JPH06145761A - Structure for arranging tuyere in electric furnace - Google Patents

Structure for arranging tuyere in electric furnace

Info

Publication number
JPH06145761A
JPH06145761A JP4303410A JP30341092A JPH06145761A JP H06145761 A JPH06145761 A JP H06145761A JP 4303410 A JP4303410 A JP 4303410A JP 30341092 A JP30341092 A JP 30341092A JP H06145761 A JPH06145761 A JP H06145761A
Authority
JP
Japan
Prior art keywords
molten metal
tuyere
gas
blowing
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4303410A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
誠 高橋
Shiro Hora
史郎 洞
Hiromoto Hidaka
弘基 日高
Motomichi Yoshino
基道 能野
Takahiko Sawara
崇彦 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Nippon Steel Corp
Original Assignee
Topy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd, Nippon Steel Corp filed Critical Topy Industries Ltd
Priority to JP4303410A priority Critical patent/JPH06145761A/en
Publication of JPH06145761A publication Critical patent/JPH06145761A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To attain blowing capable of obtaining intense stirring force by regulating an arranging position of tuyere for blowing a specific quantities of gas and powder per unit time into molten metal by using a specific equation. CONSTITUTION:At the time of arranging the tuyere 7 for blowing the gas of >=50Nm<3>/hr/piece and the powder into the molten metal, using the calculation shown by the equations, the tuyere 7 is arranged in the range 6 >=L apart from the outer peripheral surface of an upper electrode 2 and also >=L apart from the molten metal max. surface diameter D. In the equations, L: length (m), E: work of buoyancy by blowing gas (W), Q: blowing flow rate (Nm<3>/min), T: molten metal temp. (K): rho1: sp. gr. of molten metal (kg/m<3>), H: depth of molten metal at the part arranged with tuyere (m), g: gravity acceleration (m/sec<2>), P: atmospheric pressure (Pa). By this method, the blowing operation of extremely large quantities of the gas and the powder can be executed and the improvement of the yield and the reduction of energy are obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融金属内にガス、粉体
を吹込む羽口を備えた電気炉の羽口配置構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to tuyere arrangement structure of an electric furnace having tuyere for blowing gas and powder into molten metal.

【0002】[0002]

【従来の技術】従来、電気炉の操業においては、スクラ
ップ等の装入原料を溶解・精錬する工程で、炉壁から助
燃バーナーや溶解促進のために酸素が供給されている。
このとき、電気炉の炉底は、その直径に対して深さの極
めて浅い、いわゆるシャローバスの状態にある。このた
めに、溶融金属浴を攪拌する力は極めて弱い。加えて、
電極から付与される熱も溶融金属浴の上面のみを加熱す
るために消費されるので、溶融金属浴内に対流が起き難
く、温度及び成分が不均一になる。また、攪拌力が弱い
ことから、溶融金属浴とスラグ層との間で冶金的反応が
平衡となる状態に達せず、極めて反応効率が悪い。その
ために、フェロマンガン、フェロクロム、シリコン材等
の添加材の原単位の悪化、スラグ中のトータルFeが上
昇することによる鉄ロスの増加等の欠点があった。
2. Description of the Related Art Conventionally, in the operation of an electric furnace, oxygen is supplied from a furnace wall to an auxiliary burner or to promote melting in a step of melting and refining a charging raw material such as scrap.
At this time, the bottom of the electric furnace is in a so-called shallow bath, which is extremely shallow in depth with respect to its diameter. For this reason, the force for stirring the molten metal bath is extremely weak. in addition,
Since the heat applied from the electrodes is also consumed to heat only the upper surface of the molten metal bath, convection is unlikely to occur in the molten metal bath, resulting in nonuniform temperature and components. Further, since the stirring power is weak, the metallurgical reaction does not reach an equilibrium state between the molten metal bath and the slag layer, resulting in extremely poor reaction efficiency. Therefore, there are drawbacks such as deterioration of the basic unit of additive materials such as ferromanganese, ferrochrome, and silicon material, and increase of iron loss due to increase of total Fe in slag.

【0003】この欠点を避けるため攪拌力を強化する
と、上記の解決に加えて、脱炭率の向上、鋼中の含有ガ
スの除去等による清浄化が図られ、極めて大きなメリッ
トが期待される。しかし、電気炉の場合、溶融金属浴の
揺動や激しい波立ちは、開口部からの溶鋼金属の漏出、
水冷パネルの溶損、アークの不安定化等の問題を派生す
るおそれがある。このため、これらの危険性を回避して
激しい攪拌力を溶融金属浴に与えることは実操業的には
困難とされていた。そこで炉底部から不活性ガスまたは
酸化性ガス等を溶融金属内に小流量吹き込むことによ
り、溶解を促進させる方法等が提案されている。たとえ
ば、特開昭50−92807号公報において、電気炉の
炉底に設けた羽口を介したガス吹込みにより溶鋼の攪拌
を行うことが提案されている。また、これを発展させた
ものとして、たとえば、鋼浴のコールドゾーン部の炉底
に羽口を取り付けることや、ホットゾーン部に向けて不
活性ガスを吹込む方法等が知られている。
If the stirring force is strengthened in order to avoid this drawback, in addition to the solution described above, the decarburization rate is improved and cleaning is achieved by removing the gas contained in the steel, which is expected to have an extremely great merit. However, in the case of an electric furnace, shaking of the molten metal bath and severe ripples cause leakage of molten steel metal from the opening,
This may lead to problems such as melting damage of the water-cooled panel and destabilization of the arc. For this reason, it has been considered practically difficult to avoid these dangers and apply a strong stirring force to the molten metal bath. Therefore, a method has been proposed in which an inert gas, an oxidizing gas, or the like is blown into the molten metal from the bottom of the furnace at a small flow rate to promote the melting. For example, Japanese Patent Application Laid-Open No. 50-92807 proposes stirring molten steel by blowing gas through tuyeres provided at the bottom of an electric furnace. Further, as a development of this, for example, a method of attaching tuyere to the furnace bottom of the cold zone portion of the steel bath and a method of blowing an inert gas toward the hot zone portion are known.

【0004】[0004]

【発明が解決しようとする課題】この炉底からのガス等
の吹込みにより、鋼浴の攪拌が促進され、所定の効果が
得られている。しかしながら、従来における羽口の配置
は、コールドゾーンとかホットゾーンという電極からの
受熱を中心とした範囲分け、または鋼浴の1/2以下、
または炉体の鉄皮内径の30〜80%の範囲等というよ
うに、極めて大まかに定められていたに過ぎない。しか
し、このような羽口配置は、ガス量および羽口部の浴深
を考慮して羽口配置がなされていない。発明者らの実用
炉における経験では、吹込みガス量および羽口部の浴深
を増加させると、羽口が炉壁または上部電極と近い場
合、炉壁または上部電極が著しく損耗するという問題が
生じることとなる。特に羽口1本当たりの吹込みガス量
が50Nm3 /hrを越えるとこの傾向は顕著に表れ
る。本発明は、このような電気炉での問題に鑑み、炉壁
と上部電極の損耗を抑え、かつ、大きな攪拌力を得る大
量のガス等を吹込むことを可能とする羽口配置構造を提
供することである。
By blowing gas or the like from the bottom of the furnace, stirring of the steel bath is promoted, and a predetermined effect is obtained. However, the arrangement of tuyere in the past is divided into ranges centering on the heat received from the electrodes such as the cold zone and the hot zone, or 1/2 or less of the steel bath,
Alternatively, the range is 30 to 80% of the inner diameter of the iron shell of the furnace body, etc., and is only roughly defined. However, such tuyere arrangement is not made in consideration of the gas amount and the bath depth of the tuyere. In the experience of the inventors of the present invention in a practical furnace, when the amount of gas blown in and the bath depth of the tuyere are increased, there is a problem that when the tuyere is close to the furnace wall or the upper electrode, the furnace wall or the upper electrode is significantly worn. Will occur. In particular, this tendency becomes remarkable when the amount of gas blown in per tuyere exceeds 50 Nm 3 / hr. In view of such a problem in the electric furnace, the present invention provides a tuyere arrangement structure that suppresses the wear of the furnace wall and the upper electrode and allows a large amount of gas or the like to obtain a large stirring force to be blown therein. It is to be.

【0005】[0005]

【課題を解決するための手段】本発明の電気炉の羽口配
置構造は、その目的を達成するために、溶融金属内にガ
ス・粉体を羽口1本当たり50Nm3 /hr以上吹込む
電気炉の羽口配置構造において、炉底に配設した羽口の
配設位置を、下記の計算式を用いて、上部電極外周表面
よりL以上離し、かつ溶湯最大表面直径よりL以上離し
た範囲に吹込み羽口を配設したことを特徴とする。 計算式 L=0.1×E0.24 E=6.18×Q×T×1n(1+ρ1×H×g÷P) 上記式において、 L:長さ(m) E:吹込みガスによる浮力の仕事(W) Q:吹込み流量(Nm3 /min) T:溶湯温度(K) ρ1:溶湯比重(kg/m3 ) H:羽口の配設した部分の溶湯の深さ(m) g:重力加速度(m/sec2 ) P:雰囲気圧力(Pa)
In order to achieve the object of the tuyere arrangement structure of an electric furnace of the present invention, 50 Nm 3 / hr or more of gas or powder is blown into the molten metal per tuyere. In the tuyere arrangement structure of the electric furnace, the arrangement position of the tuyere arranged at the bottom of the furnace was separated from the outer peripheral surface of the upper electrode by L or more and by L or more from the maximum surface diameter of the molten metal by using the following formula. It is characterized in that a blowing tuyere is arranged in the range. Formula L = 0.1 × E 0.24 E = 6.18 × Q × T × 1n (1 + ρ1 × H × g ÷ P) In the above formula, L: Length (m) E: Work of buoyancy by blowing gas (W) Q: Blowing flow rate (Nm 3 / min) T: Molten metal temperature (K) ρ 1: Specific gravity of molten metal (kg / m 3 ) H: Depth of molten metal (m) g where the tuyere is arranged g: Gravity acceleration (m / sec 2 ) P: Atmospheric pressure (Pa)

【0006】[0006]

【作用】溶湯に羽口を用いてガスを吹き込むと吹き込む
ガス量が少量の場合は、羽口直上の溶湯は、なめらかに
盛上がる程度であり徐々にガス量を増やしていくと溶湯
の盛り上がりのみではなく盛り上がり部の崩れ落ちや溶
湯の塊の飛散を伴うようになる。発明者らの溶湯に羽口
を用いてガス量を変化させガスを吹き込む試験を行った
が、従来電気炉で羽口1本当たり吹き込まれているガス
量10〜20Nm3 /hr程度では羽口直上の溶湯がな
めらかに盛上がる程度であり、炉壁及び電極の損耗、ア
ークの安定性に対して特に問題にはならない。羽口1本
当たり50Nm3/hrを越えた領域でガスを吹き込む
と溶湯が盛上がるだけではなく、溶湯の塊が飛散し始め
る。発明者らのテストによれば溶湯の盛上がり及びその
崩れ落ちの範囲は吹き込んだガスの持つ浮力の仕事と相
関があり、図4に示すごとく溶湯の盛上がり及びその崩
れ落ちの範囲は羽口直上を中心とした半径L(L=0.
1×E0.24)である。
[Function] When gas is blown into the molten metal using the tuyere, the amount of gas blown is small, and the molten metal immediately above the tuyere rises smoothly. If the amount of gas is gradually increased, the molten metal rises only. Instead, the swelling part will collapse and the lump of molten metal will be scattered. The inventors conducted a test of blowing gas by changing the amount of gas into the molten metal by using a tuyere, but when the amount of gas blown per tuyere in an electric furnace was about 10 to 20 Nm 3 / hr, the tuyere was used. Since the molten metal immediately above rises smoothly, there is no particular problem with respect to wear of the furnace wall and electrodes and stability of the arc. When gas is blown in a region exceeding 50 Nm 3 / hr per tuyere, not only the molten metal rises, but also molten metal lumps start to scatter. According to the test by the inventors, the range of rise and fall of the molten metal has a correlation with the work of buoyancy of the blown gas, and as shown in FIG. 4, the range of rise and fall of the molten metal is centered right above the tuyere. Radius L (L = 0.
1 × E 0.24 ).

【0007】羽口の配設位置を炉壁側からL以内の水平
距離に配設すると、溶湯の盛上がり及びその崩れ落ちが
直接炉壁と接触し、かつ、壁効果により溶湯の盛上がり
中心が炉壁側へ偏り、直接炉壁と接触する割合が大きく
なり、炉壁の著しい損耗が発生する。一方、羽口の配設
位置を上部電極表面からL以内に配設すると、飛散した
溶湯の大きな塊が上部電極に接触しアークが不安定とな
るとともに上部電極の著しい損耗が発生する。この各部
の損耗を押さえ、かつアークを安定させるために、羽口
の配設位置を上部電極表面からL以上離し、かつ溶湯の
表面が炉壁と接触している部位からL以上離した範囲に
吹込み羽口を配設することにより炉壁及び上部電極の損
耗を抑制し、アークを安定させることが可能で、大量の
ガス等を吹き込むことが可能となる電気炉の羽口配置構
造を提供できることとなる。
When the tuyere is arranged at a horizontal distance within L from the furnace wall side, the rise and fall of the molten metal directly contact the furnace wall, and the wall effect causes the center of the molten metal to rise. It is biased toward the side, and the proportion of direct contact with the furnace wall increases, causing significant wear of the furnace wall. On the other hand, if the tuyere is located within L from the surface of the upper electrode, a large lump of the molten metal that contacts the upper electrode will cause the arc to become unstable and the upper electrode to be significantly worn. In order to suppress the wear of these parts and to stabilize the arc, the tuyere placement position should be separated from the upper electrode surface by L or more and the molten metal surface should be separated by L or more from the part in contact with the furnace wall. Providing an electric furnace tuyere arrangement structure that can suppress the wear of the furnace wall and the upper electrode and stabilize the arc by arranging the blowing tuyere, and can blow a large amount of gas etc. It will be possible.

【0008】[0008]

【実施例】以下本発明について図面に従って詳細に説明
する。図1は、本発明における電気炉の縦断面図であ
る。図2、3は、電気炉の平面断面図である。図4は発
明者らの行った溶湯テスト時の浮力の仕事Eと溶湯の盛
上がり及びその崩れ落ちの範囲半径Lの関係を示す。本
実施例において溶湯表面径D=4.2m,上部電極径d
=0.457m,電極の設置中心円直径PCD=1.0
67m、吹込み流量Q=80Nm3 /hr=1.33N
3 /min,溶湯温度T=1873K,溶湯比重ρ1
=7000kg/m3 ,羽口の配設した部分の溶湯深さ
H=0.500m,重力加速度g=9.8m/sec
2 ,雰囲気圧力P=1.01325×105 Paであ
る。このとき後述する計算式より吹込みガスによる浮力
の仕事E=4500W,L=0.753mである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. FIG. 1 is a vertical sectional view of an electric furnace according to the present invention. 2 and 3 are plan sectional views of the electric furnace. FIG. 4 shows the relationship between the work E of the buoyancy and the radius L of the rising and falling of the molten metal during the molten metal test conducted by the inventors. In the present embodiment, the surface diameter D of the molten metal is 4.2 m, and the diameter d of the upper electrode is d.
= 0.457m, electrode installation center circle diameter PCD = 1.0
67m, blowing flow rate Q = 80Nm 3 /hr=1.33N
m 3 / min, molten metal temperature T = 1873K, specific gravity of molten metal ρ1
= 7000 kg / m 3 , molten metal depth H = 0.500 m at the tuyere arrangement, gravitational acceleration g = 9.8 m / sec
2 , the atmospheric pressure P = 1.01325 × 10 5 Pa. At this time, the work of buoyancy due to the blown gas is E = 4500 W and L = 0.753 m according to the calculation formula described later.

【0009】溶湯表面直径Dの電気炉の炉体1の中心部
分には3本の上部電極2(上部電極の本数は1〜3本で
あり、本実施例では3本の例を示す)が設けてあり、こ
の上部電極に通電することによりスクラップ等を溶解す
る。そして炉体1である鋼製外皮に炉壁耐火物が内張り
された炉床3には、吹込み羽口4が取付けられている。
5はスクラップが全て溶解したときの溶湯最終レベルを
示している。また、炉体1には、溶解後の溶鋼を排出す
る出鋼孔7を設けるとともに冷却のための水冷パネル8
を周囲に形成している。
Three upper electrodes 2 (the number of the upper electrodes is 1 to 3; three examples are shown in this embodiment) are provided at the center of a furnace body 1 of an electric furnace having a molten metal surface diameter D. It is provided, and scrap etc. are melted by energizing this upper electrode. A blown tuyere 4 is attached to a hearth 3 having a furnace outer wall made of steel and lined with a furnace wall refractory.
No. 5 shows the final level of the molten metal when all the scrap is melted. Further, the furnace body 1 is provided with a tapping hole 7 for discharging molten steel after melting and a water cooling panel 8 for cooling.
Is formed around.

【0010】羽口4は炉体1内の溶融金属に粉体および
ガスを吹込む構造であり、外部の酸化性ガスまたは不活
性ガスの供給源(図示せず)に連通している。ただし、
羽口の吹込み方向は、特にこれに限定されるものではな
い。また、前記羽口から外部の酸化性ガス又は不活性ガ
ス、例えば、CO2 ,CO,Ar,N2 ,O2 及び空気
等、或いはそれらのガスをキャリアガスとする粉炭等の
供給装置(図示せず)に接続されると共に、これらは配
管で連結され、そしてこれらの配管には、それぞれの流
量調節するための調節弁(図示せず)を設けている。
The tuyere 4 has a structure in which powder and gas are blown into the molten metal in the furnace body 1 and communicates with an external source of oxidizing gas or inert gas (not shown). However,
The blowing direction of the tuyere is not particularly limited to this. Further, an external oxidizing gas or an inert gas such as CO 2 , CO, Ar, N 2 , O 2 and air from the tuyere or a supply device for powdered coal or the like using these gases as a carrier gas (Fig. (Not shown), they are connected by pipes, and these pipes are provided with control valves (not shown) for adjusting the respective flow rates.

【0011】図1ないし図2に示す電気炉の炉体1内の
溶融金属浴に炉壁または炉底に配設した羽口4によって
ガス等を吹込む構造となっている。図2に示すように溶
湯にガス等を吹込んだ時の溶湯の盛上がり及びその崩れ
落ちの範囲半径Lである。図4は、溶湯テスト時の浮力
の仕事Eと溶湯の盛上がり及びその崩れ落ちの範囲半径
Lの関係を示す。発明者らの実験により溶湯の盛上がり
及びその崩れ落ちの範囲半径LはL=0.1×E0.24
なる。
Gas or the like is blown into the molten metal bath in the furnace body 1 of the electric furnace shown in FIGS. 1 and 2 by the tuyere 4 arranged on the furnace wall or the furnace bottom. As shown in FIG. 2, the radius L is the range of rise and fall of the molten metal when gas or the like is blown into the molten metal. FIG. 4 shows the relationship between the work E of buoyancy and the radius L of the rising and falling of the molten metal during the molten metal test. According to the experiments conducted by the inventors, the radius L of the rise and fall of the molten metal is L = 0.1 × E 0.24 .

【0012】上記式において、 E=6.18×Q×T×1n(1+ρ1×H×g÷P) L:長さ(m) E:吹込みガスによる浮力の仕事(W) Q:吹込み流量(Nm3 /min) T:溶湯温度(K) ρ1:溶湯比重(kg/m3 ) H:羽口の配設した部分の溶湯の深さ(m) g:重力加速度(m/sec2 ) P:雰囲気圧力(Pa) としたものである。In the above equation, E = 6.18 × Q × T × 1n (1 + ρ1 × H × g ÷ P) L: Length (m) E: Work of buoyancy due to blowing gas (W) Q: Blowing Flow rate (Nm 3 / min) T: Molten metal temperature (K) ρ 1: Specific gravity of molten metal (kg / m 3 ) H: Depth (m) of molten metal in the portion where tuyere is arranged g: Gravity acceleration (m / sec 2) ) P: Atmospheric pressure (Pa).

【0013】羽口の配設位置および吹込みガス量を変更
し、電極の安定性及び炉壁の損耗状況を確認する試験を
行ったが、羽口の配設位置を炉壁側からL以内の水平距
離に配設すると、溶湯の盛上がり及びその崩れ落ちが直
接炉壁と接触し、かつ、壁効果により溶湯の盛上がり中
心が炉壁側へ偏り、直接炉壁と接触する割合が大きくな
り、炉壁の著しい損耗が発生する。一方、羽口の配設位
置を上部電極表面からL以内に配設すると、飛散した溶
湯の大きな塊が上部電極に接触しアークが不安定となる
とともに上部電極の著しい損耗が発生することとなる。
つまり図2に示す溶湯の盛上がり及びその崩れ落ちの範
囲半径Lに上部電極および炉壁が存在する場合には、上
記問題が発生し、操業に支障をきたすことになる。
A test was conducted to check the stability of the electrodes and the state of wear of the furnace wall by changing the position of the tuyere and the amount of gas blown in. The position of the tuyere was within L from the furnace wall side. If the molten metal rises and collapses directly contact the furnace wall, and the center of the melt rises toward the furnace wall side due to the wall effect, the ratio of direct contact with the furnace wall increases. Significant wear of the walls occurs. On the other hand, if the tuyere is located within L from the surface of the upper electrode, a large lump of molten metal contacts the upper electrode, making the arc unstable and causing significant wear of the upper electrode. .
That is, when the upper electrode and the furnace wall exist within the radius L of the rise and fall of the molten metal shown in FIG. 2, the above-mentioned problem occurs and the operation is hindered.

【0014】このため、図3に示すように羽口4の配設
位置は、上部電極表面よりL以上離し、かつ溶湯最大表
面径よりL以上離した羽口配設範囲6にすることによ
り、溶湯の盛上がり及びその崩れ落ちの範囲半径Lに上
部電極および炉壁が存在しないこととなる。このことに
より、炉壁及び上部電極の損耗が抑制され、かつアーク
を安定化でき、極めて多くのガス、粉体の吹込み操業が
可能となる。
Therefore, as shown in FIG. 3, the tuyere 4 is arranged at a tuyere arrangement range 6 which is separated from the surface of the upper electrode by L or more and from the maximum surface diameter of the molten metal by L or more. The upper electrode and the furnace wall do not exist within the radius L of the rising and falling of the molten metal. As a result, the wear of the furnace wall and the upper electrode can be suppressed, the arc can be stabilized, and the operation of blowing in an extremely large amount of gas and powder can be performed.

【0015】[0015]

【発明の効果】以上述べたように、本発明を採用するこ
とにより、極めて多くのガス、粉体の吹込み操業が可能
となり歩留まり向上、エネルギー削減がさらに可能とな
り、工業上の効果は著しいものがある。
As described above, by adopting the present invention, it is possible to inject a very large amount of gas and powder, improve the yield and further reduce energy, and the industrial effect is remarkable. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における電気炉の縦断面図、FIG. 1 is a vertical sectional view of an electric furnace according to the present invention,

【図2】本発明における電気炉の平面断面図、FIG. 2 is a plan sectional view of an electric furnace according to the present invention,

【図3】本発明における電気炉の平面断面図、FIG. 3 is a plan sectional view of an electric furnace according to the present invention,

【図4】吹込みガスによる浮力の仕事と溶湯における溶
湯の盛上がり及びその崩れ落ちの範囲半径、及び溶湯の
大きな塊の飛散する範囲半径との関係を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the relationship between the work of buoyancy caused by the blown gas, the radius of rise and fall of the molten metal in the molten metal, and the radius of the range in which a large mass of molten metal is scattered.

【符号の説明】[Explanation of symbols]

1 炉体 2 上部電極 3 炉床 4 羽口 5 溶湯最終レベル 6 羽口配設範囲 7 出鋼孔 8 水冷パネル H 羽口部の溶湯深さ D 溶湯表面径 L 溶湯の盛上がり及びその崩れ落ちの範囲長さ 1 furnace body 2 upper electrode 3 hearth 4 tuyere 5 final level of molten metal 6 tuyere arrangement range 7 tap hole 8 water cooling panel H depth of molten metal in tuyere D molten metal surface diameter L range of rising and falling of molten metal length

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日高 弘基 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社機械・プラント事業部内 (72)発明者 能野 基道 東京都千代田区四番町5番地9 トピー工 業株式会社内 (72)発明者 佐原 崇彦 東京都千代田区四番町5番地9 トピー工 業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroki Hidaka Inventor Hiroki Hidaka 46-59 Nakahara, Tobata-ku, Kitakyushu, Fukuoka Prefecture Machinery & Plant Division, Nippon Steel Corp. 5-5 Yonbancho, Topy Industry Co., Ltd. (72) Inventor Takahiko Sahara 5-9, Yonbancho, Chiyoda-ku, Tokyo Inside Topy Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属内にガス・粉体を羽口1本当た
り50Nm3 /hr以上吹込む電気炉の羽口配置構造に
おいて、炉底に配設した羽口の配設位置を、下記の計算
式を用いて、上部電極外周表面よりL以上離し、かつ溶
湯最大表面直径よりL以上離した範囲に吹込み羽口を配
設したことを特徴とする電気炉の羽口配置構造。 計算式 L=0.1×E0.24 E=6.18×Q×T×1n(1+ρ1×H×g÷P) 上記式において、 L:長さ(m) E:吹込みガスによる浮力の仕事(W) Q:吹込み流量(Nm3 /min) T:溶湯温度(K) ρ1:溶湯比重(kg/m3 ) H:羽口の配設した部分の溶湯の深さ(m) g:重力加速度(m/sec2 ) P:雰囲気圧力(Pa)
1. In a tuyere arrangement structure of an electric furnace in which gas / powder is blown into molten metal at 50 Nm 3 / hr or more per tuyere, the arrangement position of the tuyere arranged at the bottom of the furnace is as follows. The tuyere arrangement structure of the electric furnace, wherein the blowing tuyere is arranged in a range separated from the outer peripheral surface of the upper electrode by L or more, and separated from the maximum surface diameter of the molten metal by L or more by using the calculation formula. Formula L = 0.1 × E 0.24 E = 6.18 × Q × T × 1n (1 + ρ1 × H × g ÷ P) In the above formula, L: Length (m) E: Work of buoyancy by blowing gas (W) Q: Blowing flow rate (Nm 3 / min) T: Molten metal temperature (K) ρ 1: Specific gravity of molten metal (kg / m 3 ) H: Depth of molten metal (m) g where the tuyere is arranged g: Gravity acceleration (m / sec 2 ) P: Atmospheric pressure (Pa)
JP4303410A 1992-11-13 1992-11-13 Structure for arranging tuyere in electric furnace Pending JPH06145761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4303410A JPH06145761A (en) 1992-11-13 1992-11-13 Structure for arranging tuyere in electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4303410A JPH06145761A (en) 1992-11-13 1992-11-13 Structure for arranging tuyere in electric furnace

Publications (1)

Publication Number Publication Date
JPH06145761A true JPH06145761A (en) 1994-05-27

Family

ID=17920690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4303410A Pending JPH06145761A (en) 1992-11-13 1992-11-13 Structure for arranging tuyere in electric furnace

Country Status (1)

Country Link
JP (1) JPH06145761A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066786A (en) * 2018-10-26 2020-04-30 日本製鉄株式会社 Ladle refining method of molten steel
JP2020066776A (en) * 2018-10-25 2020-04-30 日本製鉄株式会社 Ladle refining method of molten steel
JP2020066787A (en) * 2018-10-26 2020-04-30 日本製鉄株式会社 Ladle refining method of molten steel
US20220195546A1 (en) * 2019-04-22 2022-06-23 Nippon Steel Corporation Method for producing chromium-containing molten iron

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254164A (en) * 1985-09-03 1987-03-09 Fujikura Ltd Column for chromatograph
JPS6437449A (en) * 1987-08-03 1989-02-08 Sony Corp Production of synthetic granite
JPH0356613A (en) * 1989-07-25 1991-03-12 Nikko:Kk Combustion improving device for electric furnace for steel making

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254164A (en) * 1985-09-03 1987-03-09 Fujikura Ltd Column for chromatograph
JPS6437449A (en) * 1987-08-03 1989-02-08 Sony Corp Production of synthetic granite
JPH0356613A (en) * 1989-07-25 1991-03-12 Nikko:Kk Combustion improving device for electric furnace for steel making

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066776A (en) * 2018-10-25 2020-04-30 日本製鉄株式会社 Ladle refining method of molten steel
JP2020066786A (en) * 2018-10-26 2020-04-30 日本製鉄株式会社 Ladle refining method of molten steel
JP2020066787A (en) * 2018-10-26 2020-04-30 日本製鉄株式会社 Ladle refining method of molten steel
US20220195546A1 (en) * 2019-04-22 2022-06-23 Nippon Steel Corporation Method for producing chromium-containing molten iron

Similar Documents

Publication Publication Date Title
CN104039987B (en) Steel slag reduction method
JP4745731B2 (en) Method of melting hot metal with cupola
EP3464653B1 (en) Method for the production of cast iron
JPS62227023A (en) Steelmaking apparatus
CA1336542C (en) Method for smelting and reducing iron ores and apparatus therefor
JP2003172584A (en) Fine particle blowing device and refining method
US4504307A (en) Method for carrying out melting, melt-metallurgical and/or reduction-metallurgical processes in a plasma melting furnace as well as an arrangement for carrying out the method
EP2210959B1 (en) Process for producing molten iron
JPH06145761A (en) Structure for arranging tuyere in electric furnace
JP4487812B2 (en) Method for producing low phosphorus hot metal
US4518419A (en) Method of carrying out metallurgical or chemical processes in a shaft furnace, and a low shaft furnace therefor
ES8506101A1 (en) A method and arrangement for producing metals, in particular molten pig iron, steel pre-material or ferroalloys.
JPH0377251B2 (en)
JPH0723494B2 (en) Method and apparatus for refining molten metal
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
KR100225249B1 (en) Remaining slag control method of of slopping control
JP7099657B1 (en) Refining method of molten iron and manufacturing method of molten steel using it
EP4261290A1 (en) Method for refining molten iron
JPH0351992B2 (en)
JP2000345229A (en) Method for arc-melting cold iron source
JP2836192B2 (en) Method for producing low sulfur hot metal
JPH07100809B2 (en) Smelting reduction furnace
JPS62116712A (en) Melting and smelting vessel having splash lance
JP2809058B2 (en) Refining method in converter type refining vessel