JPH06148069A - Infrared gas analyzer - Google Patents

Infrared gas analyzer

Info

Publication number
JPH06148069A
JPH06148069A JP30144292A JP30144292A JPH06148069A JP H06148069 A JPH06148069 A JP H06148069A JP 30144292 A JP30144292 A JP 30144292A JP 30144292 A JP30144292 A JP 30144292A JP H06148069 A JPH06148069 A JP H06148069A
Authority
JP
Japan
Prior art keywords
infrared
cell
sensor
measurement cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30144292A
Other languages
Japanese (ja)
Inventor
Mitsuru Oishi
満 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30144292A priority Critical patent/JPH06148069A/en
Publication of JPH06148069A publication Critical patent/JPH06148069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide an infrared gas analyzer which is improved in detecting sensitivity and measurement accuracy against components to be measured by remarkably increasing the quantity of infrared rays made incident to the light receiving section of an infrared sensor in such a way that a light condensing mirror is provided on the inlet or outlet side of a measuring cell so that an infrared-ray flux transmitted through the cell can be condensed to the sensor. CONSTITUTION:In the title gas analyzer which is provided with an infrared-ray source 2 on the inlet side of a measuring cell 1 into which a sample gas is introduced and a detecting section 4 constituted by incorporating an infrared sensor 6 in a sensor fitting block 5 together with a band-pass filter 7 on the outlet side of the cell 1, a light condensing mirror 9 is provided between the outlet-side end face (or inlet-side end face) of the cell 1 and detecting section 4 (or infrared-ray source 2) so that an infrared-ray flux emitted from the cell 1 can be condensed and made incident to the sensor 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料ガス中に含まれて
いる各種成分ガスの定性,定量分析を行う吸光式赤外線
ガス分析計の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an absorption type infrared gas analyzer for qualitatively and quantitatively analyzing various component gases contained in a sample gas.

【0002】[0002]

【従来の技術】吸光式の赤外線ガス分析計は、試料ガス
中に含まれる測定成分ガスによる赤外線の吸収量から試
料ガスの定性,定量分析を行うものであり、この方式は
一般に選択性が良く、測定感度が高いことからガス分析
計として各種分野で広く使用されている。
2. Description of the Related Art Absorption-type infrared gas analyzers perform qualitative and quantitative analysis of sample gas from the amount of infrared absorption by the measurement component gas contained in the sample gas, and this method generally has good selectivity. Because of its high measurement sensitivity, it is widely used in various fields as a gas analyzer.

【0003】次に、従来より実施されているシングルビ
ーム方式の吸光式赤外線ガス分析計の構成、並びにその
動作原理を図4により説明する。図4において、1は試
料ガスを流す測定セル、2は測定セル1の入射側に設け
られた赤外線光源、3は赤外線光源2から出射した赤外
線光束を断続させる回転式チョッパ、4は測定セル1の
出射側に配備した検出部であり、検出部4はセンサ取付
ブロック5に、試料ガス中に含まれる各種測定成分ガス
に対応する複数(図示例では#1〜#3で表す3個)の
赤外線センサ6が、バンドパスフィルタ7と対にして併
置配備されている。なお、バンドパスフィルタ7には、
赤外線センサに波長選択性を持たせるために多層膜干渉
フィルタが、また、赤外線センサ6には、例えば焦電型
センサ、半導体センサなどの固体センサが、採用されて
いる。
Next, the configuration of a conventional single-beam type absorption type infrared gas analyzer and its operating principle will be described with reference to FIG. In FIG. 4, 1 is a measurement cell for flowing a sample gas, 2 is an infrared light source provided on the incident side of the measurement cell 1, 3 is a rotary chopper for intermittently emitting an infrared light flux emitted from the infrared light source 2, and 4 is a measurement cell 1. The detection unit 4 is disposed on the emission side of the detection unit 4, and the detection unit 4 includes a plurality of (three in the illustrated example, represented by # 1 to # 3) corresponding to various measurement component gases contained in the sample gas in the sensor mounting block 5. The infrared sensor 6 is arranged in parallel with the bandpass filter 7 in pairs. In addition, the bandpass filter 7 includes
A multilayer interference filter is used to provide the infrared sensor with wavelength selectivity, and the infrared sensor 6 is a solid-state sensor such as a pyroelectric sensor or a semiconductor sensor.

【0004】かかる構成で、光源2から出射した赤外線
はチョッパ3により一定周期で断続した赤外線光束8と
なって測定セル1に入射し、測定セル内を透過する過程
で試料ガス中に含まれている各種測定成分ガスにより、
固有の赤外線波長が成分濃度に応じて吸収される。測定
セル1を透過した赤外線光束の一部は、センサ取付ブロ
ック5の開口窓からバンドパスフィルタ7に適合した波
長の赤外線が各赤外線センサ6にて受光され、その光量
に応じた検出信号が電気信号に変換されて外部に取り出
される。
With such a configuration, the infrared light emitted from the light source 2 becomes an infrared light flux 8 which is interrupted at a constant cycle by the chopper 3, enters the measuring cell 1, and is contained in the sample gas in the process of passing through the measuring cell. Depending on the various measurement component gases present,
The unique infrared wavelength is absorbed depending on the component concentration. Part of the infrared light flux that has passed through the measurement cell 1 receives an infrared ray having a wavelength suitable for the bandpass filter 7 from the opening window of the sensor mounting block 5 by each infrared sensor 6, and a detection signal corresponding to the light amount is electrically generated. It is converted into a signal and taken out.

【0005】[0005]

【発明が解決しようとする課題】従来の赤外線ガス分析
計においては、赤外線光束は測定セルに対して、光源か
ら測定セル内を直接透過する直接光と、測定セル内を反
射して透過する反射光が検出部に入射する。この場合、
検出部の赤外線センサに入射する赤外線光束は光源から
出射した直接光の一部分と、反射光の一部分であり、反
射光そのものは測定セルを反射する過程でかなりの量が
減衰する。従って、実際に赤外線センサのセンサ受光部
に入射される光束は、測定セルを透過した全光束が利用
されるのではなく、直接光の一部分と、反射光の一部分
を利用しているに過ぎない。このため、低い濃度のガス
を測定しようとする場合には、セル長を長くするなどの
方法が必要であった。
In the conventional infrared gas analyzer, the infrared light flux is directly reflected by the light source from the light source through the measuring cell, and the infrared light is reflected by the measuring cell and transmitted through the measuring cell. Light is incident on the detector. in this case,
The infrared light flux incident on the infrared sensor of the detection unit is a part of the direct light emitted from the light source and a part of the reflected light, and the reflected light itself is considerably attenuated in the process of being reflected by the measurement cell. Therefore, the light flux actually incident on the sensor light receiving portion of the infrared sensor does not use the entire light flux transmitted through the measurement cell, but only uses a part of the direct light and a part of the reflected light. . Therefore, in order to measure a low concentration gas, it is necessary to increase the cell length.

【0006】本発明は上記の点にかんがみてなされたも
のであり、その目的は前記した課題を解決して、センサ
受光部に対する入射光量を著しく増加させ、測定成分に
対する検出感度を増し、測定精度の向上が図れるように
した赤外線ガス分析計を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to solve the above-mentioned problems, to remarkably increase the amount of light incident on the sensor light receiving portion, to increase the detection sensitivity to the measurement component, and to improve the measurement accuracy. It is to provide an infrared gas analyzer capable of improving the temperature.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の赤外線ガス分析計においては、試料ガスが
導入される測定セルを挟んで、この測定セルの入射側に
設けられた赤外線光源と、測定セルの出射側に設けら
れ、赤外線センサをバンドパスフィルタとともにセンサ
取付ブロックに組み込んでなる検出部と、を具備した吸
光式の赤外線ガス分析計において、測定セルの出射端面
と検出部との間に設けられ、測定セルを出射した赤外線
光束を集光し、赤外線センサに入射する集光鏡を備える
ものとする。
In order to achieve the above object, in the infrared gas analyzer of the present invention, an infrared ray provided on the incident side of this measurement cell is sandwiched between measurement cells into which a sample gas is introduced. In a light-absorbing infrared gas analyzer equipped with a light source and a detection unit provided on the emission side of the measurement cell and incorporating an infrared sensor in a sensor mounting block together with a bandpass filter, an emission end face of the measurement cell and a detection unit And a condensing mirror which is provided between the condensing mirror and the condensing mirror to condense the infrared light flux emitted from the measurement cell and to enter the infrared sensor.

【0008】また、試料ガスが導入される測定セルを挟
んで、この測定セルの入射側に設けられた赤外線光源
と、測定セルの出射側に設けられ、赤外線センサをバン
ドパスフィルタとともにセンサ取付ブロックに組み込ん
でなる検出部と、を具備した吸光式の赤外線ガス分析計
において、測定セルの入射端面と赤外線光源との間に設
けられ、測定セル出射端面に設けられた赤外線センサに
赤外線光源からの赤外線光束を集光する集光鏡を備える
ものとする。
An infrared light source provided on the incident side of the measuring cell and an emitting side of the measuring cell sandwiching the measuring cell, into which the sample gas is introduced, and an infrared sensor, together with a bandpass filter, are mounted on the sensor mounting block. In a light absorption type infrared gas analyzer equipped with a detection unit incorporated in, the infrared sensor provided between the incident end face of the measurement cell and the infrared light source, and the infrared sensor provided at the measurement cell emission end face from the infrared light source. It shall be provided with a condensing mirror for condensing infrared rays.

【0009】さらに、前記構成における赤外線ガス分析
計において、集光鏡は、第一、第二の面に赤外線光束を
透過する入光窓と出光窓が開口した三角柱状の中空ブロ
ックの第三の面に設けられ、この中空ブロックの中空内
部にフィルタガスを封入するものとする。
Further, in the infrared gas analyzer having the above-mentioned structure, the condenser mirror has a third cylindrical hollow block having a light entrance window and a light exit window for transmitting infrared rays on the first and second surfaces. The filter gas is enclosed in the hollow inside of this hollow block.

【0010】[0010]

【作用】上記構成により、光源を出た赤外線光束は測定
セル内を反射、あるいは、直進し、測定セル内を透過す
る。測定セル内では測定成分ガスによる吸収が起こる。
この透過した赤外線光束は集光鏡により集光され、大部
分の赤外線光束がセンサ受光部に入射する。このため、
センサ受光部に入射する光量は従来技術の反射光および
直接光の一部を利用した場合に比べて著しく増加し、そ
れだけ検出感度を高めることができる。
With the above structure, the infrared light flux emitted from the light source is reflected in the measurement cell or goes straight, and is transmitted through the measurement cell. Absorption by the measurement component gas occurs in the measurement cell.
The transmitted infrared light flux is condensed by the condenser mirror, and most of the infrared light flux is incident on the sensor light receiving portion. For this reason,
The amount of light incident on the light receiving portion of the sensor is remarkably increased as compared with the case where a part of the reflected light and the direct light of the prior art is used, and the detection sensitivity can be increased accordingly.

【0011】また、集光鏡を光源と測定セルの入射端面
との間に設け、光源から出射した赤外線光束を集光し、
測定セル内に入射させることにより、測定セル内の反射
を使わずにセンサ受光部に効率よく受光させることがで
きる。このため、測定セル内壁の汚れの影響を受けにく
く、安定した測定ができる。さらに、必要に応じて集光
鏡が配設されている中空ブロックの中空内部にガスを封
入し、ガスフィルタとして使用することも可能である。
Further, a condenser mirror is provided between the light source and the incident end face of the measurement cell to condense the infrared light flux emitted from the light source,
By making the light incident on the measurement cell, the sensor light receiving section can efficiently receive the light without using the reflection in the measurement cell. Therefore, stable measurement can be performed without being easily affected by the stain on the inner wall of the measuring cell. Further, it is also possible to use a gas filter by enclosing a gas in the hollow inside of a hollow block in which a condenser mirror is arranged as needed.

【0012】[0012]

【実施例】図1は本発明の実施例の要部構成断面図を、
図2は本発明の他実施例の要部構成断面図を、図3は集
光セルの構造展開図を示すものであり、図4に対応する
同一部材には同じ符号が付してある。図1においては、
測定セル1の出射端面と検出部4との間に集光鏡9が設
置されており、光源2から出射した赤外線は回転式チョ
ッパ3により断続され、断続された赤外線光束8として
測定セル1に入射する。測定セルに入射したこの光束8
は測定セル内を透過する過程で試料ガス中に含まれてい
る各種測定成分ガスにより、固有の赤外線波長が成分濃
度に応じて吸収され、測定セル1の出射端面を出射す
る。この出射光束は比較的短焦点の集光鏡9により赤外
線センサ6に集光され、センサ取付ブロック5の開口窓
からバンドパスフィルタ7に適合した波長の赤外線が赤
外線センサ6にて受光され、その光量に応じた検出信号
が電気信号に変換されて外部に取り出される。ここで、
集光鏡9は凹曲面の形状をした反射鏡で構成され、この
凹曲面として、放物面・回転楕円面・球面などがある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of the essential parts of an embodiment of the present invention.
FIG. 2 is a sectional view showing the configuration of the main part of another embodiment of the present invention, and FIG. 3 is a structural development view of the light collecting cell. The same members corresponding to those in FIG. 4 are designated by the same reference numerals. In FIG.
A condenser mirror 9 is installed between the emission end face of the measurement cell 1 and the detection unit 4, and the infrared light emitted from the light source 2 is interrupted by the rotary chopper 3 to be an interrupted infrared light beam 8 on the measurement cell 1. Incident. This luminous flux 8 incident on the measuring cell
In the process of passing through the measurement cell, various measurement component gases contained in the sample gas absorb a specific infrared wavelength according to the concentration of the component and emit the light from the emission end face of the measurement cell 1. The emitted luminous flux is condensed on the infrared sensor 6 by the condenser mirror 9 having a relatively short focus, and infrared rays having a wavelength suitable for the bandpass filter 7 are received by the infrared sensor 6 from the opening window of the sensor mounting block 5. The detection signal corresponding to the light amount is converted into an electric signal and taken out. here,
The condenser mirror 9 is composed of a reflecting mirror having a concave curved surface, and the concave curved surface includes a parabolic surface, a spheroidal surface, and a spherical surface.

【0013】例えば、測定セル1を出射した赤外線光束
を平行光線とすれば、集光鏡9の凹曲面の形状として放
物面を用い、その焦点位置に赤外線センサ6を配置する
ことにより集光することが可能である。また、実際的に
は、測定セル1を出射した赤外線光束は平行光線以外に
反射光もあり、凹曲面として放物面や球面などを用い
て、最も集光する位置に赤外線センサ6が配置される。
For example, if the infrared rays emitted from the measuring cell 1 are parallel rays, a parabolic surface is used as the shape of the concave curved surface of the condenser mirror 9, and the infrared sensor 6 is arranged at the focal position to condense the rays. It is possible to In practice, the infrared light flux emitted from the measurement cell 1 has reflected light in addition to parallel rays, and a parabolic surface or a spherical surface is used as the concave curved surface, and the infrared sensor 6 is arranged at the most converging position. It

【0014】上記構成によって、測定セル1を透過した
赤外線光束の大部分は前記集光鏡9により集光され、赤
外線センサ6にて受光されるため、赤外線センサ6で受
光される光量が著しく増加し、それだけ検出感度を高
め、低濃度ガスの測定ができる。図2においては、集光
鏡9の配置が図1と異なり、光源2と測定セル1の間に
集光鏡9が設置された構成となっている。
With the above structure, most of the infrared light flux transmitted through the measuring cell 1 is condensed by the condenser mirror 9 and is received by the infrared sensor 6, so that the amount of light received by the infrared sensor 6 is significantly increased. However, the detection sensitivity can be increased accordingly, and low concentration gas can be measured. In FIG. 2, the arrangement of the condenser mirror 9 is different from that of FIG. 1, and the condenser mirror 9 is arranged between the light source 2 and the measurement cell 1.

【0015】上記構成によって、図1の構成では、光源
2から出射した赤外線光束が測定セル中を反射または直
進し、集光鏡9により集光され、赤外線センサ6にて受
光される構成に対して、図2の構成では、光源2から出
射した赤外線光束が比較的長焦点の集光鏡9により集光
されて測定セル1に入射する。このため、測定セル1内
を反射して赤外線センサ6に到達する光の割合は図1の
構成よりも減少する。従って、セル内壁の汚れなどによ
る影響を低減することができ、安定した測定が可能とな
る。この場合、集光鏡9の凹曲面は光源2および赤外線
センサ6を点光源とその像の関係でみると、凹曲面は理
想的には回転楕円面の一部を形成し、光源2および赤外
線センサ6がその焦点に配置される。
With the above configuration, in the configuration of FIG. 1, the infrared light flux emitted from the light source 2 is reflected or goes straight through the measuring cell, is condensed by the condenser mirror 9, and is received by the infrared sensor 6. Then, in the configuration of FIG. 2, the infrared light flux emitted from the light source 2 is condensed by the condenser mirror 9 having a relatively long focus and is incident on the measurement cell 1. Therefore, the ratio of the light reflected in the measurement cell 1 and reaching the infrared sensor 6 is smaller than that in the configuration of FIG. Therefore, the influence of stains on the inner wall of the cell can be reduced, and stable measurement can be performed. In this case, the concave curved surface of the condensing mirror 9 ideally forms a part of a spheroid when the light source 2 and the infrared sensor 6 are viewed from the point light source and its image, The sensor 6 is arranged at its focal point.

【0016】また、図3の構造展開図示に示したよう
に、外形が三角柱状の中空ブロックの第一の面に測定セ
ルの入射側端面(あるいは出射側端面)と対向する窓
を、第二の面には赤外線光源2(あるいは検出部4)と
対向する窓を開口するとともに、第三の面に前記凹曲面
の形状(放物面・回転楕円面・球面)をした集光鏡を設
け、且つ中空ブロックの中空部分にガスを封入し、ガス
フィルタとしても機能する集光セルとする。
Further, as shown in the structural development of FIG. 3, a window facing the incident side end surface (or the output side end surface) of the measurement cell is formed on the first surface of the hollow block whose outer shape is a triangular prism. A window facing the infrared light source 2 (or the detection unit 4) is opened on the surface of and the condenser mirror having the shape of the concave curved surface (parabolic surface, spheroidal surface, spherical surface) is provided on the third surface. In addition, a gas is enclosed in the hollow portion of the hollow block to form a condensing cell that also functions as a gas filter.

【0017】図2の集光鏡の位置に図3の集光セルを配
置した場合は、光源2から出射した赤外光束は集光セル
12に封入されたガスにより、封入ガスの固有な吸収帯の
赤外線が吸収され、測定セル1内に入射する。ガスフィ
ルタの使用目的の一つに、次の場合がある。吸光式の赤
外線ガス分析計で、試料に含まれている成分ガスの吸収
帯域が非常に接近している場合、例えば、COガスとC
2 ガスが混在している試料ガスなど、を分析する場
合、一方のガスは他方のガスの測定に干渉影響を与え
る。このような場合に、測定に干渉影響を与える一方の
成分ガスをガスフィルタとして前記集光セルの中空部分
に封入し、干渉影響を与える近接した吸収帯域の波長を
予め取り除いた状態の赤外線光源として、測定セル1に
供給し、吸収帯域が近接した成分ガスの測定にも干渉影
響が少ない赤外線ガス分析計を提供することができる。
また、図1の集光鏡の位置に集光セル12を配置した場合
も同様に、測定セル1をでた赤外光束は、集光セル12の
中空部分に封入した成分ガスにより、干渉影響を与える
近接した吸収帯域の波長を除去して、赤外線センサ6に
入射し、干渉影響の少ない赤外線ガス分析計を提供する
ことができる。
When the condensing cell of FIG. 3 is arranged at the position of the condensing mirror of FIG. 2, the infrared light flux emitted from the light source 2 is a condensing cell.
The gas enclosed in 12 absorbs infrared rays in the absorption band peculiar to the enclosed gas and enters the measuring cell 1. One of the purposes of using the gas filter is as follows. In the absorption type infrared gas analyzer, when the absorption bands of the component gases contained in the sample are very close to each other, for example, CO gas and C
When analyzing a sample gas in which O 2 gas is mixed, one gas interferes with the measurement of the other gas. In such a case, one component gas that affects the measurement interference is enclosed as a gas filter in the hollow part of the light-collecting cell, and the infrared light source in a state in which the wavelength of the adjacent absorption band that affects the interference is removed in advance. It is possible to provide an infrared gas analyzer which is supplied to the measurement cell 1 and has a small interference effect even in the measurement of a component gas having a close absorption band.
Similarly, when the condensing cell 12 is arranged at the position of the condensing mirror in FIG. 1, the infrared light flux leaving the measuring cell 1 is also affected by the interference due to the component gas sealed in the hollow portion of the condensing cell 12. It is possible to provide an infrared gas analyzer which removes the wavelengths of the absorption bands adjacent to each other and causes the absorption to the infrared sensor 6 and has less influence of interference.

【0018】[0018]

【発明の効果】以上述べたように本発明の構成によれ
ば、集光鏡により赤外線光束を集光して検出部に導いて
いるため、従来のセル内の反射光および直進光の一部を
受光する方式に比べて、赤外線センサに入射する光量を
著しく増加させることが可能となり、それだけ検出感度
を高めることができる。また、測定セル内の反射光を利
用しなくてもよいため、測定セル内壁の汚れによる影響
を受けにくくし、安定した測定が可能となる。
As described above, according to the structure of the present invention, since the infrared ray bundle is condensed by the condenser mirror and guided to the detecting portion, a part of the reflected light and straight light in the conventional cell is obtained. It is possible to remarkably increase the amount of light incident on the infrared sensor as compared with the method of receiving light, and the detection sensitivity can be increased accordingly. Further, since it is not necessary to use the reflected light in the measuring cell, it is possible to prevent the influence of dirt on the inner wall of the measuring cell and to perform stable measurement.

【0019】さらに、赤外線光束の行路中にガスフィル
タを設置したい場合には、測定に影響を与える近接した
吸収帯域の波長を除去することが可能となるなどの利点
も得られる。
Further, when it is desired to install a gas filter in the path of the infrared light flux, there is an advantage that it is possible to remove the wavelengths of the absorption bands adjacent to each other, which influence the measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の要部構成断面図FIG. 1 is a cross-sectional view of the essential parts of an embodiment of the present invention.

【図2】本発明の他実施例の要部構成断面図FIG. 2 is a sectional view showing the configuration of the main part of another embodiment of the present invention.

【図3】集光セルの構造展開図FIG. 3 is a structural development view of a light collecting cell

【図4】従来例の全体構成図FIG. 4 is an overall configuration diagram of a conventional example

【符号の説明】[Explanation of symbols]

1 測定セル 2 赤外線光源 3 回転式チョッパ 4 検出部 5 センサ取付ブロック 6 赤外線センサ 7 バンドパスフィルタ 8 赤外線光束 9 集光鏡 10 入光窓 11 出光窓 12 集光セル 1 Measuring Cell 2 Infrared Light Source 3 Rotating Chopper 4 Detecting Section 5 Sensor Mounting Block 6 Infrared Sensor 7 Bandpass Filter 8 Infrared Luminous Flux 9 Condensing Mirror 10 Incoming Window 11 Outgoing Window 12 Condensing Cell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】試料ガスが導入される測定セルを挟んで、
この測定セルの入射側に設けられた赤外線光源と、 前記測定セルの出射側に設けられ、赤外線センサをバン
ドパスフィルタとともにセンサ取付ブロックに組み込ん
でなる検出部と、 を具備した吸光式の赤外線ガス分析計において、 前記測定セルの出射端面と前記検出部との間に設けら
れ、前記測定セルを出射した赤外線光束を集光し、赤外
線センサに入射する集光鏡を備えたことを特徴とする赤
外線ガス分析計。
1. A measuring cell, into which a sample gas is introduced, sandwiched therebetween,
An infrared absorption gas provided with an infrared light source provided on the incident side of the measurement cell, and a detection section provided on the emission side of the measurement cell and incorporating an infrared sensor together with a bandpass filter in a sensor mounting block. The analyzer is provided with a condenser mirror that is provided between the emission end face of the measurement cell and the detection unit, condenses the infrared light flux emitted from the measurement cell, and enters the infrared sensor. Infrared gas analyzer.
【請求項2】試料ガスが導入される測定セルを挟んで、
この測定セルの入射側に設けられた赤外線光源と、 前記測定セルの出射側に設けられ、赤外線センサをバン
ドパスフィルタとともにセンサ取付ブロックに組み込ん
でなる検出部と、 を具備した吸光式の赤外線ガス分析計において、 前記測定セルの入射端面と赤外線光源との間に設けら
れ、前記測定セル出射端面に設けられた赤外線センサに
前記赤外線光源からの赤外線光束を集光する集光鏡を備
えたことを特徴とする赤外線ガス分析計。
2. A measurement cell into which a sample gas is introduced is sandwiched between
An infrared light source of absorption type provided with an infrared light source provided on the incident side of the measurement cell, and a detection section provided on the emission side of the measurement cell, in which an infrared sensor is incorporated in a sensor mounting block together with a bandpass filter. In the analyzer, an infrared sensor provided between the incident end face of the measurement cell and the infrared light source and provided on the measurement cell exit end face is provided with a condenser mirror for condensing the infrared light flux from the infrared light source. Infrared gas analyzer characterized by.
【請求項3】請求項1または2に記載の赤外線ガス分析
計において、集光鏡は、第一、第二の面に赤外線光束を
透過する入光窓と出光窓が開口した三角柱状の中空ブロ
ックの第三の面に設けられ、この中空ブロックの中空内
部にフィルタガスを封入したことを特徴とする赤外線ガ
ス分析計。
3. The infrared gas analyzer according to claim 1 or 2, wherein the condensing mirror is a triangular prism-shaped hollow having an entrance window and an exit window for transmitting the infrared light flux on the first and second surfaces. An infrared gas analyzer provided on the third surface of the block, wherein a filter gas is enclosed inside the hollow of the hollow block.
JP30144292A 1992-11-12 1992-11-12 Infrared gas analyzer Pending JPH06148069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30144292A JPH06148069A (en) 1992-11-12 1992-11-12 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30144292A JPH06148069A (en) 1992-11-12 1992-11-12 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JPH06148069A true JPH06148069A (en) 1994-05-27

Family

ID=17896947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30144292A Pending JPH06148069A (en) 1992-11-12 1992-11-12 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPH06148069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066311A1 (en) * 1998-06-18 1999-12-23 Teledyne Industries, Inc. Infrared multiple gas analyzer and analysis
US7664607B2 (en) 2005-10-04 2010-02-16 Teledyne Technologies Incorporated Pre-calibrated gas sensor
TWI651526B (en) * 2017-07-10 2019-02-21 熱映光電股份有限公司 Gas detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066311A1 (en) * 1998-06-18 1999-12-23 Teledyne Industries, Inc. Infrared multiple gas analyzer and analysis
US6201245B1 (en) 1998-06-18 2001-03-13 Robert J. Schrader Infrared, multiple gas analyzer and methods for gas analysis
US7664607B2 (en) 2005-10-04 2010-02-16 Teledyne Technologies Incorporated Pre-calibrated gas sensor
TWI651526B (en) * 2017-07-10 2019-02-21 熱映光電股份有限公司 Gas detection device

Similar Documents

Publication Publication Date Title
US4945250A (en) Optical read head for immunoassay instrument
US5170064A (en) Infrared-based gas detector using a cavity having elliptical reflecting surface
US6900893B2 (en) Optical path structure for open path emissions sensing with particulate matter and lubricating oil consumption absorption methodology
KR100731864B1 (en) A laser spectroscopy system
US5793043A (en) Method and apparatus for determining the alcohol concentration in a gas mixture
US4977325A (en) Optical read system and immunoassay method
JPH102857A (en) Analysis of gas mixture by infrared method
US4692622A (en) Infrared analyzer
US5731583A (en) Folded optical path gas analyzer with cylindrical chopper
JP4214526B2 (en) Gas component / concentration measuring method and apparatus
US5714759A (en) Optical system with an extended, imaged source
JPH06148069A (en) Infrared gas analyzer
JPH0875639A (en) Light-absorption-spectrum measuring apparatus making use of slab optical waveguide
US7227642B2 (en) Absorbance monitor
US4707131A (en) Optical arrangement for photometrical analysis measuring devices
JPH1019779A (en) Weak fluorescence measuring apparatus
JPS59173734A (en) Infrared-ray gas analysis meter
JPS6138448A (en) Photometer for analyzing gas or liquid
WO2003019160A2 (en) Open path emission sensing system
JPS60231140A (en) Optical gas densitometer
JP3325690B2 (en) Gas concentration measurement device
JP3302208B2 (en) Infrared analyzer
JPH05296925A (en) Infrared gas analyzer
JPH0620131Y2 (en) Non-dispersive gas analyzer
JPH04110750A (en) Liquid flow-cell for infrared spectral photometer