JPH0617176A - Corrosion and wear resistant co-based alloy - Google Patents

Corrosion and wear resistant co-based alloy

Info

Publication number
JPH0617176A
JPH0617176A JP4199114A JP19911492A JPH0617176A JP H0617176 A JPH0617176 A JP H0617176A JP 4199114 A JP4199114 A JP 4199114A JP 19911492 A JP19911492 A JP 19911492A JP H0617176 A JPH0617176 A JP H0617176A
Authority
JP
Japan
Prior art keywords
alloy
corrosion
content
based alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4199114A
Other languages
Japanese (ja)
Inventor
Hiroaki Okano
宏昭 岡野
Kazuyuki Inui
一幸 乾
Hiroshi Makino
宏 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4199114A priority Critical patent/JPH0617176A/en
Publication of JPH0617176A publication Critical patent/JPH0617176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide a Co-based alloy excellent in corrosion and wear resistance and useful as the constituent material of the cylinder, screw, etc., of an injection molding machine, etc. CONSTITUTION:This corrosion and wear resistant Co-based alloy consists of 5-20% Cr, 7-30% Mo, 0.5-3% Si, <=1.5% C, 0.1-6% B, 0.5-30% W and the balance essentially Co but the case of 0.5-4% Band 5-15% W is excluded. When hardness and wear resistance are especially desired, the B and W contents are allowed to satisfy 9<=8B+W<=45%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、射出成形機や押出成形
機のシリンダ、スクリュー、プランジヤ等、耐食性と耐
摩耗性を必要とする各種部材の構成材料として有用なC
o基合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is useful as a constituent material for various members such as cylinders, screws and plungers of injection molding machines and extrusion molding machines, which require corrosion resistance and wear resistance.
o-based alloys.

【0002】[0002]

【従来の技術】射出成形機や押出成形機を構成するシリ
ンダ、およびスクリュー、プランジヤ等の部材は高圧力
・高速度で圧送される流動体の接触に対する摩耗抵抗性
や腐食抵抗性が要求される。従来より、その材料として
窒化鋼(JIS G4202,SACM645等)が専
ら使用されてきた。
2. Description of the Related Art Cylinders constituting an injection molding machine or an extrusion molding machine, and members such as screws and plungers are required to have wear resistance and corrosion resistance against contact of fluids which are pumped at high pressure and high speed. . Conventionally, nitrided steel (JIS G4202, SACM645, etc.) has been exclusively used as the material.

【0003】[0003]

【発明が解決しようとする課題】窒化鋼の表面の有効窒
化層厚は、約0.5mm程度に過ぎず、このため窒化鋼
を使用している従来の射出成形機や押出成形機の耐久性
は必ずしも十分なものと言えない。殊に、近時は繊維強
化プラスチック成形品、プラスチックマグネット、ある
いはセラミックス成形品等に対する需要が増大しつつあ
り、これらの成形品の成形操業における部材表面の摩耗
・腐食の進行、およびそれに伴う耐用寿命の低下は顕著
であり、生産機として対応することは極めて困難な状況
となっている。この対策として、本出願人は、先にC
r:5〜20%,Mo:5〜20%,W:5〜15%,
B:0.5〜4%,Si:0.5〜3%,C1.5%以
下,残部Coからなる、改良された耐食性および耐摩耗
性を有するCo基合金を提供した(特開平1−2727
32号公報)。本発明は、上記Co基合金と同等ないし
それ以上の耐食性・耐摩耗性を有し、構造材料として必
要な強度、靱性を備えたCo基合金を提供するものであ
る。
The effective nitriding layer thickness on the surface of nitrided steel is only about 0.5 mm, and therefore the durability of conventional injection molding machines and extrusion molding machines using nitrided steel is improved. Is not always sufficient. In particular, the demand for fiber-reinforced plastic moldings, plastic magnets, ceramics moldings, etc., has recently been increasing, and the wear and corrosion of the surface of members during the molding operation of these moldings and the resulting service life have been increasing. It is extremely difficult to deal with it as a production machine. As a countermeasure against this, the applicant has previously proposed C
r: 5-20%, Mo: 5-20%, W: 5-15%,
A Co-based alloy comprising B: 0.5 to 4%, Si: 0.5 to 3%, C 1.5% or less, and the balance Co having improved corrosion resistance and wear resistance is provided (JP-A-1- 2727
No. 32). The present invention provides a Co-based alloy that has corrosion resistance and wear resistance equal to or higher than those of the Co-based alloy described above and that has strength and toughness necessary as a structural material.

【0004】[0004]

【課題を解決するための手段および作用】本発明の耐食
耐摩耗性Co基合金は、Cr:5〜20%,Mo:7〜
30%,B:0.1〜6%,W:0.5〜30%(但
し、W:5〜15%であって、かつB:0.5〜4%で
ある場合を除く),Si:0.5〜3%,C:1.5%
以下,残部実質的にCoからなる化学組成を有してい
る。
Means and Actions for Solving the Problems Corrosion-resistant and wear-resistant Co-based alloys of the present invention are Cr: 5-20%, Mo: 7-
30%, B: 0.1 to 6%, W: 0.5 to 30% (except for W: 5 to 15% and B: 0.5 to 4%), Si : 0.5-3%, C: 1.5%
The balance below has a chemical composition consisting essentially of Co.

【0005】[0005]

【作用】上記化学組成を有する本発明のCo基合金は、
各種の無機酸,有機酸に対する腐食抵抗性にすぐれ、か
つ高度の摩耗抵抗性を備えている。本発明のCo基合金
は、代表的には、その合金粉末を原料とする熱間静水等
方加圧焼結法等による焼結合金として実使用に供される
が、B含有量を比較的高めの範囲に設定した成分構成に
おいては、高B含有による合金の低融点化の効果とし
て、部材の製造に、その合金粉末を原料とする溶解・凝
固プロセスを適用することもできる。
The Co-based alloy of the present invention having the above chemical composition is
It has excellent corrosion resistance to various inorganic and organic acids and has a high degree of wear resistance. The Co-based alloy of the present invention is typically put to practical use as a sintered alloy using the alloy powder as a raw material by a hot isostatic pressing method such as hydrostatic isostatic pressing. With the composition of components set in a higher range, as an effect of lowering the melting point of the alloy due to the high B content, a melting / solidification process using the alloy powder as a raw material can be applied to the production of the member.

【0006】本発明のCo基合金の成分限定理由は次の
とおりである。 Cr:5〜20% Crは、一部はマトリックスに固溶して合金の耐食性を
高め、残部は炭化物、硼化物を形成して合金の硬度を高
め耐摩耗性を強化する。含有量の下限を5%としたの
は、それより少ない量ではこれらの効果が不足するから
であり、その増量に従って効果は増大する。特に、耐食
性の強化を必要とする場合は、Cr含有量を、〔1.4
2(B+1/2C)+11.9〕(%)(以下、「Cr
」)以上としてCrの固溶量を富化するとよい。20
%までの含有量で効果はほぼ飽和するので、これを上限
とした。
The reasons for limiting the components of the Co-based alloy of the present invention are as follows. Cr: 5 to 20% Cr partly forms a solid solution in the matrix to enhance the corrosion resistance of the alloy, and the balance forms carbides and borides to increase the hardness of the alloy and enhance the wear resistance. The reason why the lower limit of the content is 5% is that these effects are insufficient with a smaller amount, and the effect increases as the amount increases. In particular, when it is necessary to strengthen the corrosion resistance, the Cr content should be [1.4
2 (B + 1 / 2C) +11.9] (%) (hereinafter, " Cr
% ") Or more, so as to enrich the solid solution amount of Cr. 20
Since the effect is almost saturated when the content is up to%, this is the upper limit.

【0007】Mo:7〜30% Moは、炭化物、硼化物を形成して合金の耐摩耗性を高
め、また炭化物、硼化物を形成せずにマトリックスに固
溶したMoは、耐食性、殊に塩酸等の非酸化性酸に対す
る腐食抵抗性の改善に寄与する。これらの効果を得るた
めには少なくとも7%の含有を必要とする。特に、耐食
性の強化を必要とする場合は、その含有量を、〔4.7
(B+1/2C)+7〕(%)(以下、「Mo%」)以
上としてMoの固溶量を増加するとよい。図1は、合金
のMo含有量と耐食性について、縦軸に塩酸腐食減量
(g/m2 /hr)、横軸に、Mo含有量から、Mo%
を差し引いた値(ΔMo%)をとって示した図(供試合
金は後記実施例欄の供試材No.1〜6,No.101〜1
06)であり、そのΔMo%が正の値となるMo量の含
有により、合金の耐食性は著しく強化されることがわか
る。しかし、Mo含有量をあまり多くすると、合金の脆
化をきたすので、30%を上限とする。
Mo: 7 to 30% Mo forms carbides and borides to enhance the wear resistance of the alloy, and Mo which forms a solid solution in the matrix without forming carbides and borides has corrosion resistance, especially It contributes to the improvement of corrosion resistance to non-oxidizing acids such as hydrochloric acid. In order to obtain these effects, it is necessary to contain at least 7%. In particular, when it is necessary to enhance the corrosion resistance, the content is [4.7
(B + 1 / 2C) +7] (%) (hereinafter, “ Mo% ”) or more is preferable to increase the solid solution amount of Mo. Figure 1, for the Mo content and the corrosion resistance of the alloy, hydrochloric corrosion weight loss on the vertical axis (g / m 2 / hr) , the horizontal axis, the Mo content, Mo%
The figure which took and took the value ((DELTA) Mo%) which deducted (The match money is No. 1-6 of the below-mentioned Example column, No. 101-1, No. 101-1.
06), and it can be seen that the corrosion resistance of the alloy is remarkably enhanced by the inclusion of the amount of Mo whose ΔMo% has a positive value. However, if the Mo content is too large, the alloy becomes brittle, so the upper limit is 30%.

【0008】W:0.5〜30% Wは、炭化物、硼化物を形成して合金の硬度、耐摩耗性
を高める。また、Wは若干ではあるが耐食性を良好にす
る。この効果は0.5%以上の含有により得られ、含有
量の増加に伴って効果は増大する。しかし、Wの多量添
加は反面において合金の曲げ強度、靱性の低下をきたす
ので、30%を上限とする。
W: 0.5 to 30% W forms carbides and borides to enhance the hardness and wear resistance of the alloy. Moreover, although W is slight, it improves the corrosion resistance. This effect is obtained when the content is 0.5% or more, and the effect increases as the content increases. However, addition of a large amount of W, on the other hand, lowers the bending strength and toughness of the alloy, so the upper limit is 30%.

【0009】B:0.1〜6% Bは、Cr,Mo,W等の硼化物の形成のために少なく
とも0.1%を必要とする。しかし、その含有量が6%
を越えると靱性が著しく低下するので、6%を越えては
ならない。B含有量の8倍量とW含有量との合計量(8
B+W)は、合金の硬度、靱性等に相関がある。図2お
よび図3は、合金の8B+W(%)と硬度(HRC)およ
び破壊靱性値(MPam1/2 )の関係を示している(供
試合金は後記実施例欄の供試材No.1〜6,No.101
〜106)。硬度は、8B+W(%)の値に比例して高
くなり(図2)、他方靱性は減少し(図3)、それぞれ
8B+W(%)の値との間に高度の相関性を有してお
り、従ってその値から硬度および靱性値を予測すること
ができる。合金の硬度、耐摩耗性をより高くするために
は、8B+W(%)を9%以上とするのが好ましい。し
かし、その値が余り高くなると、合金の脆化をきたし、
製品製造途中のクラック発生傾向が増大する。このた
め、45%を上限とするのが好ましい。特に靱性を必要
とする用途では、W含有量を20%以下とし、かつ8B
+W(%)の値を30%以下とするのがよい。
B: 0.1 to 6% B requires at least 0.1% for the formation of borides such as Cr, Mo and W. However, its content is 6%
If it exceeds 1.0%, the toughness is remarkably reduced, so 6% should not be exceeded. Total amount of 8 times B content and W content (8
B + W) has a correlation with the hardness and toughness of the alloy. 2 and 3 show the relationship between the alloy 8B + W (%) and the hardness (H RC ) and the fracture toughness value (MPam 1/2 ) (the match money is the test material No. in the Example section described later). 1-6, No. 101
~ 106). The hardness increases in proportion to the value of 8B + W (%) (Fig. 2), while the toughness decreases (Fig. 3), and each has a high degree of correlation with the value of 8B + W (%). Therefore, it is possible to predict hardness and toughness values from the values. In order to further increase the hardness and wear resistance of the alloy, it is preferable that 8B + W (%) be 9% or more. However, if the value is too high, the alloy becomes brittle,
The tendency for cracks to occur during product manufacturing increases. Therefore, it is preferable that the upper limit is 45%. Especially for applications requiring toughness, the W content should be 20% or less and 8B
The value of + W (%) is preferably 30% or less.

【0010】また、Bは合金の耐食性、硬度・耐摩耗性
を損なうことなく、融点の低下に奏効する。図4は、B
含有量と合金の融点の関係を示している(供試合金は後
記実施例欄の供試材No.1,No.2,No.5)。約2.
2%以上のB含有量により、融点は約1150℃以下と
なっている。このB含有による低融点化は合金溶製操業
に有利である。
Further, B is effective for lowering the melting point without impairing the corrosion resistance, hardness and wear resistance of the alloy. FIG. 4 shows B
The relationship between the content and the melting point of the alloy is shown (the test money is No. 1, No. 2 and No. 5 of the test piece in the Examples column described later). About 2.
With a B content of 2% or more, the melting point is about 1150 ° C. or less. The lowering of the melting point by containing B is advantageous for the alloy melting operation.

【0011】Si:0.5〜3% Siは、Cr,Mo,W等の元素と化合物を形成して合
金の耐摩耗性の向上に寄与する。また、Siの含有によ
り合金の融点が降下することは合金の溶製操業に有利で
ある。これらの効果を得るために、少なくとも0.5%
の含有量が必要である。しかし、3%を越えて多量に含
有すると合金の脆化をきたし、構造材料としての有用性
を損なうので、これを上限とした。
Si: 0.5-3% Si forms a compound with elements such as Cr, Mo and W, and contributes to the improvement of the wear resistance of the alloy. Further, the melting point of the alloy is lowered due to the inclusion of Si, which is advantageous for the melting operation of the alloy. At least 0.5% to obtain these effects
Is required. However, if it is contained in a large amount exceeding 3%, the alloy becomes brittle and the usefulness as a structural material is impaired, so this was made the upper limit.

【0012】C:1.5%以下 Cは、Cr,Mo,W等の炭化物の形成に必要な元素で
あり、また合金の融点を下げ、合金溶製操業を有利にす
る。しかし、含有量が1.5%を越えると、合金の脆化
をきたし構造材料としての有用性を損なうので、1.5
%以下とする。
C: 1.5% or less C is an element necessary for forming carbides such as Cr, Mo and W, and lowers the melting point of the alloy to make the alloy melting operation advantageous. However, if the content exceeds 1.5%, the alloy becomes brittle and the usefulness as a structural material is impaired.
% Or less.

【0013】本発明のCo基合金は、例えばその合金粉
末を焼結原料とし、熱間静水等方加圧焼結法等の公知の
焼結プロセスにより、シリンダ、スクリュー等の母材金
属の表面を被覆する焼結合金層を形成する。また、前記
のようにB含有量を高めて合金の融点を下げることによ
り、焼結プロセスに代え、溶融・凝固プロセスを適用す
ることも容易となり、例えば、融点約1150℃以下の
低融点成分構成とした場合は、普通鋼々材(例えばSS
41材)を母材金属とし、その表面に低融点合金粉末を
与えて粉末の溶融・凝固を行うことにより、母材の溶損
をきたすことなく、その表面に冶金的に接合した緻密な
合金層を積層形成することも可能である。
The Co-based alloy of the present invention uses, for example, the alloy powder as a sintering raw material, and is subjected to a known sintering process such as hot isostatic pressing under the isostatic pressing method on the surface of a base metal such as a cylinder or a screw. Forming a sintered alloy layer covering the. Also, by increasing the B content and lowering the melting point of the alloy as described above, it becomes easy to apply a melting / solidifying process instead of the sintering process. For example, a low melting point component composition having a melting point of about 1150 ° C. or less can be used. In the case of, ordinary steel materials (eg SS
No. 41) is a base metal, and a low melting point alloy powder is applied to the surface of the base metal to melt and solidify the powder, so that a dense alloy metallurgically bonded to the surface without causing melting loss of the base material. It is also possible to stack layers.

【0014】[0014]

【実施例】表1に示す各供試合金について、腐食試験、
摩耗試験および機械試験を行って、表2に示す結果を得
た。供試合金No.1〜6は発明例、No.101〜108
は比較例であり、比較例No.101〜103は、前記特
開平1−272732号公報に開示された合金相当材、
No.104〜106は、いずれかの元素(*マーク)が
本発明に規定の上・下限からはずれている例、No.10
7は「ステライト12」相当の市販Co基合金、No.1
08は窒化鋼(JIS G4202 SACM645,
表面窒化層厚0.5mm)である。
[Example] For each match shown in Table 1, a corrosion test,
An abrasion test and a mechanical test were performed and the results shown in Table 2 were obtained. Match money No. 1 to 6 are invention examples, No. 101 to 108
Is a comparative example, and comparative examples No. 101 to 103 are alloy equivalent materials disclosed in the above-mentioned JP-A-1-272732,
Nos. 104 to 106 are examples in which any element (* mark) deviates from the upper and lower limits specified in the present invention, No. 10
7 is a commercial Co-based alloy equivalent to "Stellite 12", No. 1
08 is nitrided steel (JIS G4202 SACM645,
The surface nitrided layer thickness is 0.5 mm).

【0015】各試験要領は次のとおりである。 〔I〕腐食試験 次の4種の腐食液(液温:50℃)に試験片を浸漬し、
48時間経過後の腐食減量(g/m2 hr)を測定す
る。 試験A:10%弗化水素酸水溶液 試験B:10%臭化水素酸水溶液 試験C:20%塩酸水溶液 試験D:50%硫酸水溶液
The test procedures are as follows. [I] Corrosion test The test piece was immersed in the following four kinds of corrosive liquids (liquid temperature: 50 ° C),
The corrosion weight loss (g / m 2 hr) after 48 hours is measured. Test A: 10% hydrofluoric acid aqueous solution Test B: 10% hydrobromic acid aqueous solution Test C: 20% hydrochloric acid aqueous solution Test D: 50% sulfuric acid aqueous solution

【0016】〔II〕摩耗試験 大越式迅速摩耗試験機を使用し、下記の摩耗試験により
摩耗減量(mm2 /kgf)を測定する。 (1)相手材(回転輪):SUJ2,硬さ(HRC):5
8〜60 (2)押付荷重:6.3kg/cm2 (3)摺接速度:1.93m/秒 (4)摺接距離:400m
[II] Abrasion test Using an Ogoshi type rapid abrasion tester, the abrasion loss (mm 2 / kgf) is measured by the following abrasion test. (1) Counterpart material (rotating wheel): SUJ2, hardness (H RC ): 5
8-60 (2) Pressing load: 6.3 kg / cm 2 (3) Sliding contact speed: 1.93 m / sec (4) Sliding contact distance: 400 m

【0017】表2に示したように、発明例No.1〜6
は、窒化鋼(No.108)に比べて、各種の酸に対する
腐食抵抗性および摩耗抵抗性のいずれも格段にすぐれて
いる。また、その耐摩耗性は「ステライト12」Co基
合金(No.107)と比べても明らかにすぐれている。
「ステライト12」Co基合金との耐食性の比較におい
て、発明例No.3,No.4,No.5の耐食性は若干低い
が、その耐食性は発明例No.6との比較から明らかなよ
うに、Cr含有量,Mo含有量を、Cr%Mo%以上
の量とすることにより大きく高め得ることがわかる。な
お、比較例No.104(B含有量過剰)は、硬度、耐摩
耗性にすぐれてはいるが、靱性値が極端に低く、No.1
05(Mo含有量不足)は塩酸に対する耐食性に劣り、
またNo.106(Cr含有量不足)は硫酸に対する耐食
性に乏しく、いずれも発明例に及ばない。
As shown in Table 2, Invention Examples No. 1 to 6
Has significantly better corrosion resistance to various acids and wear resistance than nitriding steel (No. 108). Also, its wear resistance is clearly superior to that of "Stellite 12" Co-based alloy (No. 107).
In comparison with the corrosion resistance of "Stellite 12" Co-based alloy, the corrosion resistances of Inventive Examples No. 3, No. 4 and No. 5 are slightly lower, but the corrosion resistance is clear from the comparison with Inventive Example No. 6. It can be seen that the Cr content and Cr content and the Mo content can be significantly increased by adjusting the content to be Cr% , Mo% or more. Although Comparative Example No. 104 (excess B content) is excellent in hardness and wear resistance, it has an extremely low toughness value.
05 (insufficient Mo content) has poor corrosion resistance to hydrochloric acid,
Further, No. 106 (insufficient Cr content) has poor corrosion resistance to sulfuric acid, and neither of them is equal to the invention examples.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明のCo基合金は、窒化鋼等を大き
く凌ぐ耐摩耗性と耐食性とを備えているので、例えば射
出成形機・押出成形機のシリンダ、スクリュー、プラン
ジヤ等の部材料として、その耐用寿命を改善することが
でき、通常のプラスチック成形はもとより、繊維強化プ
ラスチックやセラミックス等の射出・押出成形操業の安
定化・効率化等に寄与する。
Since the Co-based alloy of the present invention has wear resistance and corrosion resistance that greatly surpass those of nitrided steel and the like, it can be used as a material for parts such as cylinders, screws and plungers of injection molding machines and extrusion molding machines. , Its service life can be improved, and it contributes not only to ordinary plastic molding but also to stabilization and efficiency of injection / extrusion molding operations of fiber reinforced plastics and ceramics.

【図面の簡単な説明】[Brief description of drawings]

【図1】ΔMo量と耐塩酸腐食性の関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between the ΔMo amount and hydrochloric acid corrosion resistance.

【図2】8B+W(%)と硬度の関係を示すグラフであ
る。
FIG. 2 is a graph showing a relationship between 8B + W (%) and hardness.

【図3】8B+W(%)と破壊靱性値の関係を示すグラ
フである。
FIG. 3 is a graph showing a relationship between 8B + W (%) and a fracture toughness value.

【図4】B含有量と融点の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the B content and the melting point.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Cr:5〜20%,Mo:7〜30%,
W:0.5〜30%,B:0.1〜6%(但し、W:5
〜15%であって、かつB:0.5〜4%である場合を
除く),Si:0.5〜3%,C:1.5%以下、残部
実質的にCoからなる耐食耐摩耗性Co基合金。
1. Cr: 5-20%, Mo: 7-30%,
W: 0.5 to 30%, B: 0.1 to 6% (however, W: 5
˜15% and B: 0.5 to 4%), Si: 0.5 to 3%, C: 1.5% or less, and the balance is corrosion resistance and wear consisting essentially of Co. Co-based alloy.
【請求項2】 請求項1において、WおよびBの含有量
が8B+W:9〜45%を満足することを特徴とする耐
食耐摩耗性Co基合金。
2. The corrosion- and wear-resistant Co-based alloy according to claim 1, wherein the W and B contents satisfy 8B + W: 9 to 45%.
JP4199114A 1992-07-01 1992-07-01 Corrosion and wear resistant co-based alloy Pending JPH0617176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4199114A JPH0617176A (en) 1992-07-01 1992-07-01 Corrosion and wear resistant co-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4199114A JPH0617176A (en) 1992-07-01 1992-07-01 Corrosion and wear resistant co-based alloy

Publications (1)

Publication Number Publication Date
JPH0617176A true JPH0617176A (en) 1994-01-25

Family

ID=16402368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4199114A Pending JPH0617176A (en) 1992-07-01 1992-07-01 Corrosion and wear resistant co-based alloy

Country Status (1)

Country Link
JP (1) JPH0617176A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1704263A2 (en) * 2003-12-29 2006-09-27 Deloro Stellite Holdings Corporation Ductile cobalt-based laves phase alloys
WO2012063512A1 (en) * 2010-11-09 2012-05-18 福田金属箔粉工業株式会社 Wear-resistant cobalt-based alloy and engine valve coated with same
US9206715B2 (en) 2010-11-09 2015-12-08 Fukuda Metal Foil & Powder Co., Ltd. High-toughness cobalt-based alloy and engine valve coated with same
US9860988B2 (en) 2014-12-20 2018-01-02 Intel Corporation Solder contacts for socket assemblies
CN112695229A (en) * 2020-12-04 2021-04-23 中国科学院上海应用物理研究所 Cobalt-based alloy resistant to high temperature fluoride salt corrosion and preparation method thereof
JP2021080542A (en) * 2019-11-22 2021-05-27 株式会社日本製鋼所 Sintered material and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272738A (en) * 1988-04-21 1989-10-31 Kubota Ltd Corrosion-resistant and wear-resistant alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272738A (en) * 1988-04-21 1989-10-31 Kubota Ltd Corrosion-resistant and wear-resistant alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1704263A2 (en) * 2003-12-29 2006-09-27 Deloro Stellite Holdings Corporation Ductile cobalt-based laves phase alloys
EP1704263A4 (en) * 2003-12-29 2009-06-03 Deloro Stellite Holdings Corp Ductile cobalt-based laves phase alloys
WO2012063512A1 (en) * 2010-11-09 2012-05-18 福田金属箔粉工業株式会社 Wear-resistant cobalt-based alloy and engine valve coated with same
JP5486093B2 (en) * 2010-11-09 2014-05-07 福田金属箔粉工業株式会社 Wear-resistant cobalt base alloy and engine valve
US9206319B2 (en) 2010-11-09 2015-12-08 Fukuda Metal Foil & Powder Co., Ltd. Wear-resistant cobalt-based alloy and engine valve coated with same
US9206715B2 (en) 2010-11-09 2015-12-08 Fukuda Metal Foil & Powder Co., Ltd. High-toughness cobalt-based alloy and engine valve coated with same
US9860988B2 (en) 2014-12-20 2018-01-02 Intel Corporation Solder contacts for socket assemblies
US10321573B2 (en) 2014-12-20 2019-06-11 Intel Corporation Solder contacts for socket assemblies
JP2021080542A (en) * 2019-11-22 2021-05-27 株式会社日本製鋼所 Sintered material and method for producing the same
CN112695229A (en) * 2020-12-04 2021-04-23 中国科学院上海应用物理研究所 Cobalt-based alloy resistant to high temperature fluoride salt corrosion and preparation method thereof
CN112695229B (en) * 2020-12-04 2022-03-04 中国科学院上海应用物理研究所 Cobalt-based alloy resistant to high temperature fluoride salt corrosion and preparation method thereof

Similar Documents

Publication Publication Date Title
US4029000A (en) Injection pump for injecting molten metal
JPS63162801A (en) Manufacture of screw for resin processing machine
JPH10504063A (en) Boron carbide cermet structural material with high bending strength at high temperature
JPH0617176A (en) Corrosion and wear resistant co-based alloy
JPH0759730B2 (en) Corrosion and wear resistant alloys for plastic injection molding and extrusion machines
KR950007666B1 (en) Low-friction structure and method of making the same
JPH0617177A (en) Corrosion and wear resistant co-based alloy
JPH0657360A (en) Corrosion resistant and wear resistant ni-base alloy
US6200524B1 (en) Method of manufacturing of a mechanical face seal
JPH0971848A (en) High speed steel base powder alloy excellent in corrosion resistance
JP4279935B2 (en) Hard grain dispersed sintered steel and method for producing the same
JPS61143547A (en) Cylinder for plastic molding apparatus
JP4353617B2 (en) Corrosion-resistant and wear-resistant Ni alloys and parts for plastic kneaders and molding machines
JP2997994B2 (en) Surface hardened coating containing free carbon
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPS6362802A (en) Porous metallic sintered body
JP3464632B2 (en) Bearings for continuous hot metal plating equipment
JP2564528B2 (en) High corrosion and wear resistant tools, materials for parts
JP3229140B2 (en) Corrosion-resistant wear-resistant high-strength Ni-base alloy and its composite material
JPH08134570A (en) Composite material having high corrosion resistance and wear resistance
JPS62273820A (en) Composite cylinder for plastic molding apparatus
JP3373372B2 (en) Si-added NiW2B base alloy and mechanical structural member
JPS61266530A (en) Composite material
JP2936296B2 (en) Corrosion and wear resistant alloy for non-ferrous molten metal