JPH06142511A - Catalyst for decomposing nitrous oxide - Google Patents

Catalyst for decomposing nitrous oxide

Info

Publication number
JPH06142511A
JPH06142511A JP4358085A JP35808592A JPH06142511A JP H06142511 A JPH06142511 A JP H06142511A JP 4358085 A JP4358085 A JP 4358085A JP 35808592 A JP35808592 A JP 35808592A JP H06142511 A JPH06142511 A JP H06142511A
Authority
JP
Japan
Prior art keywords
catalyst
al2o3
alpha
mol ratio
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4358085A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
雅文 吉本
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
一彦 永野
Kenji Nakahira
健二 中平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP4358085A priority Critical patent/JPH06142511A/en
Publication of JPH06142511A publication Critical patent/JPH06142511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance decomposition efficiency and durability in the catalyst for exhaust gas of an automobile by making so ruthenium and iridium carried on alpha-Al2O3 that the mol ratio thereof is regulated to the prescribed amount. CONSTITUTION:Ruthenium Ru and iridium Ir are carried alpha-Al2O3 in a range within 0.30-5.00 as the mol ratio of Ru to Ir. When the mol ratio is 0.30 or below, a catalyst is made iridiumlike and durability is enhanced but initial activity is lowered. When the mol ratio is 5.00 or more, the catalyst is reversely made rutheniumlike and initial activity is good but durability is deteriorated. The catalyst is prepared by immersing alpha-Al2O3 in the ethanol solution of ruthenium and iridium which are regulated to the prescribed mol ratio and coimpregnating alpha-Al2O3 with these noble metals, drying alpha-Al2O3 and thereafter burning it at about 300-500 deg.C and performing reducing treatment in H2 flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、排ガス中の窒素酸化
物、とりわけ亜酸化窒素(NO)の分解除去用触媒に
係わり、詳しくは工場、自動車、ゴミ焼却炉、下水汚泥
焼却炉などの廃棄物処理設備などから排出される排気ガ
ス中に含まれる亜酸化窒素を分解除去する際に用いる好
適な窒素酸化物分解用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing and removing nitrogen oxides in exhaust gas, particularly nitrous oxide (N 2 O), and more specifically, factories, automobiles, refuse incinerators, sewage sludge incinerators, etc. The present invention relates to a suitable catalyst for decomposing nitrogen oxides, which is used when decomposing and removing nitrous oxide contained in exhaust gas discharged from the waste treatment facility.

【従来の技術及び発明が解決しようとする課題】多種の
排ガス中の窒素酸化物(以下、NOx)は、健康に有害
であり、かつ光化学スモッグや酸性雨の発生原因ともな
りうるため、その排出は厳しく制限されており、その効
果的な除去手段の開発が望まれている。ところで、従来
排出規制が義務づけられている窒素酸化物は主として一
酸化窒素(NO)及び二酸化窒素(NO)である。こ
れらNOxの除去方法としては、触媒を用いて排ガス中
のNOxを低減する方法が既にいくつか実用化されてい
る。例えば(イ)ガソリン自動車における三元触媒法
や、(ロ)ボイラー等の大型設備排出源からの排ガスに
ついて、アンモニアを用いる選択的接触還元法が挙げら
れる。また、最近では(ハ)炭化水素を用いた排ガス中
のNOx除去方法として、銅等の金属を担持したゼオラ
イト、あるいはアルミナ等の金属酸化物を触媒として炭
化水素の共存下でNOを含むガスと接触させる方法など
が提案されるている。ところが、こうした方法ではいず
れも、排ガス中のNOの処理は不可能ではないが十分
ではなく、従来これらは、前述した脱硝設備の後流に未
処理のまま排出されてきた。これは、これまでNOに
対する法的な規制値がなく、又、JISのような公的な
測定方法も定められてなかったことなどとも関連してお
り、実質的にはこれらの処理は、脱硝の対象としては黙
視されてきたというのが現実であった。ところが、前述
した脱硝方法においては、その運転条件によってN
が生成することが認められており、又、最近ではゴミ焼
却炉や下水汚泥焼却炉などからも比較的高濃度のN
が生成することも報告されている。加えて近年、N
は、CO、フロン、CH等とともに、成層圏でのオ
ゾ層の破壊、ないしは温室効果による温度上昇などもた
らす地球規模的汚染物質として特に注目されてきてい
る。こうした事情からNOの処理方法、とりわけその
分解触媒についての関心が高まっており、いくつかの方
法が提案されてきた。それらは例えば、ゼオライト系の
担体に各種の遷移金属を担持させたものあるいは又、酸
化マグネシウムや酸化亜鉛などの塩基性担体に各種の遷
移金属を担持させたものである。しかしながらこれらは
いずれも活性を示す温度が高く、低温では充分なる性能
が得られず、又処理ガス中に水分があるとその影響を強
く受けて失活するなどの弱点を有していた。こうした問
題を解決するため、既に本発明者らは、疎水性担体にル
テニウムあるいはロジウムをはじめとする種々の貴金属
を担持するなどの方法(平成4年5月26日)、及びα
−Alにルテニウムあるいはロジウムをはじめと
する種々の貴金属を担持するなどの方法(平成4年10
月22日)を出願している。しかしながら、こうした方
法によっても、貴金属のうちでRuやRhは、初期的に
は非常に高活性を示すものの反応中に経時的変化し、活
性の低下をもたらすなどの弱点を有することも明らかに
なった。本発明はこうした状況に鑑みてなされたもので
あり、その目的とするところは、排ガス中のNOを効
率よく分解することが出来ると同時耐久性の優れたN
O分解用触媒を提供することにある。
2. Description of the Related Art Nitrogen oxides (hereinafter referred to as NOx) in various kinds of exhaust gas are harmful to health and may cause photochemical smog and acid rain, so their emission Is severely limited, and the development of effective removal means is desired. By the way, the nitrogen oxides conventionally required to be emission regulated are mainly nitric oxide (NO) and nitrogen dioxide (NO 2 ). As methods for removing these NOx, some methods for reducing NOx in exhaust gas using a catalyst have already been put into practical use. For example, (a) a three-way catalyst method in a gasoline automobile, and (b) a selective catalytic reduction method using ammonia for exhaust gas from a large facility emission source such as a boiler. Recently, as a method for removing NOx in exhaust gas using (c) hydrocarbons, zeolite containing a metal such as copper, or a gas containing NO in the presence of hydrocarbons using a metal oxide such as alumina as a catalyst is used. Methods such as contacting have been proposed. However, none of these methods is not sufficient, but not sufficient, to treat N 2 O in the exhaust gas, and conventionally, these have been discharged untreated in the downstream of the above-mentioned denitration equipment. This is related to the fact that there is no legal regulation value for N 2 O and no official measurement method such as JIS has been established so far. However, the reality is that they have been ignored as targets for denitration. However, in the above-described denitration method, N 2 O may be added depending on the operating conditions.
It has been confirmed that methane is generated, and recently, a relatively high concentration of N 2 O has been obtained from garbage incinerators and sewage sludge incinerators.
Are also reported to be generated. In addition, in recent years, N 2 O
Has attracted particular attention as a global pollutant that causes destruction of the Ozo layer in the stratosphere, or temperature rise due to the greenhouse effect, together with CO 2 , chlorofluorocarbon, CH 4, and the like. Under such circumstances, there has been increasing interest in N 2 O treatment methods, particularly decomposition catalysts thereof, and several methods have been proposed. They are, for example, a zeolite-based carrier on which various transition metals are supported, or a basic carrier such as magnesium oxide or zinc oxide on which various transition metals are supported. However, all of them have a high temperature at which they are active, and they do not provide sufficient performance at low temperatures, and have a weak point that they are strongly affected by the presence of water in the process gas and are deactivated. In order to solve these problems, the present inventors have already carried out a method of loading various noble metals such as ruthenium or rhodium on a hydrophobic carrier (May 26, 1992), and α
-A method of supporting various noble metals such as ruthenium or rhodium on Al 2 O 3 ( 1992 1992 )
(May 22) is applied. However, even by such a method, it was revealed that among the noble metals, Ru and Rh have extremely weak activities in the initial stage, but change over time during the reaction, resulting in a decrease in activity. It was The present invention has been made in view of these circumstances, N 2 and has as its object, with excellent co-durability when it is possible to decompose efficiently N 2 O in the exhaust gas
It is to provide a catalyst for O decomposition.

【問題を解決するための手段】上記目的を達成するため
の本発明に係る亜酸化窒素分解用触媒は、α−Al
に、ルテニウム(Ru)とイリジウム(Ir)をRu
/Irモル比で0.30〜5.00の範囲に担持させて
なる。上記モル比が0.30以下のときは、イリジウム
ライクな触媒となり、耐久性は良好であるが、初期活性
が十分ではなく、又モル比が5.00以上のときは、逆
にルテニウムライクな触媒となり、初期活性は良好であ
るが、耐久性が十分でなく好ましくない。本発明に係る
α−Alとしては、例えば不二見インコーポレイ
テッド(株)の球状α−Al、AM−S31、A
M−S32、AM−S33、AM−S34及び住友化学
(株)製の粉状α−Al、A−26、AMS−
2、AMS−9、AMS−12などを例示することが出
来る。あるいは又、住友化学(株)製の球状活性アルミ
ナKHD−24(−46)、同NKHD−24(−4
6)などを1200℃〜1300℃で4〜5時間焼成す
ることによっても得ることが出来る。本発明に係る触媒
は、例えば以下の方法により調製することが出来る。前
述したα−Alを、所定のモル比に調製されたル
テニウム及びイリジウムのエタノール溶液中に一定時間
浸漬させ、これら貴金属を共含浸し、乾燥した後更に、
300℃〜500℃で3〜5時間焼成し、更にH気流
中で400℃〜500で3〜5時間還元処理をする。以
上のようにして、本発明に係る触媒が得られるが、これ
ら貴金属の好適な担持量は、金属として0.3〜2wt
%である。0.3wt%以下では、これらの効果が十分
に発揮されず、又2wt%を超えてもそれに見合うだけ
の活性の向上は得られなかった。本発明に係る亜酸化窒
素分解用触媒は、従来公知の成形方法により、ハニカム
状球状等の種々の形状に成形することが出来る。さらに
又、前述したα−Alのみを成形し、貴金属など
を成形後に含浸させてもよい。さらに又、別に成形した
セラミックス担体あるいはセラミックファイバー製基
材、コージエライト製ハニカム等の上に前述した触媒粉
をウォッシュコートしてもよい。又、成形の際には、成
形助剤、無機繊維、有機バインダー等を適宜配合しても
よい。本発明に係る亜酸化窒素分解用触媒が、NOに
対して活性を示す最適な温度は、触媒種によって異なる
が通常200℃〜600℃であり、この温度領域におい
ては、空間速度(SV)500〜500000程度で排
ガスを通流させることが好ましい。なお、より好適な使
用温度領域は300℃〜500℃である。
The catalyst for decomposing nitrous oxide according to the present invention for achieving the above object is α-Al 2 O.
3. Add Ruthenium (Ru) and Iridium (Ir) to Ru
It is carried in the range of 0.30 to 5.00 in terms of molar ratio / Ir. When the molar ratio is 0.30 or less, the catalyst is iridium-like and has good durability, but the initial activity is not sufficient, and when the molar ratio is 5.00 or more, it is conversely ruthenium-like. It becomes a catalyst and has good initial activity, but it is not preferable because it has insufficient durability. Examples of α-Al 2 O 3 according to the present invention include spherical α-Al 2 O 3 , AM-S31, A manufactured by Fujimi Incorporated.
M-S32, AM-S33, AM-S34 and powdery α-Al 2 O 3 , A-26, AMS- manufactured by Sumitomo Chemical Co., Ltd.
2, AMS-9, AMS-12, etc. can be illustrated. Alternatively, spherical activated alumina KHD-24 (-46), NKHD-24 (-4) manufactured by Sumitomo Chemical Co., Ltd.
It can also be obtained by firing 6) or the like at 1200 ° C to 1300 ° C for 4 to 5 hours. The catalyst according to the present invention can be prepared, for example, by the following method. The above-mentioned α-Al 2 O 3 is immersed in an ethanol solution of ruthenium and iridium prepared in a predetermined molar ratio for a certain period of time, co-impregnated with these noble metals and dried, and then,
Baking is performed at 300 ° C to 500 ° C for 3 to 5 hours, and further reduction treatment is performed at 400 ° C to 500 for 3 to 5 hours in an H 2 gas stream. As described above, the catalyst according to the present invention can be obtained, and the preferable loading amount of these precious metals is 0.3 to 2 wt.
%. When the amount is 0.3 wt% or less, these effects are not sufficiently exhibited, and even when the amount exceeds 2 wt%, the activity improvement corresponding to the effect cannot be obtained. The catalyst for decomposing nitrous oxide according to the present invention can be molded into various shapes such as a spherical shape by a conventionally known molding method. Furthermore, only α-Al 2 O 3 described above may be molded and a noble metal or the like may be impregnated after molding. Further, the above-mentioned catalyst powder may be wash-coated on a separately formed ceramic carrier, ceramic fiber base material, cordierite honeycomb, or the like. Further, at the time of molding, a molding aid, an inorganic fiber, an organic binder and the like may be appropriately mixed. The optimum temperature at which the catalyst for decomposing nitrous oxide according to the present invention exhibits activity with respect to N 2 O varies depending on the catalyst species, but is usually 200 ° C to 600 ° C, and in this temperature range, the space velocity (SV ) It is preferable to let the exhaust gas flow at about 500 to 500,000. A more suitable operating temperature range is 300 ° C to 500 ° C.

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 (I)、触媒の調製 実施例1 粒径が2mm〜4mm、比表面積6.0m/g、細孔
容積0.33ml/g、吸水率33%の不二見インコー
ポレイテッド(株)製の球状α−Al、AM−S
34をRu/Irモル比が0.30に調製されたエタノ
ール溶液中に浸漬し、Ru/Irとして1.5wt%と
なるよう共含浸した。余分なエタノールを吹きとばした
後、100℃で2時間乾燥し、更に400℃で5時間焼
成した。次にこれらをH気流中で500℃で2時間還
元処理して、球状α−Alにモル比0.30のR
u/Irを1.5wt%担持した触媒を得た。 媒施例2 実施例1において、Ru/Irモル比が1.00に調製
されたエタノール溶液を使用する以外は実施例1と同様
にして、球状α−Alにモル比1.00のRu/
Irを1.5wt%担持した触媒を得た。 実施例3 実施例1において、Ru/Irモル比が2.00に調製
されたエタノール溶液を使用する以外は実施例1と同様
にして、球状α−Alにモル比2.00のRu/
Irを1.5wt%担持した触媒を得た。 実施例4 実施例1において、Ru/Irモル比が3.00に調製
されたエタノール溶液を使用する以外は実施例1と同様
にして、球状α−Alにモル比3.00のRu/
Irを1.5wt%担持した触媒を得た。 実施例5 実施例1において、Ru/Irモル比が5.00に調製
されたエタノール溶液を使用する以外は実施例1と同様
にして、球状α−Alにモル比5.00のRu/
Irを1.5wt%担持した触媒を得た。 実施例6 平均粒子径が1.1μの住友化学(株)製の粉状α−A
、AMS−2のパウダーの1部をアルミナゾル
をバインダーとして、顆粒機にかけ篩を通して約1mm
の顆粒状物とした。それにこれを核として、残りのパウ
ダーを同じくアルミナゾルをバインダーとして転動造粒
機にかけ、篩を通して粒径が2mm〜4mmの球状造物
を得た。これら造粒物は100℃で5時間乾燥後そらに
500℃で4時間焼成した。以下、実施例3と同様にし
て、球状α−Alにモル比2.00のRu/Ir
を1.5wt%担持した触媒を得た。 比較例1 実施例1において、Ru/Irモル比が0.10に調製
されたエタノール溶液を使用する以外は実施例1と同様
にして、球状α−Alにモル比0.10のRu/
Irを1.5wt%担持した触媒を得た。 比較例2 実施例1において、Ru/Irモル比が6.00に調製
されたエタノール溶液を使用する以外は実施例1と同様
にして、球状α−Alにモル比6.00のRu/
Irを1.5wt%担持した触媒を得た。 (II)、評価試験 実施例1〜6、比較例1〜2で得た触媒について、下記
の試験条件により、常圧流通式反応装置を用い、亜酸化
窒素含有ガスの接触分解を行い、反応開始1時間後、1
0時間後及び100時間後の亜酸化窒素分解率を測定し
た。尚、亜硝酸窒素分解率は、亜酸化窒素のNへの転
換率をガスクロマトグラフ法によりNを定量して算出
した。試験条件 、ガス組成 NO 50ppm O 5% HO 2% He 残部 、空間速度 5000Hr 、反応温度 350℃ 結果を表1に示す。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible. (I), Preparation of Catalyst Example 1 Spherical particle made by Fujimi Incorporated Co., Ltd. having a particle size of 2 mm to 4 mm, a specific surface area of 6.0 m 2 / g, a pore volume of 0.33 ml / g and a water absorption rate of 33%. α-Al 2 O 3 , AM-S
34 was immersed in an ethanol solution whose Ru / Ir molar ratio was adjusted to 0.30, and co-impregnated so that Ru / Ir would be 1.5 wt%. After the excess ethanol was blown off, the product was dried at 100 ° C. for 2 hours and then baked at 400 ° C. for 5 hours. Next, these were subjected to reduction treatment in a H 2 stream at 500 ° C. for 2 hours to give spherical α-Al 2 O 3 with an R of 0.30 in a molar ratio.
A catalyst supporting 1.5 wt% of u / Ir was obtained. Medium Example 2 In the same manner as in Example 1 except that an ethanol solution having a Ru / Ir molar ratio adjusted to 1.00 was used, a spherical α-Al 2 O 3 molar ratio of 1.00 was obtained. Ru /
A catalyst supporting 1.5 wt% of Ir was obtained. Example 3 In the same manner as in Example 1 except that an ethanol solution having a Ru / Ir molar ratio of 2.00 was used, spherical α-Al 2 O 3 having a molar ratio of 2.00 was used. Ru /
A catalyst supporting 1.5 wt% of Ir was obtained. Example 4 In the same manner as in Example 1 except that the ethanol solution having a Ru / Ir molar ratio of 3.00 was used, spherical α-Al 2 O 3 having a molar ratio of 3.00 was used. Ru /
A catalyst supporting 1.5 wt% of Ir was obtained. Example 5 In the same manner as in Example 1 except that an ethanol solution having a Ru / Ir molar ratio of 5.00 was used, the spherical α-Al 2 O 3 having a molar ratio of 5.00 was used. Ru /
A catalyst supporting 1.5 wt% of Ir was obtained. Example 6 Powdered α-A manufactured by Sumitomo Chemical Co., Ltd. having an average particle size of 1.1 μm
1 part of l 2 O 3, AMS-2 powder and alumina sol as a binder, about 1mm through a sieve sieved granulator
It was a granular material. With this as a core, the remaining powder was also subjected to a tumbling granulator using alumina sol as a binder and passed through a sieve to obtain a spherical granule having a particle diameter of 2 mm to 4 mm. These granules were dried at 100 ° C. for 5 hours and then calcined at 500 ° C. for 4 hours. Hereinafter, in the same manner as in Example 3, spherical α-Al 2 O 3 was added with Ru / Ir having a molar ratio of 2.00.
To obtain 1.5% by weight of a catalyst. Comparative Example 1 In the same manner as in Example 1 except that the ethanol solution prepared to have a Ru / Ir molar ratio of 0. 10 was used, spherical α-Al 2 O 3 having a molar ratio of 0.10. Ru /
A catalyst supporting 1.5 wt% of Ir was obtained. Comparative Example 2 In the same manner as in Example 1 except that the ethanol solution having a Ru / Ir molar ratio of 6.00 was used, spherical α-Al 2 O 3 having a molar ratio of 6.00 was used. Ru /
A catalyst supporting 1.5 wt% of Ir was obtained. (II), Evaluation test The catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 2 were subjected to catalytic decomposition of a nitrous oxide-containing gas under the following test conditions using a normal pressure flow type reaction device to carry out a reaction. 1 hour after the start, 1
The nitrous oxide decomposition rate after 0 hour and 100 hours was measured. Incidentally, nitrite nitrogen decomposition rate was calculated by quantifying the N 2 by gas chromatography a conversion to N 2 of nitrous oxide. Test conditions , gas composition N 2 O 50 ppm O 2 5% H 2 O 2% He balance, space velocity 5000 Hr 1 , reaction temperature 350 ° C. The results are shown in Table 1.

【表1】 [Table 1]

【発明の効果】以上詳細に説明したように、本発明に係
る亜酸化窒素分解用触媒は、排ガス中の亜酸化窒素を効
率よく接触分解することが出来ると同時に、経時変化を
しにくいなど、優れた特有の効果を有する。
As described in detail above, the catalyst for decomposing nitrous oxide according to the present invention is capable of efficiently catalytically decomposing nitrous oxide in exhaust gas and, at the same time, is unlikely to change with time. It has an excellent unique effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中平 健二 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Nakahira 5-1, Ebishimacho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】α−Alに、ルテニウム(Ru)と
イリジウム(Ir)がRu/Irモル比で0.30〜
5.00の範囲で担持されていることを特徴とする亜酸
化窒素分解用触媒。
1. Ruthenium (Ru) and iridium (Ir) are added to α-Al 2 O 3 in a Ru / Ir molar ratio of 0.30 to 0.30.
A catalyst for decomposing nitrous oxide, which is supported in a range of 5.00.
JP4358085A 1992-11-13 1992-11-13 Catalyst for decomposing nitrous oxide Pending JPH06142511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4358085A JPH06142511A (en) 1992-11-13 1992-11-13 Catalyst for decomposing nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4358085A JPH06142511A (en) 1992-11-13 1992-11-13 Catalyst for decomposing nitrous oxide

Publications (1)

Publication Number Publication Date
JPH06142511A true JPH06142511A (en) 1994-05-24

Family

ID=18457467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4358085A Pending JPH06142511A (en) 1992-11-13 1992-11-13 Catalyst for decomposing nitrous oxide

Country Status (1)

Country Link
JP (1) JPH06142511A (en)

Similar Documents

Publication Publication Date Title
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
KR100336967B1 (en) A process for preparing honeycomb type monolithic catalyst
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
KR100336963B1 (en) Honeycomb type monolithic catalyst for removing VOCs
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JP3221071B2 (en) Catalyst for decomposition of nitrous oxide
JPH06182203A (en) Catalyst for decomposition of nitrous oxide
JPH06142511A (en) Catalyst for decomposing nitrous oxide
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP3221110B2 (en) Catalyst for decomposition of nitrous oxide
JPH06142515A (en) Catalyst for decomposing nitrous oxide
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
JPH06218232A (en) Purifying method for nitrous oxide containing waste gas
JPH06142510A (en) Catalyst for decomposing nitrous oxide
JPH06218233A (en) Purifying method for waste gas containing nitrous oxide
WO2004103554A1 (en) Catalyst for oxidizing and removing methane in exhaust gas method for clarifying exhaust gas
JPH06154604A (en) Catalyst for decomposition of nitrous oxide
KR19980086887A (en) Removal of nitrogen oxides using natural manganese stones
JPH06154603A (en) Catalyst for decomposition of nitrous oxide
JPH07323225A (en) Catalyst for reductive-removing nitrogen oxides in waste combustion gas
JPH06142514A (en) Catalyst for decomposing nitrous oxide