JPH06157592A - Peptide or its derivative, combination thereof with protein and production of antiendothelin-1 antibody using the same as immunogen - Google Patents

Peptide or its derivative, combination thereof with protein and production of antiendothelin-1 antibody using the same as immunogen

Info

Publication number
JPH06157592A
JPH06157592A JP31326992A JP31326992A JPH06157592A JP H06157592 A JPH06157592 A JP H06157592A JP 31326992 A JP31326992 A JP 31326992A JP 31326992 A JP31326992 A JP 31326992A JP H06157592 A JPH06157592 A JP H06157592A
Authority
JP
Japan
Prior art keywords
peptide
ser
antibody
endothelin
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31326992A
Other languages
Japanese (ja)
Inventor
Akihiro Higuchi
明弘 樋口
Takashi Hayashi
隆志 林
Kenzo Baba
憲三 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP31326992A priority Critical patent/JPH06157592A/en
Publication of JPH06157592A publication Critical patent/JPH06157592A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an immunogenic peptide (protein) for obtaining an antiendothelin-1 antibody binding to only a specific antigenic determinant (a loop structure between cysteines at the 3rd and 11th positions) of the endothelin-1 molecule and to provide a method for producing the antiendothelin-1 antibody using the immunogenic peptide as the immunogen. CONSTITUTION:A chemically synthesized peptide Ac-Ser-Ser-Leu-Met-Asp-Lys- Glu (Ac indicates that the amino group at the N-terminal serine is acetylated) is bound to a protein [keyhole limpet hemocyanin(KLH) or bovine serum albumin(BSA)] according to a carbodiimide method. The peptide-binding protein is bound to an antiendothelin-1 polyclonal antibody without binding to a commercially available murine monoclonal antibody.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンドセリン−1のア
ミノ酸配列の部分配列を有するが、エンドセリン特有の
生理活性は有せず、動物に抗エンドセリン−1抗体を産
生させる免疫原性を備えたペプチドもしくはその誘導
体、それらとタンパク質との結合体、並びにこれらを用
いた抗エンドセリン−1抗体の製造方法に関する。本発
明のペプチド及びその誘導体は抗エンドセリン−1抗体
産生の免疫原となるほか、抗エンドセリン−1抗体の精
製用リガンドもしくは検出試薬として有用である。
INDUSTRIAL APPLICABILITY The present invention has a partial sequence of the amino acid sequence of endothelin-1, but does not have the physiological activity specific to endothelin, and has immunogenicity for producing anti-endothelin-1 antibody in animals. The present invention relates to a peptide or derivative thereof, a conjugate thereof with a protein, and a method for producing an anti-endothelin-1 antibody using these. The peptide and its derivative of the present invention serve as an immunogen for producing anti-endothelin-1 antibody, and are also useful as a ligand for the purification of anti-endothelin-1 antibody or a detection reagent.

【0002】[0002]

【従来の技術】エンドセリン−1は、図1に示すよう
に、21箇のアミノ酸残基からなるペプチドで、これま
でに発見された生理活性物質の中で最も強い血管平滑筋
収縮作用をもつペプチドである(Yanagisawa, M. et a
l.:Nature, 1988, 332, 373)。
BACKGROUND OF THE INVENTION Endothelin-1 is a peptide consisting of 21 amino acid residues, as shown in FIG. 1, which has the strongest vascular smooth muscle contracting activity among the physiologically active substances discovered so far. (Yanagisawa, M. et a
l.:Nature, 1988, 332 , 373).

【0003】また、エンドセリン−1の血中濃度は、高
血圧症、腎不全又は呼吸器系疾患等の病態・疾患と強い
相関関係のあることが知られている(Shichiri, M. et
al.:Hypertension, 1990, 15, 493; Kohno, M. et al.:
Am. J. Med., 1990, 88, 614)。
It is known that the blood level of endothelin-1 has a strong correlation with pathological conditions / diseases such as hypertension, renal failure and respiratory diseases (Shichiri, M. et.
al.:Hypertension, 1990, 15 , 493; Kohno, M. et al .:
Am. J. Med., 1990, 88 , 614).

【0004】血中のエンドセリン−1の測定法は、従
来、ラジオイムノアッセイ法やエンザイムイムノアッセ
イ法等があり、これらはいずれも特異検出試薬として抗
エンドセリン−1抗体が用いられている。後者のエンザ
イムイムノアッセイ法のうち、酵素標識した抗体を使う
ものはサンドイッチ法と呼ばれる方式を用いることが多
い。この方法は、検体中のエンドセリン−1をイムノプ
レート等の固相に固定化した抗エンドセリン−1抗体
(1次抗体)で捕捉したのち、酵素で標識した別の抗エ
ンドセリン−1抗体(2次抗体)を加えて挟み込み、発
色性又は発光性基質を加え、生じた発色又は発光量を測
定するものである。
Conventionally, there have been known methods for measuring endothelin-1 in blood, such as a radioimmunoassay method and an enzyme immunoassay method, all of which use an anti-endothelin-1 antibody as a specific detection reagent. Of the latter enzyme immunoassay methods, those using an enzyme-labeled antibody often use a method called a sandwich method. In this method, endothelin-1 in a sample is captured by an anti-endothelin-1 antibody (primary antibody) immobilized on a solid phase such as an immunoplate, and then another enzyme-labeled anti-endothelin-1 antibody (secondary antibody) is used. (Antibody) is added and sandwiched, a color-forming or luminescent substrate is added, and the generated color or luminescence amount is measured.

【0005】抗エンドセリン−1抗体を調製するために
は、従来、図1に示したような完全なアミノ酸配列をも
つエンドセリン−1そのもの、又はこれをアルブミン等
のタンパク質に結合させ、これを抗原として動物に免疫
する方法が採られていた(特開平2−150617号公
報、特開平2−238894号公報)。
In order to prepare an anti-endothelin-1 antibody, conventionally, endothelin-1 itself having a complete amino acid sequence as shown in FIG. 1 or its binding to a protein such as albumin is used as an antigen. A method of immunizing animals has been adopted (JP-A-2-150617, JP-A-2-238894).

【0006】[0006]

【発明が解決しようとする課題】しかし、図1に示した
ような完全なアミノ酸配列をもつエンドセリン−1その
もの、又はこれをタンパク質に結合させ、これを抗原と
して動物に免疫する方法では、エンドセリン−1分子中
の複数の抗原決定基と反応する抗体が得られ、特定の抗
原決定基とのみ反応する抗体を得ることができなかっ
た。そのため、エンドセリン−1の特定の部位とのみ反
応する抗体を得るには、これを更に抗体産生以降の段階
で目的の抗体だけを抽出する煩雑な分離精製が必要であ
った。また別の問題は、エンドセリン−1そのもの、又
はこれをタンパク質に結合させ抗原として用いると、エ
ンドセリン−1の強力な昇圧作用のために、免疫動物を
しばしば致死させることであった。
However, endothelin-1 itself having the complete amino acid sequence as shown in FIG. 1, or a method of binding this to a protein and immunizing an animal with this as an antigen, endothelin- An antibody reactive with a plurality of antigenic determinants in one molecule was obtained, and an antibody reactive only with a specific antigenic determinant could not be obtained. Therefore, in order to obtain an antibody that reacts only with a specific site of endothelin-1, it is necessary to perform complicated separation and purification in which only the desired antibody is extracted in the stage after antibody production. Another problem was that endothelin-1 itself or, when bound to a protein and used as an antigen, often killed an immunized animal due to the strong pressor action of endothelin-1.

【0007】本発明は、エンドセリン−1分子中の特定
の抗原決定基とのみ反応する抗エンドセリン−1抗体を
得るための免疫原ペプチド、それを免疫原とする(煩雑
な分離精製の不要な)抗エンドセリン−1抗体の製造方
法を提供することを目的とする。
The present invention uses an immunogenic peptide for obtaining an anti-endothelin-1 antibody which reacts only with a specific antigenic determinant in an endothelin-1 molecule, and uses it as an immunogen (no need for complicated separation and purification). It is an object to provide a method for producing an anti-endothelin-1 antibody.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、先ず、本発明者らはエンドセリン−1分子中の抗原
性の高い領域を見つけるべく、6アミノ酸残基からなる
エンドセリン−1部分配列ペプチドを、ポリエチレン製
のロッド上にアミノ末端側から一残基ずつずらしながら
合成し、合成したペプチドを既知の抗エンドセリン−1
ポリクローン抗体と反応させ、そのポリクローン抗体と
親和性の高いペプチドを調べた結果、Ser-Leu-Met-Asp-
Lys-Glu及びSer-Ser-Leu-Met-Asp-Lys-Gluの配列を持つ
ペプチドが抗体と最も高い親和性を持つことを見出し
た。本発明は、この知見に基づいて完成したものであ
る。
In order to achieve the above object, first of all, the inventors of the present invention, in order to find a highly antigenic region in an endothelin-1 molecule, an endothelin-1 partial sequence peptide consisting of 6 amino acid residues. Was synthesized on a polyethylene rod while shifting each residue from the amino terminal side, and the synthesized peptide was synthesized as a known anti-endothelin-1.
Ser-Leu-Met-Asp- was detected by reacting with a polyclonal antibody and examining peptides with high affinity for the polyclonal antibody.
It was found that peptides having the sequences Lys-Glu and Ser-Ser-Leu-Met-Asp-Lys-Glu have the highest affinity for the antibody. The present invention has been completed based on this finding.

【0009】すなわち、本発明は下記の(1)〜(6)
に関する (1)Ser-Ser-Leu-Met-Asp-Lys-Glu(I)で表される
ペプチド。 (2)Ser-Ser-Leu-Met-Asp-Lys(II)で表されるペプ
チド。 (3)Ser-Leu-Met-Asp-Lys-Glu(III)で表されるペプ
チド。 (4)上記(1)〜(3)のいずれかのペプチドの末端
のアミノ基もしくはカルボキシル基、又は側鎖のアミノ
基、カルボキシル基もしくは水酸基の、一部もしくは全
部が随意に遮断もしくは保護されたペプチド誘導体。 (5)タンパク質に上記(1)〜(3)のいずれかのペ
プチド又は上記(4)のペプチド誘導体を結合させてな
る、抗エンドセリン−1抗体誘導性タンパク質。 (6)上記(1)〜(3)のいずれかのペプチド、上記
(4)のペプチド誘導体又は上記(5)の抗エンドセリ
ン−1抗体誘導性タンパク質で動物を免疫することを含
む、抗エンドセリン−1抗体の製造方法。 なお本明細書中、アミノ酸は特に断らない限り慣用の3
文字で表し、それぞれのアミノ酸はL体で、ペプチドは
慣用の表し方に従いN末端を左側に、C末端を右側に示
している。
That is, the present invention provides the following (1) to (6):
(1) A peptide represented by Ser-Ser-Leu-Met-Asp-Lys-Glu (I). (2) A peptide represented by Ser-Ser-Leu-Met-Asp-Lys (II). (3) A peptide represented by Ser-Leu-Met-Asp-Lys-Glu (III). (4) A part or all of the amino group or carboxyl group at the terminal of the peptide of any one of (1) to (3) above, or the amino group, the carboxyl group or the hydroxyl group of the side chain is optionally blocked or protected. Peptide derivative. (5) An anti-endothelin-1 antibody-inducible protein obtained by binding the peptide according to any one of (1) to (3) above or the peptide derivative according to (4) above to the protein. (6) An anti-endothelin-containing method comprising immunizing an animal with the peptide according to any one of (1) to (3) above, the peptide derivative according to (4) above or the anti-endothelin-1 antibody-inducible protein according to (5) above. 1 Method for producing antibody. In addition, in the present specification, unless otherwise specified, an amino acid is a conventional 3
Each amino acid is represented by a letter, each amino acid is in the L-form, and the peptide is shown with the N-terminal on the left side and the C-terminal on the right side according to the conventional notation.

【0010】本発明のSer-Ser-Leu-Met-Asp-Lys-Glu
(I)で表されるペプチドはエンドセリン−1(図1)
の4番目のセリンから10番目のグルタミン酸までの部
分配列をもつペプチドである。同様に、本発明のSer-Se
r-Leu-Met-Asp-Lys(II)で表されるペプチドはエンド
セリン−1の4番目のセリンから9番目のリジンまでの
部分配列をもつペプチドであり、本発明のSer-Leu-Met-
Asp-Lys-Glu(III)で表されるペプチドは、エンドセリ
ン−1の5番目のセリンから10番目のグルタミン酸ま
での部分配列をもつペプチドである。
Ser-Ser-Leu-Met-Asp-Lys-Glu of the present invention
The peptide represented by (I) is endothelin-1 (Fig. 1).
Is a peptide having a partial sequence from the 4th serine to the 10th glutamic acid. Similarly, the Ser-Se of the present invention
The peptide represented by r-Leu-Met-Asp-Lys (II) is a peptide having a partial sequence from the 4th serine to the 9th lysine of endothelin-1 and is the Ser-Leu-Met- of the present invention.
The peptide represented by Asp-Lys-Glu (III) is a peptide having a partial sequence from the 5th serine of endothelin-1 to the 10th glutamic acid.

【0011】図1からも明らかなように3番目のシステ
インと11番目のシステインはSS結合で架橋されてい
るので、上記3種のペプチドは、3番目と11番目の2
つのシステインより造られるループ構造の部分配列に一
致するものである。したがって、本発明のペプチド
(I)〜(III)を免疫原として作製される抗体はエン
ドセリン−1のループ構造に対して特異的な親和性をも
つ抗体であることが期待される。
As is clear from FIG. 1, the 3rd cysteine and the 11th cysteine are cross-linked by an SS bond.
It corresponds to the partial sequence of the loop structure made from one cysteine. Therefore, it is expected that the antibody prepared by using the peptides (I) to (III) of the present invention as an immunogen is an antibody having a specific affinity for the loop structure of endothelin-1.

【0012】本発明のペプチドは、固相法あるいは液相
法等、慣用のペプチド化学合成法によって合成できる。
これらペプチドは、末端のアミノ基もしくはカルボキシ
ル基、又は側鎖のアミノ基、カルボキシル基もしくは水
酸基の、一部もしくは全部が随意に固相により遮断、又
はアセチル基等の保護基により保護されていてもよい。
The peptide of the present invention can be synthesized by a conventional peptide chemical synthesis method such as a solid phase method or a liquid phase method.
In these peptides, a part or all of the terminal amino group or carboxyl group, or side chain amino group, carboxyl group or hydroxyl group is optionally blocked by a solid phase or protected by a protective group such as an acetyl group. Good.

【0013】本発明のペプチド又はペプチド誘導体を結
合させるタンパク質としては、これらペプチドの抗原性
を高めるタンパク質を選ぶ。そのようなタンパク質とし
ては例えば、アルブミン、キーホール リンペット ヘモ
シアニン(Keyhole limpethemocyanin;以後、KLHと
略す。)、卵白リゾチーム、あるいはサイログロブリン
等のタンパク質が挙げられる。
As a protein to which the peptide or peptide derivative of the present invention is bound, a protein which enhances the antigenicity of these peptides is selected. Examples of such proteins include proteins such as albumin, keyhole limpet hemocyanin (hereinafter abbreviated as KLH), egg white lysozyme, and thyroglobulin.

【0014】本発明のペプチド又はペプチド誘導体をタ
ンパク質に結合させ方法としては、カルボジイミド法
( Lewis, J. E. et al.: Antimicrob. Agents Chemot
her.,1975, 7, 42.; Broughton, A. et al.: Antimicro
b. Agents Chemother.,1976,10, 652 )、N−ヒドロキ
シサクシイミド法( Kitagawa, T. et al.: Chem.Parm.
Bull.,1972, 20, 2176.; Hoshida, H. et al.: Chem.
Parm. Bull., 1983, 31, 4001 )等の公知の方法があ
る。
As a method for binding the peptide or peptide derivative of the present invention to a protein, a carbodiimide method (Lewis, JE et al .: Antimicrob. Agents Chemot
her., 1975, 7 , 42 .; Broughton, A. et al .: Antimicro
b. Agents Chemother., 1976, 10 , 652), N-hydroxysuccinimide method (Kitagawa, T. et al .: Chem.Parm.
Bull., 1972, 20 , 2176 .; Hoshida, H. et al .: Chem.
There are known methods such as Parm. Bull., 1983, 31 , 4001).

【0015】抗エンドセリン−1抗体(ポリクローナル
抗体)を取得するには、マウス、ラット、ウサギ、ヤ
ギ、ヒツジ等の動物に、本発明のペプチド、ペプチド誘
導体又はこれらとタンパク質の結合体を複数回投与して
免疫し、その免疫した動物の血清から採取すればよい。
このとき、免疫原としては、ペプチド又はそのペプチド
誘導体よりも、これらとタンパク質の結合体を投与する
ほうが抗体の産生量が高まり好ましい。マウス等の動物
を上記と同様にして免疫し、公知の細胞融合法、すなわ
ちその脾臓細胞と骨髄腫細胞を細胞融合し、クローニン
グし、抗体産生性のハイブリドーマを採り、これを培養
して抗体(モノクローナル抗体)を取得してもよい。
To obtain the anti-endothelin-1 antibody (polyclonal antibody), the peptide, peptide derivative of the present invention or a conjugate of these and a protein is administered to an animal such as mouse, rat, rabbit, goat, or sheep multiple times. Immunization is performed and the serum of the immunized animal is collected.
At this time, as the immunogen, it is preferable to administer a conjugate of the protein and the peptide, as compared with the peptide or the peptide derivative thereof, because the production amount of the antibody is increased. Animals such as mice are immunized in the same manner as described above, and a known cell fusion method, that is, cell fusion of the spleen cells and myeloma cells, cloning, collection of antibody-producing hybridomas, and culturing of these antibodies ( Monoclonal antibody) may be obtained.

【0016】本発明のペプチド又はペプチド誘導体をア
ルブミン等のタンパク質に結合させ、これをイムノプレ
ート等の固相に結合させたものは、抗エンドセリン−1
抗体の検出用材料として用いることができる。イムノプ
レート等の固相へのペプチドの結合法は物理吸着を用い
てもよいし、表面に官能基が露出したプレートを用い共
有結合によって結合してもよい。
The peptide or peptide derivative of the present invention bound to a protein such as albumin and bound to a solid phase such as an immunoplate is the anti-endothelin-1.
It can be used as a material for detecting antibodies. Physical adsorption may be used for binding the peptide to a solid phase such as an immunoplate, or a plate having a functional group exposed on the surface may be used for covalent binding.

【0017】次に、実験例を説明する。なお、以後の実
験例又は実施例で使用した「洗浄液1」は0.1%ツイ
ーン20を含むダルベッコ変法リン酸緩衝生理食塩水で
あり、「緩衝液1」は0.1%脱脂粉乳及び0.1%ツ
イーン20を含むダルベッコ変法リン酸生理食塩水であ
る。
Next, an experimental example will be described. The "washing solution 1" used in the following experimental examples or examples is Dulbecco's modified phosphate buffered saline containing 0.1% Tween 20, and "buffer solution 1" is 0.1% skim milk powder and Dulbecco's modified phosphate saline containing 0.1% Tween 20.

【0018】実験例1 エンドセリン−1の抗原決定基
のスクリーニング エンドセリン−1の抗原決定基のスクリーニングは、Ge
ysen らの報告(Geysen, H. M. et al.: Proc. Natl. A
cad. Sci. USA, 1984, 81, 3998)に準じて行った。
Experimental Example 1 Screening for antigenic determinant of endothelin-1 Screening for antigenic determinant of endothelin-1
Report by ysen et al. (Geysen, HM et al .: Proc. Natl. A
cad. Sci. USA, 1984, 81 , 3998).

【0019】(a)スクリーニング用ペプチドの合成 ミモトープデザインキット〔ケンブリッジリサーチバイ
オケミカル社(Cambridge Research Biochemicals In
c.)製〕を用いて、そのピンブロック上にエンドセリン
−1の部分アミノ酸配列を持つペプチドを合成した。合
成したペプチドは以下に示す10種類である。 (1)Cys-Ser-Cys-Ser-Ser-Leu (2) Ser-Cys-Ser-Ser-Leu-Met (3) Cys-Ser-Ser-Leu-Met-Asp (4) Ser-Ser-Leu-Met-Asp-Lys (5) Ser-Leu-Met-Asp-Lys-Glu (6) Leu-Met-Asp-Lys-Glu-Cys (7) Met-Asp-Lys-Glu-Cys-Val (8) Asp-Lys-Glu-Cys-Val-Tyr (9) Lys-Glu-Cys-Val-Tyr-Phe (10) Glu-Cys-Val-Tyr-Phe-Cys
(A) Synthesis of peptide for screening Mimotope Design Kit [Cambridge Research Biochemicals In
c.)] was used to synthesize a peptide having a partial amino acid sequence of endothelin-1 on the pin block. There are 10 kinds of peptides synthesized below. (1) Cys-Ser-Cys-Ser-Ser-Leu (2) Ser-Cys-Ser-Ser-Leu-Met (3) Cys-Ser-Ser-Leu-Met-Asp (4) Ser-Ser-Leu -Met-Asp-Lys (5) Ser-Leu-Met-Asp-Lys-Glu (6) Leu-Met-Asp-Lys-Glu-Cys (7) Met-Asp-Lys-Glu-Cys-Val (8) ) Asp-Lys-Glu-Cys-Val-Tyr (9) Lys-Glu-Cys-Val-Tyr-Phe (10) Glu-Cys-Val-Tyr-Phe-Cys

【0020】ペプチドの合成方法はキットに付属するマ
ニュアルに従い、キットに含まれるピンブロックおよび
9-fluorenylmethyloxycarbonyl(以下、Fmocと略す)-L-
アミノ酸を用いて行った。用いたアミノ酸の活性エステ
ルは、セリンのほかはすべてアミノ基をFmocで保護した
pentafluorophenyl エステル(以下、-Opfpと略す)で
あり、セリンのみはアミノ基をFmocで保護したdihydrox
y-benzotriazine エステル(以下、-ODhbtと略す)であ
る。またアスパラギン酸及びグルタミン酸の側鎖の保護
基はt-butyl エステル(以後、-OtBuと略す)、システ
インの側鎖の保護基はtrityl-(以下、Trtと略す)、リ
ジンの側鎖の保護基はt-butyloxycarbonyl(以下、Boc
と略す)、セリンおよびチロシンの側鎖の保護基はt-bu
tyl ether(以下、-tBuと略す)である。合成に用いた
ポリエチレン製のピンの先端表面はグラフト重合したア
クリル酸ポリマーで、それにはFmoc-β-アラニンがヘキ
サメチレンジアミンのスペーサを介して結合している。
The peptide synthesis method is according to the manual attached to the kit.
9-fluorenylmethyloxycarbonyl (hereinafter abbreviated as Fmoc) -L-
Performed with amino acids. The amino acid active esters used were all protected by Fmoc except for serine.
It is a pentafluorophenyl ester (hereinafter abbreviated as -Opfp), and only serine is dihydrox with the amino group protected by Fmoc.
It is a y-benzotriazine ester (hereinafter abbreviated as -ODhbt). The side chain protecting group of aspartic acid and glutamic acid is t-butyl ester (hereinafter abbreviated as -OtBu), the side chain protecting group of cysteine is trityl- (hereinafter abbreviated as Trt), and the side chain protecting group of lysine. Is t-butyloxycarbonyl (hereinafter Boc
Abbreviated), and the side chain protecting groups of serine and tyrosine are t-bu
It is tyl ether (hereinafter abbreviated as -tBu). The surface of the tip of the polyethylene pin used for the synthesis is a graft-polymerized acrylic acid polymer, to which Fmoc-β-alanine is bonded via a hexamethylenediamine spacer.

【0021】Fmoc-β-アラニンが共有結合したピンブロ
ックをピペリジン:N,N−ジメチルホルムアミド(以
下、DMFと略す)混合液 1:4(容量比)に30分
間浸漬してFmoc基をはずした後、DMFで5分間(2
回)、メタノールで2分間(1回)、メタノールで5分
間(2回)洗浄し、更に風乾してメタノールを完全に蒸
散させた。ピンブロックをDMFに5分間浸漬後、各ピ
ンの先端をFmocーアミノ酸溶液に30℃で18時間浸漬
してアミノ酸を付加させた。このときのアミノ酸溶液
は、各ピン上に合成予定しているペプチドのカルボキシ
ル末端のFmocーアミノ酸をそれぞれ20mMずつ、2
2.5mMの1−ヒドロキシ−ベンゾトリアゾール(以
後、HOBTと略)を含むDMF溶液に溶かしたもので
ある。アミノ酸を付加した後、DMFで2分間、メタノ
ールで2分間(3回)洗浄した。以上のアミノ酸の付加
反応をカルボキシル末端のアミノ酸からアミノ末端側に
順番に一つずつ行い、それぞれのピンブロック上に6ア
ミノ酸残基からなるペプチドを合成した。
The pin block to which Fmoc-β-alanine was covalently bonded was immersed in a piperidine: N, N-dimethylformamide (hereinafter abbreviated as DMF) mixed solution 1: 4 (volume ratio) for 30 minutes to remove the Fmoc group. Then, with DMF for 5 minutes (2
(2 times), washed with methanol for 2 minutes (1 time), washed with methanol for 5 minutes (2 times), and further air-dried to completely evaporate methanol. After the pin block was immersed in DMF for 5 minutes, the tip of each pin was immersed in an Fmoc-amino acid solution at 30 ° C. for 18 hours to add an amino acid. At this time, the amino acid solution contains 20 mM each of the carboxyl-terminal Fmoc-amino acids of the peptide to be synthesized on each pin.
It was dissolved in a DMF solution containing 2.5 mM 1-hydroxy-benzotriazole (hereinafter abbreviated as HOBT). After the amino acid was added, it was washed with DMF for 2 minutes and with methanol for 2 minutes (three times). The above-mentioned addition reaction of amino acids was carried out one by one from the amino acid at the carboxyl terminal to the amino terminal side in order to synthesize a peptide consisting of 6 amino acid residues on each pin block.

【0022】最後のアミノ酸を結合した後、ピンブロッ
クをDMF:無水酢酸:トリエチルアミン 5:2:1
(容量比)混合液に30℃で90分間浸漬し、アミノ基
をアセチル化した。反応後、DMFで2分間、メタノー
ルで2分間(3回)洗浄し、風乾した。側鎖の保護基を
はずすために、ピンブロックをトリフルオロ酢酸:アニ
ソール:エタンジチオール 95:2.5:2.5(容
量比)混合液に室温で4時間浸漬したのち、更に0.1
%(W/V)塩酸、50%(V/V)メタノール溶液に
浸漬し、超音波処理洗浄後、これを以下の実験に用い
た。
After coupling the last amino acid, the pin block was added to DMF: acetic anhydride: triethylamine 5: 2: 1.
(Volume ratio) The mixture was immersed in the mixed solution at 30 ° C. for 90 minutes to acetylate the amino groups. After the reaction, it was washed with DMF for 2 minutes and with methanol for 2 minutes (three times), and dried in air. In order to remove the side chain protecting group, the pin block was immersed in a mixed solution of trifluoroacetic acid: anisole: ethanedithiol 95: 2.5: 2.5 (volume ratio) for 4 hours at room temperature, and then 0.1
% (W / V) hydrochloric acid, 50% (V / V) methanol solution was immersed in the solution, and after ultrasonic treatment, this was used for the following experiments.

【0023】(b)高親和性領域のスクリーニング 既知の抗エンドセリン−1ポリクローン抗体に対して高
い親和性を持つアミノ酸配列を以下のようにして調べ
た。ピンブロック及びイムノプレートへの抗エンドセリ
ン−1抗体の非特異的な吸着を防ぐために、96穴のイ
ムノプレートに0.2%脱脂粉乳(Kirkegaard andPerr
y Laboratories. Inc. 製)を一ウェル当り400μlと
り、ピンブロックの各ピンが各ウェルに入るようにセッ
トし、4℃で一晩浸漬した。
(B) Screening of high affinity region An amino acid sequence having high affinity for a known anti-endothelin-1 polyclonal antibody was examined as follows. To prevent non-specific adsorption of anti-endothelin-1 antibody to pin blocks and immunoplates, 96% immunoplates were supplemented with 0.2% skim milk powder (Kirkegaard and Perr).
(manufactured by y Laboratories. Inc.) was taken in an amount of 400 μl per well, and each pin of the pin block was set so as to enter each well, and immersed at 4 ° C. overnight.

【0024】ピンブロック及びプレートを洗浄液1で充
分に洗った後、1/1000希釈した抗エンドセリン−
1ポリクローン抗体(ペプチド研究所(株)製)を含む
緩衝液1を一ウェル当り175μlとり、ピンをウェル
中、37℃で2.5時間浸漬した。このとき緩衝液1の
みを入れたウェルも同時に用意した。プレート及びピン
ブロックを洗浄液1で充分に洗った後、1/2000に
希釈したアルカリフォスファターゼ標識化抗ウサギ抗体
ヤギ抗体(Kirkegaard andPerry Laboratories. Inc.
製)(2次抗体)を含む緩衝液1を一ウエル当り175
μl加えた。ピンブロックのピンをウェルに浸し、37
℃で一時間インキュベーションした。一時間後ピンブロ
ックとプレートを洗浄液で充分洗ったあと、p−ニトロ
フェニルリン酸(以下、PNPPと略す。アルカリフォ
スファターゼ基質で、Kirkegaard and Perry Laborator
ies. Inc.製 )溶液を一ウェル当り175μl加え、ピ
ンをウェル中に浸して37℃で1時間反応させた。
After thoroughly washing the pin block and plate with Washing Solution 1, anti-endothelin-diluted 1/1000.
175 μl of buffer solution 1 containing 1 polyclonal antibody (manufactured by Peptide Institute Co., Ltd.) was taken per well, and pins were immersed in the wells at 37 ° C. for 2.5 hours. At this time, wells containing only buffer solution 1 were also prepared at the same time. The plate and the pin block were thoroughly washed with the washing solution 1, and then diluted to 1/2000 with an alkaline phosphatase-labeled anti-rabbit antibody goat antibody (Kirkegaard and Perry Laboratories. Inc.
Buffer solution 1) containing (secondary antibody) 175 per well
μl was added. Dip the pins of the pin block into the wells and
Incubated at 0 ° C for 1 hour. After 1 hour, the pin block and plate were thoroughly washed with a washing solution, and then p-nitrophenyl phosphate (hereinafter abbreviated as PNPP. Alkaline phosphatase substrate, Kirkegaard and Perry Laborator
ies. Inc.) solution was added in an amount of 175 μl per well, and pins were immersed in the wells and reacted at 37 ° C. for 1 hour.

【0025】ピンブロックを取り除いて反応を停止し、
各ウェルから100μlずつをとり、別のプレートの各
ウェルに回収し、マイクロプレートリーダー〔MTP−
22形マイクロプレート光度計、コロナ電気(株)〕を
用いて各ウェルの溶液の吸光度A405/492(405nm
と492nmの吸光度の差)を求めた。抗エンドセリン
−1ポリクローナル抗体を加えたウェルの吸光度と加え
ないウェルの吸光度(対照)の差を求め、抗体の結合能
とした。
Stop the reaction by removing the pin block,
Take 100 μl from each well and collect in each well of another plate. Microplate reader [MTP-
22 type microplate photometer, Corona Denki Co., Ltd.] absorbance of solution in each well A 405/492 (405 nm
And the difference in absorbance at 492 nm). The difference between the absorbance of the well to which the anti-endothelin-1 polyclonal antibody was added and the absorbance of the well to which the anti-endothelin-1 polyclonal antibody was not added (control) was determined and defined as the antibody binding ability.

【0026】表1にその結果を示した。表1の結果か
ら、Ser-Ser-Leu-Met-Asp-Lys及びSer-Leu-Met-Asp-Lys
-Gluのアミノ酸配列を持つペプチドが抗エンドセリン−
1ポリクローナル抗体に対し、高い結合能を有すること
がわかる。
The results are shown in Table 1. From the results in Table 1, Ser-Ser-Leu-Met-Asp-Lys and Ser-Leu-Met-Asp-Lys
-A peptide having the amino acid sequence of Glu is anti-endothelin-
It can be seen that it has a high binding ability to one polyclonal antibody.

【表1】 表1 エンドセリン−1の部分アミノ酸配列をもつペプチドと抗エンドセリン −1ポリクローナル抗体の結合能 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ No. ペプチド(アミノ酸配列) 結合能(吸光度:A405/492) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1 CSCSSL 0.013 2 SCSSLM 0.520 3 CSSLMD 0.474 4 SSLMDK 0.772 5 SLMDKE 0.794 6 LMDKEC 0.189 7 MDKECV 0.133 8 DKECVY 0.012 9 KECVYF 0.010 10 ECVYFC 0.010 11 対照(ピンブロックのみ) 0.000 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ なお表1中、ペプチドのアミノ酸は一文字で表したもの
で、CはCys、DはAsp、EはGlu、FはPh
e、KはLys、LはLeu、MはMet、SはSe
r、VはVal及びYはTyrを表す。
[Table 1] Table 1 Binding ability of a peptide having a partial amino acid sequence of endothelin-1 and an anti-endothelin-1 polyclonal antibody ━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━ No. Peptide (amino acid sequence) Binding capacity (Absorbance: A 405/492 ) ━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━ 1 CSCSSL 0.013 2 SCSSLM 0.520 3 CSSLMD 0.474 4 SSLMDK 0.772 5 SLMDKE 0.794 6 LMDKEC 0.189 7 MDKECV 0.133 8 DKECVY 0. 012 9 KECVYF 0.010 10 ECVYFC 0.010 11 Control (pin block only) 0.000 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━ In Table 1, Pep The amino acid of tide is represented by a single letter, C for Cys, D for Asp, E for Glu, F for Ph.
e, K are Lys, L is Leu, M is Met, S is Se
r and V represent Val and Y represents Tyr.

【0027】[0027]

【実施例】実施例1 Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu
で表されるペプチドの合成 上記実験例1でSer-Ser-Leu-Met-Asp-Lys(II)及びSer
-Leu-Met-Asp-Lys-Glu(III)のペプチドが抗エンドセリ
ンポリクローナル抗体と高い親和性をもつことがわかっ
たので、上記のペプチドのアミノ酸配列を共通に含むヘ
プタペプチドAc-Ser-Ser-Leu-Met-Asp-Lys-Glu(ただ
し、Ac-はN末端セリンのアミノ基がアセチル化されて
いることを示す。)をペプチド合成装置(ミリジェン/
バイオサーチ社製、全自動ペプチドシンセサイザー90
50型、固相樹脂はFmoc-Glu-ペプシンKAを使用)によ
り合成した。
EXAMPLES Example 1 Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu
Synthesis of peptide represented by Ser-Ser-Leu-Met-Asp-Lys (II) and Ser in Experimental Example 1
-Leu-Met-Asp-Lys-Glu (III) peptide was found to have high affinity with anti-endothelin polyclonal antibody, so the heptapeptide Ac-Ser-Ser- containing the amino acid sequence of the above peptide in common. Leu-Met-Asp-Lys-Glu (wherein Ac-indicates that the amino group of the N-terminal serine is acetylated) was used as a peptide synthesizer (Milligen /
Biosearch, fully automatic peptide synthesizer 90
Type 50, solid phase resin was synthesized by Fmoc-Glu-pepsin KA).

【0028】カルボキシル末端側から順にFmoc-Lys(Bo
c)-OPfp、Fmoc-Asp(OtBu)-OPfp、Fmoc-Met-OPfp、Fmoc-
Leu-OPfp、Fmoc-Ser(tBu)-ODhbt、Fmoc-Ser(tBu)-ODhbt
をカップリングしてペプチド鎖を伸長した後、アミノ末
端に残っているFmoc基をピペリジン処理によって外し、
0.5M無水酢酸を含むDMF溶液によりアミノ末端を
アセチル化した。合成ペプチドの結合した固相樹脂をカ
ラムから取り出し、これをトリフルオロ酢酸:チオアニ
ソール:エタンジチオール:m-クレゾールの混合溶液
(容量比で40:6:3:1)に浸して樹脂からペプチ
ドを離すとともに、側鎖の保護基を外した。
Fmoc-Lys (Bo
c) -OPfp, Fmoc-Asp (OtBu) -OPfp, Fmoc-Met-OPfp, Fmoc-
Leu-OPfp, Fmoc-Ser (tBu) -ODhbt, Fmoc-Ser (tBu) -ODhbt
After the reaction, the peptide chain was extended to remove the Fmoc group remaining at the amino terminus by piperidine treatment,
The amino terminus was acetylated with a DMF solution containing 0.5 M acetic anhydride. The solid phase resin to which the synthetic peptide was bound was taken out from the column and immersed in a mixed solution of trifluoroacetic acid: thioanisole: ethanedithiol: m-cresol (volume ratio 40: 6: 3: 1) to remove the peptide from the resin. Upon release, the side chain protecting group was removed.

【0029】得られたペプチドを高速液体クロマトグラ
フィー(655液体クロマトグラフィー、日立製作所
社)を用いて、逆相カラム(D-ODS-5、YMC社製)によっ
て分離精製した。
The obtained peptide was separated and purified by high performance liquid chromatography (655 Liquid Chromatography, Hitachi Ltd.) using a reverse phase column (D-ODS-5, manufactured by YMC).

【0030】実施例2 タンパク質へのAc-Ser-Ser-Leu
-Met-Asp-Lys-Gluの結合 カルボジイミド法によってAc-Ser-Ser-Leu-Met-Asp-Lys
-GluをKLH及びウシ血清アルブミン(以下、BSAと
略す)に化学結合させた。実施例1で得たAc-Ser-Ser-L
eu-Met-Asp-Lys-Glu 240nmol、N−ヒドロキシスル
ホスクシンイミド(以下、Sulfo-NHSと略す)800nmo
l及び1−エチル−3−(3−ジメチルアミノプロピ
ル)−カルボジイミド(以下、EDCと略す)800nmol
を50mMリン酸カリウム緩衝液(pH7.0)64μ
lに溶かし、0℃で30分間放置した。KLH4nmolを
50mMリン酸カリウム緩衝液(pH7.0)2.2m
lに溶かし、これを前記の溶液に加え、室温で1時間、
次いで4℃で一晩放置した。その後、この反応液を50
mMリン酸カリウム緩衝液(pH7.0)に対して透析
し、未反応のAc-Ser-Ser-Leu-Met-Asp-Lys-Glu、Sulfo-
NHS及びEDCを除去した。
Example 2 Ac-Ser-Ser-Leu to protein
-Met-Asp-Lys-Glu bond Ac-Ser-Ser-Leu-Met-Asp-Lys by carbodiimide method
-Glu was chemically bonded to KLH and bovine serum albumin (hereinafter abbreviated as BSA). Ac-Ser-Ser-L obtained in Example 1
eu-Met-Asp-Lys-Glu 240 nmol, N-hydroxysulfosuccinimide (hereinafter abbreviated as Sulfo-NHS) 800 nmo
l and 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide (hereinafter abbreviated as EDC) 800 nmol
64 mM of 50 mM potassium phosphate buffer (pH 7.0)
It was dissolved in 1 and left at 0 ° C. for 30 minutes. KLH 4 nmol is added to 50 mM potassium phosphate buffer (pH 7.0) 2.2 m
1 l, add this to the above solution and at room temperature for 1 hour,
It was then left overnight at 4 ° C. Then, this reaction solution is mixed with 50
Dialyzed against mM potassium phosphate buffer (pH 7.0), unreacted Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu, Sulfo-
NHS and EDC were removed.

【0031】Ac-Ser-Ser-Leu-Met-Asp-Lys-GluをBSA
に結合させる場合は、Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu
量を4.1μmol、Sulfo-NHSの量を12.3μmo
l、EDC量を12.3μmol及びBSA量を0.41
μmolとしたほかはKLHに結合させる場合と同様に
行った。
Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu was added to BSA.
Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu
Amount 4.1 μmol, Sulfo-NHS amount 12.3 μmo
1, EDC amount of 12.3 μmol and BSA amount of 0.41
The procedure was the same as in the case of binding to KLH except that the concentration was μmol.

【0032】タンパク質を定量した結果、いずれのタン
パク質(KLH又はBSA)もほぼ100%が回収され
ていた。以下、ペプチド Ac-Ser-Ser-Leu-Met-Asp-Lys-
GluをKLHに化学結合させたものを Ac-Ser-Ser-Leu-M
et-Asp-Lys-Glu結合KLH、BSAに化学結合させたも
のを Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu結合BSAとい
う。
As a result of protein quantification, almost 100% of any protein (KLH or BSA) was recovered. Below, the peptide Ac-Ser-Ser-Leu-Met-Asp-Lys-
Ac-Ser-Ser-Leu-M is obtained by chemically binding Glu to KLH.
Those chemically bound to et-Asp-Lys-Glu-bound KLH and BSA are referred to as Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu-bound BSA.

【0033】Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu結合タン
パク質の抗エンドセリン−1抗体に対する親和性試験 (1)Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu結合KLH KLH、Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu結合KLH、
及びエンドセリン−1を結合させたKLH(以下、エン
ドセリン−1結合KLHという)を、それぞれ最終濃度
が10μg/mlになるように50mM炭酸ナトリウ
ム:50mM炭酸水素ナトリウム 1:24(容量比)
溶液に溶かし、その100μlをそれぞれイムノプレー
ト(MaxiSorpF96、Nunc社製)のウェルにとり、4℃で
一晩放置し、それぞれのタンパク質をイムノプレートに
固定化した。プレートを蒸留水で洗浄し、0.2%脱脂
粉乳を400μlずつ加え、37℃で2.5時間インキ
ュベーションした。各ウェルを洗浄液1で洗浄したの
ち、エンドセリン−1のN末端を認識すると説明されて
いる抗エンドセリン−1マウスモノクローン抗体(Cat.
No.ET-01、ヤマサ醤油製、緩衝液1で1/1000希
釈)、正常マウス血清(1/1000希釈液)、抗エン
ドセリン−1ウサギポリクローン抗体(ペプチド研究所
(株)製、1/1000希釈液)及び正常ウサギ血清
(1/1000希釈液)をウェル当り200μl加え、
37℃で2時間インキュベーションした。
Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu conjugated tan
Affinity test of anti-endothelin-1 antibody in protein (1) Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu binding KLH KLH, Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu binding KLH,
And KLH bound with endothelin-1 (hereinafter referred to as endothelin-1-binding KLH) are adjusted to a final concentration of 10 μg / ml with 50 mM sodium carbonate: 50 mM sodium hydrogen carbonate 1:24 (volume ratio).
After being dissolved in a solution, 100 μl of each was placed in a well of an immunoplate (MaxiSorpF96, manufactured by Nunc) and left at 4 ° C. overnight to immobilize each protein on the immunoplate. The plate was washed with distilled water, 400 µl of 0.2% skim milk powder was added, and the plate was incubated at 37 ° C for 2.5 hours. After washing each well with washing solution 1, anti-endothelin-1 mouse monoclonal antibody (Cat.
No.ET-01, made by Yamasa Shoyu, diluted 1/1000 with buffer 1), normal mouse serum (diluted 1/1000), anti-endothelin-1 rabbit polyclonal antibody (Peptide Research Institute, 1 / 1000 diluted solution) and normal rabbit serum (1/1000 diluted solution) were added in an amount of 200 μl per well,
Incubated at 37 ° C for 2 hours.

【0034】洗浄液1でウェルを洗浄後、マウス抗体を
加えたウェルに対してはペルオキシダーゼ標識化抗マウ
ス抗体ヤギ抗体(Kirkegaard and Perry Laboratories.
Inc.製)、ウサギ抗体を加えたウェルに対してはアルカ
リホスファターゼ標識化抗ウサギ抗体ヤギ抗体を、各々
緩衝液1で1/1000希釈してその200μlを加
え、37℃で1時間インキュベーションした。各ウェル
を洗浄液1で洗浄し、前者には3,3’,5,5’−テ
トラメチルベンジジン(以下、TMBと略す、ペルオキ
シダーゼ基質、Kirkegaard and Perry Laboratories. I
nc.製)100μl、後者にはPNPPを200μl加
え、37℃で30分間反応させた。MTBを加えたウェ
ルに1Mリン酸100μlを加えた後、マイクロプレー
トリーダーを用いて各ウェルの吸光度を求めた。このと
きTMBを加えたウェルは492nmから610nmの
吸光度を引いた値を、PNPPを加えたウェルは405
nmから492nmの吸光度を引いた値を求めた。
After washing the wells with washing solution 1, peroxidase-labeled anti-mouse antibody goat antibody (Kirkegaard and Perry Laboratories.
(Manufactured by Inc.) and a rabbit antibody-added well, an alkaline phosphatase-labeled anti-rabbit antibody goat antibody was diluted 1/1000 with buffer 1 and 200 μl thereof was added, and the mixture was incubated at 37 ° C. for 1 hour. Each well was washed with washing solution 1, and the former was 3,3 ′, 5,5′-tetramethylbenzidine (hereinafter abbreviated as TMB, a peroxidase substrate, Kirkegaard and Perry Laboratories.
(manufactured by nc.), and 200 μl of PNPP was added to the latter and reacted at 37 ° C. for 30 minutes. After adding 100 μl of 1M phosphoric acid to the wells containing MTB, the absorbance of each well was determined using a microplate reader. At this time, the value obtained by subtracting the absorbance at 610 nm from 492 nm was calculated for the well to which TMB was added, and 405 for the well to which PNPP was added.
The value obtained by subtracting the absorbance at 492 nm from nm was determined.

【0035】表2はその結果(吸光度は上記の吸光度の
差として表示)を示したものである。
Table 2 shows the results (absorbance is expressed as the above difference in absorbance).

【表2】 表2 ペプチド結合タンパク質(KLH)に対する結合能 (単位:吸光度) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 血清 又は 抗体 ペプチド結合タンパク マウス血清 マウス抗体 ウサギ血清 ウサギ抗体 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ KLH(陰性対照) 0.009 0.005 0.003 0.023 エンドセリン-1結合KLH 0.009 0.649 0.007 1.61
3 ヘプタペプチド結合KLH 0.008 0.004 0.007 0.907 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
[Table 2] Table 2 Binding ability to peptide-binding protein (KLH) (unit: absorbance) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━ Serum or antibody Peptide-binding protein Mouse serum Mouse antibody Rabbit serum Rabbit antibody ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━ KLH (negative control) 0.009 0.005 0.003 0.023 Endothelin-1 binding KLH 0.009 0.649 0.007 1.61
3 Heptapeptide bond KLH 0.008 0.004 0.007 0.907 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0036】なお表2中、マウス血清は正常マウスの血
清、マウス抗体は抗エンドセリン−1マウスモノクロー
ン抗体、ウサギ血清は正常ウサギの血清、ウサギ抗体は
抗エンドセリン−1ウサギポリクローン抗体、ヘプタペ
プチド結合KLHはAc-Ser-Ser-Leu-Met-Asp-Lys-Glu結合
KLHをそれぞれ示す。
In Table 2, mouse serum is normal mouse serum, mouse antibody is anti-endothelin-1 mouse monoclonal antibody, rabbit serum is normal rabbit serum, rabbit antibody is anti-endothelin-1 rabbit polyclonal antibody, heptapeptide. The bound KLH represents Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu-bound KLH, respectively.

【0037】ペプチド結合タンパク質(KLH)とウサ
ギポリクローン抗体の結合能をみると、ウサギポリクロ
ーン抗体に対するヘプタペプチド結合KLHの結合能はウ
サギポリクローン抗体に対するエンドセリン−1結合KL
Hの結合能の約60%であった。これは抗エンドセリン
−1ウサギポリクローン抗体のうち約60%がエンドセ
リン−1の部分配列 Ser-Ser-Leu-Met-Asp-Lys-Gluに結
合したことを意味している。一方、用いたマウスモノク
ローン抗体はエンドセリン−1に結合したが(おそら
く、エンドセリン−1のN末端部位に結合)、意外にも
Ser-Ser-Leu-Met-Asp-Lys-Gluには結合しないことが表
2から分かった。この理由は、用いたマウスモノクロー
ン抗体がエンドセリン−1のSer4-Ser-Leu-Met-Asp-Lys
-Glu10部位とは別のN末端部位を認識するからと思われ
る。
Looking at the binding ability between the peptide binding protein (KLH) and the rabbit polyclonal antibody, the binding ability of the heptapeptide-bound KLH to the rabbit polyclonal antibody is the endothelin-1 binding KL to the rabbit polyclonal antibody.
It was about 60% of the binding capacity of H 2. This means that about 60% of the anti-endothelin-1 rabbit polyclonal antibody bound to the partial sequence Ser-Ser-Leu-Met-Asp-Lys-Glu of endothelin-1. On the other hand, the mouse monoclonal antibody used bound to endothelin-1 (probably bound to the N-terminal site of endothelin-1), but surprisingly
It was found from Table 2 that it did not bind to Ser-Ser-Leu-Met-Asp-Lys-Glu. The reason for this is that the mouse monoclonal antibody used was Ser 4 -Ser-Leu-Met-Asp-Lys of endothelin-1.
-This is probably because it recognizes an N-terminal site different from the Glu 10 site.

【0038】(1)Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu結
合BSA BSA、Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu結合BSA、
及びエンドセリン−1を結合させたBSA(以下、エン
ドセリン−1結合BSAという)を、それぞれ最終濃度
10μg/mlとなるように50mM炭酸ナトリウム:
50mM炭酸水素ナトリウム 1:24(容量比)溶液
に溶かした後、その100μlをそれぞれイムノプレー
トのウェルにとり、4℃で一晩放置し、それぞれのタン
パク質をイムノプレートに固定化した。各ウェルを蒸留
水で洗浄後、0.2%脱脂粉乳をウェル当り400μl
ずつ加え、37℃で2.5時間インキュベーションし
た。各ウェルを洗浄液1で洗浄した後、緩衝液1で希釈
した抗エンドセリン−1ウサギポリクローン抗体(1/
1000希釈液)及び正常ウサギ血清(1/1000希
釈液)をウェル当り200μl加え、37℃で2時間イ
ンキュベーションした。
(1) Ac-Ser-Ser-Leu-Met-Asp-Lys-Glu-conjugated BSA BSA, Ac-Ser-Ser-Ser-Leu-Met-Asp-Lys-Glu-conjugated BSA,
And BSA bound with endothelin-1 (hereinafter referred to as BSA bound with endothelin-1) are each adjusted to a final concentration of 10 μg / ml with 50 mM sodium carbonate:
After being dissolved in a 50 mM sodium hydrogen carbonate 1:24 (volume ratio) solution, 100 μl thereof was placed in each well of the immunoplate and left overnight at 4 ° C. to immobilize each protein on the immunoplate. After washing each well with distilled water, 0.2% non-fat dry milk was added to each well at 400 μl.
Each was added and incubated at 37 ° C. for 2.5 hours. After washing each well with the washing solution 1, the anti-endothelin-1 rabbit polyclonal antibody diluted with the buffer solution 1 (1 /
(1000 dilution) and normal rabbit serum (1/1000 dilution) were added at 200 μl per well and incubated at 37 ° C. for 2 hours.

【0039】洗浄液1でウェルを洗浄後、緩衝液1で1
/1000希釈したアルカリホスファターゼ標識化抗ウ
サギ抗体ヤギ抗体をウェル当り200μlずつ加え、3
7℃で1時間インキュベーションした。各ウェルを洗浄
液1で洗浄後、PNPPをウェル当り200μlずつ加
え、37℃で30分間反応させた。その後、マイクロプ
レートリーダーを用いてウェルの反応液の吸光度(40
5nmと492nmの吸光度の差)を測定した。
After washing the wells with washing solution 1, the wells are washed with buffer solution 1
Alkaline phosphatase-labeled anti-rabbit antibody goat antibody diluted at 1000/1000 was added to each well in an amount of 200 μl.
Incubated at 7 ° C for 1 hour. After washing each well with Washing Solution 1, 200 μl of PNPP was added to each well and reacted at 37 ° C. for 30 minutes. Then, using a microplate reader, the absorbance (40
The difference in absorbance between 5 nm and 492 nm was measured.

【0040】表3はその結果を示したものである。Table 3 shows the results.

【表3】 表3 ペプチド結合タンパク質(BSA)に対する結合能 (単位:吸光度) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 血清 又は 抗体 ペプチド結合タンパク ウサギ血清 ウサギ抗体 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ BSA(陰性対照) 0.002 0.022 エンドセリン-1結合BSA 0.007 1.563 ヘプタペプチド結合BSA 0.005 0.895 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ なお表3中、ウサギ血清は正常ウサギの血清、ウサギ抗
体は抗エンドセリン−1ウサギポリクローン抗体、ヘプ
タペプチド結合BSAはAc-Ser-Ser-Leu-Met-Asp-Lys-G
lu結合BSAをそれぞれ示す。
[Table 3] Table 3 Binding ability to peptide-binding protein (BSA) (unit: absorbance) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━ serum or antibody peptide binding protein rabbit serum rabbit antibody ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ BSA ( Negative control) 0.002 0.022 endothelin-1 binding BSA 0.007 1.563 heptapeptide binding BSA 0.005 0.895 ━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━ In Table 3, rabbit serum is normal rabbit serum, rabbit antibody is anti-endothelin-1 rabbit polyclonal antibody, and heptapeptide-conjugated BSA is Ac-Ser-Ser-. Leu-Met-Asp-Lys-G
The lu binding BSAs are shown respectively.

【0041】ウサギポリクローン抗体に対するペプチド
結合BSAの結合能はウサギポリクローン抗体に対する
エンドセリン−1結合BSAの約60%であった。これ
は前記同様に、抗エンドセリン−1ウサギポリクローン
抗体のうち約60%がエンドセリン−1の部分配列 Ser
-Ser-Leu-Met-Asp-Lys-Gluを認識していることを意味し
ている。
The binding ability of the peptide-bound BSA to the rabbit polyclonal antibody was about 60% of that of endothelin-1-bound BSA to the rabbit polyclonal antibody. Similar to the above, about 60% of the anti-endothelin-1 rabbit polyclonal antibody was a partial sequence Ser of endothelin-1.
-It means that it recognizes Ser-Leu-Met-Asp-Lys-Glu.

【0042】[0042]

【発明の効果】請求項1〜請求項3のペプチド及び請求
項4のペプチド誘導体は、エンドセリン−1分子の特定
の抗原決定基(3番目及び11番目のシステインの間の
ループ構造)とのみ結合するので、抗エンドセリン−1
抗体の精製用リガンドもしくは検出試薬となり、また、
抗エンドセリン−1抗体を得るための免疫原タンパク質
の原料となる。請求項5の抗エンドセリン−1抗体誘導
性タンパク質は、エンドセリン−1の分子の特定の抗原
決定基(3番目及び11番目のシステインの間のループ
構造)とのみ反応する抗エンドセリン−1抗体を得るた
めの免疫原タンパク質である。請求項6の方法により、
煩雑な分離精製を要することなくエンドセリン−1の分
子の特定の抗原決定基(3番目及び11番目のシステイ
ンの間のループ構造)を認識する抗エンドセリン−1抗
体を製造できる。
The peptides of claims 1 to 3 and the peptide derivative of claim 4 bind only to a specific antigenic determinant of the endothelin-1 molecule (loop structure between the 3rd and 11th cysteines). So anti-endothelin-1
It serves as a ligand for antibody purification or a detection reagent.
It is a raw material of an immunogenic protein for obtaining anti-endothelin-1 antibody. The anti-endothelin-1 antibody-inducible protein according to claim 5 obtains an anti-endothelin-1 antibody which reacts only with a specific antigenic determinant (loop structure between the 3rd and 11th cysteines) of the molecule of endothelin-1. Is an immunogenic protein for. According to the method of claim 6,
An anti-endothelin-1 antibody that recognizes a specific antigenic determinant (loop structure between the 3rd and 11th cysteines) of the molecule of endothelin-1 can be produced without requiring complicated separation and purification.

【0043】[0043]

【配列表】[Sequence list]

【図面の簡単な説明】[Brief description of drawings]

【図1】エンドセリン−1の分子の2次構造を示す模式
図である。
FIG. 1 is a schematic diagram showing the secondary structure of the molecule of endothelin-1.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Ser-Ser-Leu-Met-Asp-Lys-Glu(I)で表
されるペプチド。
1. A peptide represented by Ser-Ser-Leu-Met-Asp-Lys-Glu (I).
【請求項2】Ser-Ser-Leu-Met-Asp-Lys(II)で表され
るペプチド。
2. A peptide represented by Ser-Ser-Leu-Met-Asp-Lys (II).
【請求項3】Ser-Leu-Met-Asp-Lys-Glu(III)で表され
るペプチド。
3. A peptide represented by Ser-Leu-Met-Asp-Lys-Glu (III).
【請求項4】請求項1、請求項2もしくは請求項3のペ
プチドの末端のアミノ基もしくはカルボキシル基、又は
側鎖のアミノ基、カルボキシル基もしくは水酸基の、一
部もしくは全部が随意に遮断もしくは保護されたペプチ
ド誘導体。
4. A part or all of the terminal amino group or carboxyl group or the side chain amino group, carboxyl group or hydroxyl group of the peptide of claim 1, claim 2 or claim 3 is optionally blocked or protected. Peptide derivative.
【請求項5】タンパク質に請求項1、請求項2もしくは
請求項3のペプチド又は請求項4のペプチド誘導体を結
合させてなる、抗エンドセリン−1抗体誘導性タンパク
質。
5. An anti-endothelin-1 antibody-inducible protein obtained by binding the peptide of claim 1, claim 2 or claim 3 or the peptide derivative of claim 4 to a protein.
【請求項6】請求項1、請求項2もしくは請求項3のペ
プチド、請求項4のペプチド誘導体又は請求項5の抗エ
ンドセリン−1抗体誘導性タンパク質で動物を免疫する
ことを含む、抗エンドセリン−1抗体の製造方法。
6. An anti-endothelin-comprising immunization of an animal with the peptide of claim 1, claim 2 or claim 3, the peptide derivative of claim 4 or the anti-endothelin-1 antibody-inducible protein of claim 5. 1 Method for producing antibody.
JP31326992A 1992-11-24 1992-11-24 Peptide or its derivative, combination thereof with protein and production of antiendothelin-1 antibody using the same as immunogen Pending JPH06157592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31326992A JPH06157592A (en) 1992-11-24 1992-11-24 Peptide or its derivative, combination thereof with protein and production of antiendothelin-1 antibody using the same as immunogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31326992A JPH06157592A (en) 1992-11-24 1992-11-24 Peptide or its derivative, combination thereof with protein and production of antiendothelin-1 antibody using the same as immunogen

Publications (1)

Publication Number Publication Date
JPH06157592A true JPH06157592A (en) 1994-06-03

Family

ID=18039181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31326992A Pending JPH06157592A (en) 1992-11-24 1992-11-24 Peptide or its derivative, combination thereof with protein and production of antiendothelin-1 antibody using the same as immunogen

Country Status (1)

Country Link
JP (1) JPH06157592A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515722A (en) * 2009-01-20 2012-07-12 ノースウェスタン ユニバーシティ Compositions and methods for induction of antigen-specific tolerance
US9522180B2 (en) 2013-08-13 2016-12-20 Northwestern University Peptide conjugated particles
US10201596B2 (en) 2012-06-21 2019-02-12 Northwestern University Peptide conjugated particles for the treatment of allergy
US10471093B2 (en) 2010-11-12 2019-11-12 Cour Pharmaceuticals Development Company. Modified immune-modulating particles
US11045492B2 (en) 2013-03-13 2021-06-29 Oncour Pharma, Inc. Immune-modifying nanoparticles for the treatment of inflammatory diseases

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515722A (en) * 2009-01-20 2012-07-12 ノースウェスタン ユニバーシティ Compositions and methods for induction of antigen-specific tolerance
US11020424B2 (en) 2010-11-12 2021-06-01 Oncour Pharma, Inc. Modified immune-modulating particles
US10471093B2 (en) 2010-11-12 2019-11-12 Cour Pharmaceuticals Development Company. Modified immune-modulating particles
US11826407B2 (en) 2012-06-21 2023-11-28 Northwestern University Peptide conjugated particles
US11413337B2 (en) 2012-06-21 2022-08-16 Northwestern University Peptide conjugated particles for the treatment of inflammation
US10201596B2 (en) 2012-06-21 2019-02-12 Northwestern University Peptide conjugated particles for the treatment of allergy
US11045492B2 (en) 2013-03-13 2021-06-29 Oncour Pharma, Inc. Immune-modifying nanoparticles for the treatment of inflammatory diseases
US10617747B2 (en) 2013-08-13 2020-04-14 Northwestern University Peptide conjugated particles
US10188711B2 (en) 2013-08-13 2019-01-29 Northwestern University Peptide conjugated particles
US11129881B2 (en) 2013-08-13 2021-09-28 Northwestern University Peptide conjugated particles
US11160851B2 (en) 2013-08-13 2021-11-02 Northwestern University Peptide conjugated particles
US11389517B2 (en) 2013-08-13 2022-07-19 Northwestern University Peptide conjugated particles
US9616113B2 (en) 2013-08-13 2017-04-11 Northwestern University Peptide conjugated particles
US9522180B2 (en) 2013-08-13 2016-12-20 Northwestern University Peptide conjugated particles

Similar Documents

Publication Publication Date Title
US7264939B2 (en) Method of detecting native proBNP
JP2647427B2 (en) Detection method, monoclonal antibody, and detection kit for determining disease state of subject
JP2665850B2 (en) Monoclonal antibody recognizing the C-terminus of hBNP
JPS58201754A (en) Synthetic st toxin, manufacture and use as vaccine inoculant
JP4374316B2 (en) Antibody to β-amyloid or a derivative thereof and use thereof
CN113248590B (en) NT-proBNP protein antigenic determinant polypeptide and application thereof
US5230999A (en) Monoclonal antibody to endothelin-3 or precursor thereof and use thereof
US5173422A (en) Monoclonal antibodies specific for human glycoalbumin
US5225354A (en) Monoclonal antibodies specific for human glycoalbumin
CN112457392B (en) Soluble ST2 protein antigenic determinant polypeptide and application thereof
CN104768970B (en) Simulating peptide
JPH06157592A (en) Peptide or its derivative, combination thereof with protein and production of antiendothelin-1 antibody using the same as immunogen
EP0257421B1 (en) Antibodies for use in determining human glycoalbumin
CN110183530A (en) Leptin immunogene, hybridoma, monoclonal antibody, polyclonal antibody and application
JPH02238894A (en) Antibody against endoserine and use thereof
JP2724315B2 (en) Monoclonal antibody recognizing α-ANP and immunoassay for α-ANP
JP3754611B2 (en) Human aging marker and stress marker test method
JP2648855B2 (en) Quantitation of peptides, their antibodies and endothelin
JPH03163095A (en) Partial peptide of human nerve growth factor, antibody and use thereof
CN114316042A (en) cTnI protein antigenic determinant polypeptide and application thereof
JP3419746B2 (en) Monoclonal antibody against endothelin-3 precursor and use thereof
JPH04217996A (en) Synthetic peptide containing alignment from viia factor and use thereof
JP3167024B2 (en) Monoclonal antibodies against endothelin-3 or endothelin-3 precursor and uses thereof
JP3194762B2 (en) Monoclonal antibodies, their production and use
TAKEYAMA et al. Immuno-affinity purification of specific antibodies against vasoactive intestinal polypeptide (VIP) on VIP (1-10)-linked polydimethylacrylamide resin