電Mエツチングを
行い約20倍の表面積を有するエツチング箔を作成した
EXAMPLE An aluminum foil having a purity of 99.99% and a thickness of 70 μm was subjected to electric M etching using an etching solution mainly containing hydrochloric acid to produce an etched foil having a surface area approximately 20 times larger.

次いで該表面上の約5〜10μmの部分にA (l q
。Ti、。になるようにTiのイオンプレーティング処
理して試料Aを作成し、また A (l s。Ti5゜になるようにTiのイオンプレ
ーティング処理して試料Bを作成した。
Then, A (l q
. Ti,. Sample A was prepared by ion plating Ti so that the angle became A (l s. Ti5°), and sample B was prepared by ion plating Ti so that A (l s. Ti5°).

上記試料A、Bと、Tiのイオンプレーティングを行わ
ないもの(試料C)を各々pH=6.5のリン酸アンモ
ニウム溶液で80V陽極酸化を行い、皮膜特性を測定し
た。その結果を表に示す。
The above-mentioned samples A and B and a sample without Ti ion plating (sample C) were each anodized at 80V with an ammonium phosphate solution having a pH of 6.5, and the film properties were measured. The results are shown in the table.

静電容量はpH=6.5のリン酸アンモニウム溶液中で
12011zにて測定し、皮膜耐圧は上記化成液中で電
流密度0.1mA/calを通電した時の電圧一時間特
性を測り、電圧上昇停止点を皮膜耐圧とした。
The capacitance was measured at 12011z in an ammonium phosphate solution with pH = 6.5, and the film breakdown voltage was measured by measuring the voltage characteristics for one hour when a current density of 0.1 mA/cal was applied in the above chemical solution. The point at which the rise stopped was defined as the film withstand pressure.

また、漏れ電流は上記測定液で50V印加し2分後の値
を読み取った。
Further, the leakage current was measured by applying 50V to the test solution and reading the value after 2 minutes.

表 発明の効果 表に示したように本発明法によって作成したアルミニウ
ム合金電極は大幅な静電容量の増大が測られ、電解コン
デンサの小型化に大きく寄与し、工業的かつ実用的価値
大なるものである。
As shown in the Table of Effects of the Invention, the aluminum alloy electrode produced by the method of the present invention has a significant increase in capacitance, greatly contributes to the miniaturization of electrolytic capacitors, and has great industrial and practical value. It is.

Claims (2)

【特許請求の範囲】[Claims] (1)高純度アルミニウムの表面にチタンをイオンプレ
ーティング法により付着せしめ、表面にアルミ−チタン
合金層を形成させた後、陽極酸化処理してアルミ−チタ
ン混在酸化物誘電体層を形成させることを特徴とする電
解コンデンサ用アルミニウム電極の製造方法。
(1) After adhering titanium to the surface of high-purity aluminum by ion plating to form an aluminum-titanium alloy layer on the surface, anodizing is performed to form an aluminum-titanium mixed oxide dielectric layer. A method for manufacturing an aluminum electrode for an electrolytic capacitor, characterized by:
(2)上記高純度アルミニウムをエッチング処理した後
、チタンをイオンプレーティング法により付着せしめる
ことを特徴とする特許請求の範囲第1項記載の電解コン
デンサ用アルミニウム電極の製造方法。
(2) The method for manufacturing an aluminum electrode for an electrolytic capacitor according to claim 1, characterized in that after etching the high-purity aluminum, titanium is deposited by an ion plating method.
JP14276287A 1987-06-08 1987-06-08 Manufacture of aluminum electrode for electrolytic capacitor Pending JPS63306614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14276287A JPS63306614A (en) 1987-06-08 1987-06-08 Manufacture of aluminum electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14276287A JPS63306614A (en) 1987-06-08 1987-06-08 Manufacture of aluminum electrode for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63306614A true JPS63306614A (en) 1988-12-14

Family

ID=15322989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14276287A Pending JPS63306614A (en) 1987-06-08 1987-06-08 Manufacture of aluminum electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63306614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166602A (en) * 2006-12-28 2008-07-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2012094914A (en) * 2012-02-03 2012-05-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2012124347A (en) * 2010-12-09 2012-06-28 Panasonic Corp Electrode foil, method of manufacturing the same, and capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215813A (en) * 1985-07-12 1987-01-24 昭和アルミニウム株式会社 Anode material for electrolytic capacitor
JPS6279610A (en) * 1985-10-03 1987-04-13 日通工株式会社 Anode for electrolytic condenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215813A (en) * 1985-07-12 1987-01-24 昭和アルミニウム株式会社 Anode material for electrolytic capacitor
JPS6279610A (en) * 1985-10-03 1987-04-13 日通工株式会社 Anode for electrolytic condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166602A (en) * 2006-12-28 2008-07-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2012124347A (en) * 2010-12-09 2012-06-28 Panasonic Corp Electrode foil, method of manufacturing the same, and capacitor
JP2012094914A (en) * 2012-02-03 2012-05-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
BRPI0715961A2 (en) semi-finished products with a structured sintered active surface and a process for their production
JP5816794B2 (en) Manufacturing method of electrode foil
KR20080080348A (en) Porous valve metal thin film, method for production thereof and thin film capacitor
JPS63306614A (en) Manufacture of aluminum electrode for electrolytic capacitor
JP3032570B2 (en) Electrode foil for aluminum electrolytic capacitor and method of manufacturing the same
JPH0291918A (en) Electrode material for electrolytic capacitor
Wu et al. Electrochemical deposition of barium titanate films using a wide electrolytic voltage range
JP2008072003A (en) Electrode substrate and method for manufacturing electrode base material
JP2004524686A (en) Electrolytic capacitor and method for producing the same
US2917419A (en) Method of forming an adherent oxide film on tantalum and niobium foil
JPH03150822A (en) Aluminum electrode for electrolytic capacitor
JPS63304613A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
Teng et al. Production of Ba (Zr, Ti) O3 coatings on ternary (Ti, Zr) N thin film electrodes by plasma electrolyte oxidation
JPH01124212A (en) Aluminum alloy electrode for electrolytic capacitor
JPH0413411B2 (en)
KR101160907B1 (en) Preparation method of aluminum film with complex oxide dielectric using cathode electrolytic deposition and anodizing
KR100970575B1 (en) Method for preparation of RuO2 thin films having mesoporous structure by electrochemical deposition and RuO2 thin films prepared by the method
JP2009152273A (en) Porous electrode for electrolytic capacitor, and manufacturing method thereof
KR20160024616A (en) Method for fabricating oxidation film on metallic materials
JPH05198461A (en) Electrode for electrolytic capacitor
RU1838455C (en) Method barium titanate film application
JP2006083425A (en) Method for manufacturing porous niobium material, porous niobium material, and electrolytic capacitor and catalyst support provided with the same
Asadi et al. Film Formation via Plasma Electrolyte Oxidation of Ti and Ti-5Mo-4V-3Al Alloy in High Alkaline Solutions
JPS6257090B2 (en)