JPH06136547A - Plating method utilizing light and plating film forming body - Google Patents

Plating method utilizing light and plating film forming body

Info

Publication number
JPH06136547A
JPH06136547A JP5154193A JP5154193A JPH06136547A JP H06136547 A JPH06136547 A JP H06136547A JP 5154193 A JP5154193 A JP 5154193A JP 5154193 A JP5154193 A JP 5154193A JP H06136547 A JPH06136547 A JP H06136547A
Authority
JP
Japan
Prior art keywords
copper
substrate
light
dye
dye layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5154193A
Other languages
Japanese (ja)
Inventor
Shinya Morishita
真也 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP5154193A priority Critical patent/JPH06136547A/en
Publication of JPH06136547A publication Critical patent/JPH06136547A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form thick metallic plating films having excellent adhesion in photoirradiated parts by forming dyestuff layer parts on the surface of a nonconductive substrate, then immersing this substrate into an electroless plating liquid contg. a sacrificial oxidizing agent and metal ions and irradiating the dyestuff layer parts with light. CONSTITUTION:The dyestuff adsorption layers of dyestuff molecules of a xanthene system, etc., are partially formed on the surface of the substrate consisting of the nonconductive material of alumina type, etc., the substrate is then immersed into the electroless plating liquid contg. the sacrificial oxidizing agent which is irreversibly oxidized and decomposed by reaction of amines, etc., to supply electrons and at least one kind of ions of Cu, Ni, Co, Sn, etc. The dyestuff adsorption layers of the substrate surface are then irradiated with light having energy of the excitation energy of the dyestuff or above by a mercury lamp, etc., to deposit the metal ions of the Cu, etc., in the plating liquid as metals on these parts. The metals, such as Cu, in the electrode plating liquid are thereafter continuously and electroless deposited on these deposited metals. The electroless plating layers of a large thickness are thus formed in the dyestuff adsorbed layers part with the high adhesive power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無電解めっき液中で基
板に形成した色素層の光照射部に厚く、密着性に優れた
めっき膜を形成させることができる光利用めっき方法お
よびめっき膜形成体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-utilizing plating method and a plating film capable of forming a thick plating film having excellent adhesion on a light-irradiated portion of a dye layer formed on a substrate in an electroless plating solution. It relates to a formed body.

【0002】[0002]

【従来の技術】従来から、光の持つ放射エネルギーを利
用し、基板上の光照射部のみに金属を選択的に析出させ
る光利用めっき方法が知られている。この光利用めっき
方法として、光を吸収した半導体の光酸化還元反応を利
用し、半導体を担持した基板の光照射部のみに金属を析
出させる方法(特開平2−205388、特公平2−2
950)があり、めっき液として、アルコールやホルム
アルデヒド等の還元剤を含む各種金属イオン水溶液を用
いている。これらの方法では、金属を析出させる際の反
応として、次のような機構が考えられている。すなわ
ち、TiO2 等の半導体を基板上に担持させ、この基板
を還元剤を含む各種金属イオン水溶液中に浸漬する。こ
の半導体に紫外線を照射して、半導体の伝導帯に生成し
た電子によって金属イオンを還元し、金属を半導体上に
析出させるものである。前記還元剤は、紫外線によって
半導体の価電子帯に生成した正孔に電子を供給し、伝導
帯に生成した電子と正孔との反応を防ぐ働きをなす。し
かしながら、従来のめっき液を使用する方法は、基板表
面の半導体上に金属が数1000Åの厚さに析出する
と、照射した光が半導体に到達できなくなり、前記光照
射による金属の析出が停止し、厚い金属のめっき膜を形
成できないという問題があった。
2. Description of the Related Art Heretofore, a light-utilizing plating method has been known in which the radiant energy of light is utilized to selectively deposit a metal only on a light irradiation portion on a substrate. As the light-utilizing plating method, a method of utilizing a photo-oxidation / reduction reaction of a semiconductor that absorbs light to deposit a metal only on a light-irradiated portion of a substrate carrying a semiconductor (Japanese Patent Laid-Open No. 205205/1990, 2-2) is adopted.
950), and various metal ion aqueous solutions containing reducing agents such as alcohol and formaldehyde are used as the plating solution. In these methods, the following mechanism is considered as a reaction when depositing a metal. That is, a semiconductor such as TiO 2 is supported on a substrate and the substrate is immersed in various metal ion aqueous solutions containing a reducing agent. This semiconductor is irradiated with ultraviolet rays to reduce metal ions by the electrons generated in the conduction band of the semiconductor and deposit the metal on the semiconductor. The reducing agent has a function of supplying electrons to holes generated in the valence band of the semiconductor by ultraviolet rays and preventing a reaction between the electrons generated in the conduction band and the holes. However, in the conventional method using a plating solution, when the metal is deposited on the semiconductor on the substrate surface to a thickness of several thousand Å, the irradiated light cannot reach the semiconductor, and the precipitation of the metal by the light irradiation stops, There is a problem that a thick metal plating film cannot be formed.

【0003】また、反応開始点が基板上の粗大な半導体
粒子上に限定されるため、析出形成されためっき膜の密
着力が乏しいという問題点があった。
Further, since the reaction starting point is limited to the coarse semiconductor particles on the substrate, there is a problem that the adhesion of the deposited plating film is poor.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、基板
の色素層を形成した部分に厚く、密着性に優れためっき
膜を形成することが可能な光利用めっき方法およびめっ
き膜形成体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a light utilizing plating method and a plating film forming body capable of forming a thick plating film having excellent adhesion on a portion where a dye layer is formed on a substrate. To provide.

【0005】本発明者等は前記した従来技術の問題に関
し、以下のことに着眼した。従来の如くめっき液が銅、
ニッケル、コバルトおよび錫イオン含有水溶液である
と、析出した銅等のめっき膜の厚さが数1000Åにな
ると光が半導体にまで到達できなくなり、以後はめっき
が不可能であった。しかし、めっき液として無電解銅等
のめっき液を用いれば、半導体上に光照射反応によって
銅等がわずかでも析出すれば、以後は、この析出した銅
等を核として無電解めっき液から銅等を析出させること
ができ、厚い銅等のめっき膜を形成することができると
考えた。さらに、本発明者等は、半導体粒子と同様な光
吸収による光酸化還元反応を発現し得る各種物質につい
て詳細に検討した。その結果、色素が半導体と同様に光
吸収により銅、ニッケル、コバルトおよび錫のみならず
貴金属を析出させることができること、および、基板上
に色素が極めて均一に吸着することを見出した。そこ
で、この均一に吸着した色素を反応開始点として、この
上に銅、ニッケル、コバルトおよび錫のみならず貴金属
を析出させれば、反応開始点が粗大な半導体粒子上に限
定されないため密着性に優れた銅等のめっき膜を形成さ
せることができると考え、本発明をなすに至ったもので
ある。
The present inventors have focused on the following points regarding the above-mentioned problems of the prior art. As before, the plating solution is copper,
In the case of an aqueous solution containing nickel, cobalt and tin ions, when the thickness of the deposited plating film of copper or the like reached several thousand Å, light could not reach the semiconductor and plating was impossible thereafter. However, if a plating solution such as electroless copper is used as the plating solution, even if a small amount of copper or the like is deposited on the semiconductor due to a light irradiation reaction, then, from the electroless plating solution as a nucleus, the deposited copper or the like is used as the core. It was thought that the copper could be deposited and a thick plated film of copper or the like could be formed. Further, the present inventors have made detailed studies on various substances capable of exhibiting a photo-oxidation / reduction reaction by light absorption similar to that of semiconductor particles. As a result, it has been found that the dye can deposit not only copper, nickel, cobalt and tin but also a noble metal by light absorption like a semiconductor, and that the dye is adsorbed on the substrate extremely uniformly. Therefore, if the uniformly adsorbed dye is used as a reaction starting point and not only copper, nickel, cobalt and tin but also a noble metal is deposited on the reaction starting point, the reaction starting point is not limited to coarse semiconductor particles, and thus adhesion is improved. The present invention has been accomplished on the assumption that an excellent plated film of copper or the like can be formed.

【0006】[0006]

【課題を解決するための手段】 (第1発明の構成)本第1発明(請求項1に記載の発
明)の光利用めっき方法の構成は、基板表面に色素分子
からなる色素層を形成する工程と、不可逆的に酸化分解
して電子を供給する犠牲酸化剤と、銅、ニッケル、コバ
ルトおよび錫イオンの少なくとも1種とを含む無電解め
っき液中に、前記色素層を形成した基板を浸漬する工程
と、前記色素層に色素の励起エネルギー以上のエネルギ
ーを持つ光を照射する工程とからなり、色素層の光を照
射した部分に、銅、ニッケル、コバルトおよび錫の少な
くとも1種を含むめっき膜を形成することを特徴とす
る。
Means for Solving the Problems (Structure of First Invention) In the structure of the light utilizing plating method of the first invention (the invention according to claim 1), a dye layer comprising dye molecules is formed on the surface of a substrate. The substrate on which the dye layer is formed is immersed in an electroless plating solution containing a process, a sacrificial oxidant that irreversibly oxidatively decomposes and supplies electrons, and at least one of copper, nickel, cobalt, and tin ions. And a step of irradiating the dye layer with light having an energy equal to or higher than the excitation energy of the dye, and plating the light-irradiated portion of the dye layer with at least one of copper, nickel, cobalt and tin. It is characterized in that a film is formed.

【0007】本第1発明において、色素層は、基板表面
に吸着した各色素分子が密に基板表面を覆って層状とな
っているものと、色素分子が粗に吸着していてもほぼ層
状であると判断できるものとを含むものであり、以下の
発明においても同様である。
In the first aspect of the present invention, the dye layer has a layered structure in which each dye molecule adsorbed on the surface of the substrate densely covers the surface of the substrate and a layered structure in which the dye molecules are roughly adsorbed. What is judged to be present is also included in the following inventions.

【0008】(第2発明の構成)本第2発明(請求項2
に記載の発明)の光利用めっき方法の構成は、基板表面
に色素分子からなる色素層を形成する工程と、不可逆的
に酸化分解して電子を供給する犠牲酸化剤と貴金属イオ
ンを含む溶液中に、前記色素層を形成した基板を浸漬す
る工程と、前記色素層に色素の励起エネルギー以上のエ
ネルギーを持つ光を照射する工程と、銅、ニッケル、コ
バルトおよび錫イオンの少なくとも1種を含む無電解め
っき液中に、前記色素層を形成した基板を浸漬する工程
とからなり、色素層の光を照射した部分に、銅、ニッケ
ル、コバルトおよび錫の少なくとも1種を含むめっき膜
を形成することを特徴とする。
(Structure of Second Invention) This second invention (Claim 2)
The invention described in 1.) comprises a step of forming a dye layer composed of dye molecules on the surface of a substrate, and a solution containing a sacrificial oxidant for supplying electrons by irreversibly oxidative decomposition and a noble metal ion. A step of immersing the substrate on which the dye layer has been formed, a step of irradiating the dye layer with light having an energy equal to or higher than the excitation energy of the dye, and at least one of copper, nickel, cobalt and tin ions. Forming a plating film containing at least one of copper, nickel, cobalt and tin on the light-irradiated part of the dye layer, which comprises a step of immersing the substrate on which the dye layer is formed in an electrolytic plating solution. Is characterized by.

【0009】(第3発明の構成)本第3発明(請求項3
に記載の発明)のめっき膜形成体の構成は、基板と、こ
の基板上に形成した色素分子からなる色素層と、この色
素層表面の光を照射した部分に、銅、ニッケル、コバル
トおよび錫の少なくとも1種を含むめっき膜を有するこ
とを特徴とする。
(Structure of Third Invention) The third invention (claim 3)
The invention described in (1) above is composed of a substrate, a dye layer composed of dye molecules formed on the substrate, and light-irradiated portions of the dye layer surface with copper, nickel, cobalt and tin. It has a plating film containing at least 1 sort (s) of these.

【0010】(第4発明の構成)本第4発明(請求項4
に記載の発明)の光利用めっき方法の構成は、基板表面
に色素分子からなる色素層を形成する工程と、不可逆的
に酸化分解して電子を供給する犠牲酸化剤と、銅、ニッ
ケル、コバルトおよび錫イオンの少なくとも1種とを含
む溶液または不可逆的に酸化分解して電子を供給する犠
牲酸化剤と貴金属イオンを含む溶液を前記色素層上に付
着する工程と、前記色素層に色素の励起エネルギー以上
のエネルギーを持つ光を照射する工程と、銅、ニッケ
ル、コバルトおよび錫イオンの少なくとも1種を含む無
電解めっき液中に、前記色素層を形成した基板を浸漬す
る工程とからなり、色素層の光を照射した部分に、銅、
ニッケル、コバルトおよび錫の少なくとも1種を含むめ
っき膜を形成することを特徴とする。
(Structure of Fourth Invention) This fourth invention (Claim 4)
The invention described in 1.) comprises a step of forming a dye layer composed of dye molecules on the substrate surface, a sacrificial oxidant that irreversibly oxidatively decomposes and supplies electrons, and copper, nickel, cobalt. And a solution containing at least one of tin ions or a solution containing a sacrificial oxidant that irreversibly oxidatively decomposes to supply electrons and a noble metal ion, and depositing the solution on the dye layer, and exciting the dye to the dye layer. Comprising a step of irradiating with light having energy of energy or more and a step of immersing the substrate on which the dye layer is formed in an electroless plating solution containing at least one of copper, nickel, cobalt and tin ions, In the light-exposed part of the layer, copper,
It is characterized in that a plating film containing at least one of nickel, cobalt and tin is formed.

【0011】[0011]

【作用】 (第1発明の作用)本第1発明の光利用めっき方法によ
れば、厚く、密着性に優れた銅、ニッケル、コバルトお
よび錫の少なくとも1種を含むめっき膜を得ることがで
きる。そのメカニズムは、次のようであると推定され
る。すなわち、基板に吸着された色素に、色素の励起エ
ネルギー以上のエネルギーを持つ光を照射し、色素の最
低空分子軌道に電子を、最高被占分子軌道に空準位を生
成せしめる。この空準位に無電解銅、ニッケル、コバル
トおよび錫のめっき液中に添加した犠牲酸化剤から電子
を供与して該空準位を消滅させる。したがって最低空分
子軌道に生成した電子は、空準位との反応に消耗される
ことなくめっき液中の前記銅等のイオンの還元にのみ用
いることができ、銅等を色素上に析出させ得る。このよ
うに一旦色素上に銅等が析出すると、この基板上に極め
て微細に析出した銅等を核として無電解銅等のめっき液
から連続的に銅等が析出するため、基板上の光照射部
に、密着性良く厚い銅等のめっき膜が形成されるのであ
る。また、本光利用めっき方法は、銅等の析出の初期の
段階では、光照射反応による銅等の析出に加えて、無電
解銅等のめっき液からの銅等の析出が重複するため、短
時間で厚い銅等のめっき膜を形成できる。
(Operation of First Invention) According to the light utilizing plating method of the first invention, it is possible to obtain a thick plating film containing at least one of copper, nickel, cobalt and tin and having excellent adhesion. . The mechanism is presumed to be as follows. That is, the dye adsorbed on the substrate is irradiated with light having an energy higher than the excitation energy of the dye to generate electrons in the lowest unoccupied molecular orbital of the dye and vacant levels in the highest occupied molecular orbital. Electrons are donated from this sacrificial oxidant added to the electroless copper, nickel, cobalt and tin plating solution to the vacant level to eliminate the vacant level. Therefore, the electrons generated in the lowest unoccupied molecular orbital can be used only for the reduction of the ions such as copper in the plating solution without being consumed by the reaction with the empty level, and copper or the like can be deposited on the dye. . Thus, once copper or the like is deposited on the dye, copper or the like is continuously deposited from the plating solution of electroless copper or the like with the copper or the like that is extremely finely deposited on the substrate as the nucleus. A thick plated film of copper or the like is formed on the portion with good adhesion. Further, the present light-utilizing plating method is short in the initial stage of the deposition of copper and the like, in addition to the deposition of copper and the like by the light irradiation reaction, the deposition of copper and the like from the plating solution such as electroless copper is overlapped. A thick plated film of copper or the like can be formed over time.

【0012】また、色素分子は10Å程度と極めて微細
なため、基板上に極めて均一に吸着し、銅等は、この色
素を反応開始点として微細に析出する。そのため、銅等
のめっき膜の基板に対する密着性は極めて優れている。
Further, since the dye molecules are extremely fine (about 10 Å), they are very uniformly adsorbed on the substrate, and copper or the like is finely deposited using the dye as a reaction starting point. Therefore, the adhesion of the plated film of copper or the like to the substrate is extremely excellent.

【0013】(第2発明の作用)本第2発明の光利用め
っき方法によれば、第1発明と同様、厚く、密着性に優
れた銅、ニッケル、コバルトおよび錫の少なくとも1種
を含むめっき膜を得ることができる。そのメカニズム
は、第1発明の作用において記載したように、基板に吸
着された色素に、色素の励起エネルギー以上のエネルギ
ーを持つ光を照射し、色素の最低空分子軌道に電子を、
最高被占分子軌道に空準位を生成せしめる。この空準位
に貴金属イオンとともにめっき液中に添加した犠牲酸化
剤から電子を供与して該空準位を消滅させる。その結
果、最低空分子軌道に生成した電子は、空準位との反応
に消耗されることなくめっき液中の貴金属イオンの還元
にのみ用いることができ、貴金属を色素上に析出させ得
る。このように、無電解めっき反応にたいして活性な触
媒作用を示す貴金属が極く微少量析出した段階で該基板
を取り出し、無電解めっき液中に浸漬することにより、
微細に析出した貴金属を核として無電解銅等のめっき液
から連続的に銅等を析出できるため、基板上の色素層の
光を照射した部分に、銅、ニッケル、コバルトおよび錫
の少なくとも1種を含むめっき膜を密着性良く形成する
ことができる。
(Operation of the Second Invention) According to the light utilizing plating method of the second invention, as in the first invention, the plating containing at least one of copper, nickel, cobalt and tin, which is thick and has excellent adhesion. A membrane can be obtained. The mechanism is, as described in the action of the first invention, irradiating the dye adsorbed on the substrate with light having an energy equal to or higher than the excitation energy of the dye, thereby causing an electron in the lowest unoccupied molecular orbit of the dye,
Create an empty level in the highest occupied molecular orbital. Electrons are donated from this sacrificial oxidant added to the plating solution to the vacant level together with the noble metal ion to eliminate the vacant level. As a result, the electrons generated in the lowest unoccupied molecular orbital can be used only for the reduction of the noble metal ion in the plating solution without being consumed by the reaction with the vacant level, and the noble metal can be deposited on the dye. In this way, by taking out the substrate at a stage where a very small amount of noble metal showing an active catalytic action for the electroless plating reaction is deposited and immersing it in the electroless plating solution,
Since copper or the like can be continuously deposited from a plating solution such as electroless copper with a finely deposited precious metal as a nucleus, at least one of copper, nickel, cobalt and tin is applied to the light-irradiated portion of the dye layer on the substrate. It is possible to form a plating film containing P with good adhesion.

【0014】(第3発明の作用)本第3発明のめっき膜
形成体は、第1発明の作用において記載したように、色
素の光吸収による光酸化還元反応によって色素層上の光
を照射した部分に銅等のめっき膜が形成されている。ま
た、銅等のめっき膜は基板表面に均一に、微細に吸着し
た色素上に形成されるので密着性に優れている。
(Operation of Third Invention) As described in the operation of the first invention, the plated film forming body of the third invention is irradiated with light on the dye layer by the photo-oxidation reduction reaction by the light absorption of the dye. A plating film of copper or the like is formed on the portion. In addition, since the plating film of copper or the like is uniformly formed on the surface of the substrate and finely adsorbed on the dye, the adhesion is excellent.

【0015】(第4発明の作用)本第4発明の光利用め
っき方法は、色素層を形成した基板を、不可逆的に酸化
分解して電子を供給する犠牲酸化剤と銅、ニッケル、コ
バルトおよび錫イオンの少なくとも1種とを含む無電解
めっき液または不可逆的に酸化分解して電子を供給する
犠牲酸化剤と貴金属イオンを含む溶液中に浸漬する代わ
りに、不可逆的に酸化分解して電子を供給する犠牲酸化
剤と銅、ニッケル、コバルトおよび錫イオンの少なくと
も1種とを含む溶液または不可逆的に酸化分解して電子
を供給する犠牲酸化剤と貴金属イオンを含む溶液を前記
色素層上に付着し、この溶液等を付着した基板に対し、
溶液等を通して色素層に色素の励起エネルギー以上のエ
ネルギーを持つ光を照射し、銅等を析出させるものであ
る。色素層上に付着した溶液から色素層上に銅等が析出
する反応は、第1発明の作用において記載したと同様で
ある。
(Operation of Fourth Invention) In the light-utilizing plating method of the fourth invention, a sacrificial oxidant for supplying electrons by irreversibly oxidizing and decomposing the substrate having the dye layer formed thereon, copper, nickel, cobalt and Instead of immersing in an electroless plating solution containing at least one kind of tin ions or a solution containing a sacrificial oxidant that supplies electrons by irreversibly oxidatively decomposing and a precious metal ion, irreversibly oxidatively decomposing electrons A solution containing a supplied sacrificial oxidant and at least one of copper, nickel, cobalt and tin ions or a solution containing a sacrificial oxidant that supplies electrons by irreversible oxidative decomposition and a noble metal ion is deposited on the dye layer. Then, for the substrate to which this solution etc. is attached,
The dye layer is irradiated with light having an energy higher than the excitation energy of the dye through a solution or the like to deposit copper or the like. The reaction of depositing copper or the like on the dye layer from the solution deposited on the dye layer is the same as described in the operation of the first invention.

【0016】[0016]

【発明の効果】【The invention's effect】

(第1発明の効果)本第1発明の光利用めっき方法によ
れば、めっき液として無電解銅等のめっき液を用いてい
るので、光照射による銅等の析出反応が停止した後でも
無電解銅等のめっき液から銅等を析出させることがで
き、厚い銅等のめっき膜を形成することができる。光照
射に際して、レーザー光等のビームをパターンマスクを
通して、あるいはパターン状に走査することによりパタ
ーン状に厚く銅等を析出させることができる。また、色
素層を基板上にパターン状に吸着形成すれば、このパタ
ーン上に選択的に厚い銅等のめっき膜を形成させること
ができる。またこの方法をプリント回路の製造に利用す
ると、従来のフォトレジストを用いる方法に比し、工程
を簡略化することができるとともに、三次元曲面上にも
プリント回路を形成できる等の大きな特徴を有する。
(Effect of the first invention) According to the light utilizing plating method of the first invention, since the plating solution such as electroless copper is used as the plating solution, there is no effect even after the precipitation reaction of copper or the like due to light irradiation is stopped. Copper or the like can be deposited from a plating solution of electrolytic copper or the like, and a thick plated film of copper or the like can be formed. At the time of light irradiation, a thick beam of copper or the like can be deposited in a pattern by scanning a beam of laser light or the like through a pattern mask or by scanning in a pattern. If the dye layer is adsorbed and formed in a pattern on the substrate, a thick plated film of copper or the like can be selectively formed on the pattern. Further, when this method is used for manufacturing a printed circuit, it has a great feature that the process can be simplified and a printed circuit can be formed on a three-dimensional curved surface as compared with the conventional method using a photoresist. .

【0017】(第2発明の効果)本第2発明の光利用め
っき方法によれば、前記第1発明の光利用めっき方法と
同様な効果の他、銅等のイオンに比べて、めっき液中に
溶存酸素が存在していても金属に還元されやすい貴金属
イオンを使用しているので、光を吸収した色素によって
効率良く貴金属の析出が生じるという効果を有する。
(Effect of the Second Invention) According to the light utilizing plating method of the second invention, in addition to the same effects as the light utilizing plating method of the first invention, compared with ions such as copper, in the plating solution. Since a noble metal ion that is easily reduced to a metal even when dissolved oxygen is present is used, it has the effect of efficiently depositing the noble metal by the dye that has absorbed light.

【0018】(第3発明の効果)本第3発明のめっき形
成体は色素層の光を照射した部分にのみ銅等のめっき膜
を形成できるので、光照射に際して、レーザー光等のビ
ームをパターンマスクを通して、あるいはパターン状に
走査することによりパターン状に厚く銅等を析出させる
ことができる。また、色素層を基板表面に、パターン状
に吸着形成しておけば、銅等のめっき膜を基板表面にパ
ターン状に形成した銅等のめっき形成体を得ることがで
きる。また、銅等のめっき膜は、密着性に優れているの
で剥離しにくい。
(Effect of the third invention) In the plated product of the third invention, a plating film of copper or the like can be formed only on the light-irradiated portion of the dye layer. Therefore, upon irradiation with light, a beam of laser light or the like is patterned. By scanning through a mask or in a pattern, thick copper or the like can be deposited in a pattern. Further, if the dye layer is adsorbed and formed in a pattern on the surface of the substrate, a plated product of copper or the like having a plated film of copper or the like formed in a pattern on the surface of the substrate can be obtained. In addition, a plated film of copper or the like has excellent adhesion and is difficult to peel off.

【0019】(第4発明の効果)本第4発明の光利用め
っき方法では、色素層を形成した基板を、無電解めっき
液等の中に浸漬する代わりに、色素層上に前記溶液等を
付着させるので、色素層上を覆う溶液等の厚さが著しく
薄くなり、溶液等による光の吸収が極めて少なくなるた
め、浸漬する場合に比較して同一強度の光を照射した場
合、短時間に銅、貴金属等のメッキを行うことができ
る。また、基板のセッティングや光照射等を溶液中では
なく大気中で行えるようになり、作業性が向上する。さ
らに、本第4発明では前記第1発明の光利用めっき方法
と同様な効果を得ることができる。
(Effect of Fourth Invention) In the light-utilizing plating method of the fourth invention, instead of immersing the substrate on which the dye layer is formed in an electroless plating solution or the like, the solution or the like is applied onto the dye layer. Since it is attached, the thickness of the solution covering the dye layer becomes extremely thin, and the absorption of light by the solution becomes extremely small. Copper, precious metals, etc. can be plated. Further, the setting of the substrate, the light irradiation, etc. can be performed in the atmosphere instead of in the solution, which improves the workability. Further, in the fourth invention, it is possible to obtain the same effect as that of the light utilizing plating method of the first invention.

【0020】[0020]

【実施例】【Example】

(第1具体例)本具体例は第1発明および第2発明の光
利用めっき方法を具体的に説明するものである。まず、
基板に色素層を形成する。色素層の形成に先立ち、基板
は、有機溶剤等で脱脂して用いる。また、基板表面に微
細な凹凸があると色素分子が吸着し易く、吸着層の形成
が容易になるため、基板表面は、エッチングされている
ことが望ましい。エッチング液としては、無機系の基板
に対しては、溶融アルカリ、加熱リン酸、フッ酸等を、
有機系の基板に対しては、硫酸−クロム酸混液、過マン
ガン酸カリウム−リン酸混液、リン酸−過塩素酸混液等
を用いることができる。
(First Specific Example) This specific example specifically describes the light-utilizing plating method of the first invention and the second invention. First,
A dye layer is formed on the substrate. Prior to forming the dye layer, the substrate is degreased with an organic solvent or the like before use. Further, when the substrate surface has fine irregularities, the dye molecules are easily adsorbed, and the adsorption layer is easily formed. Therefore, the substrate surface is preferably etched. As an etching solution, for an inorganic substrate, molten alkali, heated phosphoric acid, hydrofluoric acid, etc.,
For an organic substrate, a sulfuric acid-chromic acid mixed solution, a potassium permanganate-phosphoric acid mixed solution, a phosphoric acid-perchloric acid mixed solution, or the like can be used.

【0021】色素層の形成方法としては、例えば、イオ
ン交換水やアルコール、アセトン等の有機溶剤に色素を
溶解させ、脱脂、エッチングした基板をこの色素溶液に
浸漬するディップ法、あるいは、脱脂、エッチングした
基板上にこの色素溶液を噴霧するスプレー法等がある。
これらの方法により色素分子が基板上に吸着し、色素層
が形成される。
As the method for forming the dye layer, for example, a dye is dissolved in an organic solvent such as ion-exchanged water, alcohol, or acetone, and the degreased and etched substrate is dipped in the dye solution, or degreased and etched. There is a spray method or the like in which this dye solution is sprayed on the formed substrate.
Dye molecules are adsorbed on the substrate by these methods, and a dye layer is formed.

【0022】基板に吸着させる色素としては、最低空分
子軌道のエネルギー準位が銅、ニッケル、コバルトおよ
び錫イオンの還元電位よりも卑であるならば、すなわ
ち、光照射に伴い最低空分子軌道に生成する電子が銅等
のイオンを還元できるならば特に限定されるものではな
く、例えばキサンテン系、アジン系、アクリジン系、ア
ントラキノン系、チアジン系、ポルフィリン系、トリフ
ェニルメタン系、シアニン系、オキサジン系、スチリル
系、ポリエン系等がある。これらの色素分子は極めて微
細で、基板に形成された色素層は、微細な色素分子が平
面的に吸着した形態をなしている。また、前記浸漬時
間、噴霧量は、色素の吸着力、色素溶液の液温、基板温
度に応じて適宜選択される。
As the dye to be adsorbed on the substrate, if the energy level of the lowest unoccupied molecular orbital is lower than the reduction potential of copper, nickel, cobalt and tin ions, that is, the lowest unoccupied molecular orbital is accompanied by light irradiation. It is not particularly limited as long as the generated electrons can reduce ions such as copper, and for example, xanthene-based, azine-based, acridine-based, anthraquinone-based, thiazine-based, porphyrin-based, triphenylmethane-based, cyanine-based, oxazine-based , Styryl type, polyene type, etc. These dye molecules are extremely fine, and the dye layer formed on the substrate has a form in which the fine dye molecules are planarly adsorbed. Further, the immersion time and the spraying amount are appropriately selected according to the adsorbing power of the dye, the liquid temperature of the dye solution, and the substrate temperature.

【0023】また、本第1発明で用いる無電解銅、ニッ
ケル、コバルトおよび錫のめっき液は、光照射によって
色素層上に析出した銅等を核として銅等を析出させ、銅
等のめっき膜を形成する作用をなすものであれば、その
種類は特に限定されるものではない。
Further, the electroless copper, nickel, cobalt and tin plating solution used in the first aspect of the present invention deposits copper or the like with the copper or the like deposited on the dye layer by light irradiation as a nucleus to form a plated film of copper or the like. The type is not particularly limited as long as it has the function of forming

【0024】また、無電解銅等のめっき液中に添加され
る犠牲酸化剤は、反応によって不可逆的に酸化分解して
電子を供給することができる、すなわち、光照射された
色素の最高被占分子軌道に生成する空準位に電子を供給
できる性質を持つものであれば特に限定されるものはな
く、例えば、アミン類、イミン類、アルカノールアミン
類、ヒドロキシカルボン酸類、アミノカルボン酸類から
選ばれた1種以上を用いればよい。また、犠牲酸化剤
は、前記の如く色素層に生成する空準位に電子を供給す
る作用をなすとともに、めっき液中に溶存し銅等の析出
を妨害する酸素を還元除去する働きもなすため、犠牲酸
化剤の濃度は、溶存酸素の濃度2〜3×10-4モル/l
より1桁以上高い濃度が望ましい。
Further, the sacrificial oxidizer added to the plating solution such as electroless copper can irreversibly oxidatively decompose by the reaction to supply electrons, that is, the maximum occupied amount of the dye irradiated with light. There is no particular limitation as long as it has the property of supplying electrons to the vacant level generated in the molecular orbital, and examples thereof include amines, imines, alkanolamines, hydroxycarboxylic acids, and aminocarboxylic acids. One or more kinds may be used. Further, the sacrificial oxidant has a function of supplying electrons to the vacant levels generated in the dye layer as described above, and also has a function of reducing and removing oxygen dissolved in the plating solution and impeding the precipitation of copper and the like. , The concentration of sacrificial oxidant is the concentration of dissolved oxygen 2-3 × 10 -4 mol / l
A concentration higher by one digit or more is desirable.

【0025】また、本第2発明で用いる貴金属イオン
は、金属状態に還元された場合に無電解めっき反応に活
性な触媒作用を示すものであれば、特に限定されるもの
ではなく、例えば、金、白金、パラジウム、銀等を用い
る。また、同時に使用される犠牲酸化剤としては、前記
のアミン類、イミン類、アルカノールアミン類、ヒドロ
キシカルボン酸類、アミノカルボン酸類から選ばれた1
種以上を用いる。
Further, the noble metal ion used in the second invention is not particularly limited as long as it exhibits a catalytic action active in the electroless plating reaction when it is reduced to a metal state. , Platinum, palladium, silver, etc. are used. The sacrificial oxidant used at the same time is selected from the above-mentioned amines, imines, alkanolamines, hydroxycarboxylic acids, and aminocarboxylic acids.
Use more than one seed.

【0026】また、基板の材質は特に限定はないが、そ
の表面に回路パターン等を形成しようとする場合は、無
機系のアルミナ基板や有機系のガラス−エポキシ基板等
の非導電性物質を用いる。
The material of the substrate is not particularly limited, but when a circuit pattern or the like is to be formed on the surface of the substrate, a non-conductive substance such as an inorganic alumina substrate or an organic glass-epoxy substrate is used. .

【0027】次に、犠牲酸化剤を含む無電解銅等のめっ
き液の調整を行う。この調整は通常の無電解銅等のめっ
きに使用される組成のめっき液に犠牲酸化剤を混合して
行なう。
Next, a plating solution such as electroless copper containing a sacrificial oxidizer is prepared. This adjustment is performed by mixing a sacrificial oxidizer with a plating solution having a composition used for plating ordinary electroless copper or the like.

【0028】このように調整した溶液中に、色素層を形
成した基板を浸漬し、この色素層表面に光を照射する。
照射に用いる光源は、可視〜紫外領域の波長の光を発
し、吸着した色素の励起エネルギー以上のエネルギーを
持つ光を照射可能であればいかなるものでもよい。例え
ば、超高圧水銀、高圧水銀ならびに低圧水銀ランプ、キ
セノンアークランプ、タングステンランプ、各種レーザ
ー等があげられる。照射時間は、形成した色素層に吸収
される光量、液温、犠牲酸化剤の種類等に応じて適宜選
択される。
The substrate having the dye layer formed thereon is dipped in the solution thus prepared, and the surface of the dye layer is irradiated with light.
The light source used for irradiation may be any light source that emits light having a wavelength in the visible to ultraviolet range and can be irradiated with light having an energy not lower than the excitation energy of the adsorbed dye. Examples thereof include ultrahigh pressure mercury, high pressure mercury, low pressure mercury lamp, xenon arc lamp, tungsten lamp, and various lasers. The irradiation time is appropriately selected according to the amount of light absorbed by the formed dye layer, the liquid temperature, the type of sacrificial oxidant, and the like.

【0029】(第2具体例)本具体例は、第1または第
2発明の光利用めっき方法において、無電解銅、ニッケ
ル、コバルトおよび錫のめっき液に添加する犠牲酸化剤
としてアミン類、イミン類、アルカノールアミン類、ヒ
ドロキシカルボン酸類、アミノカルボン酸類から選ばれ
た1種以上を用いるものである。
(Second Specific Example) This specific example is the same as the sacrificial oxidizing agent added to the electroless copper, nickel, cobalt and tin plating solution in the light utilizing plating method of the first or second invention. At least one member selected from the group consisting of compounds, alkanolamines, hydroxycarboxylic acids and aminocarboxylic acids is used.

【0030】無電解銅等のめっき液中の銅等のイオンの
還元は、光照射によって色素の最低空分子軌道に生成し
た電子によって行われる。しかし、前記したように、無
電解銅等のめっき液中には酸素が溶存しており、最低空
分子軌道に生成した電子は、この酸素の還元に消耗され
る。したがって、銅等のイオンの還元は、該溶存酸素を
ほぼ完全に還元するまでは行なわれない。本具体例の犠
牲酸化剤は溶存酸素の還元速度を早めることができ、そ
の結果、最低空分子軌道に生成した電子による銅等のイ
オンの還元の開始時期が早まって、短時間に厚い銅等の
めっき膜を形成させることができる。
The reduction of ions such as copper in a plating solution such as electroless copper is carried out by the electrons generated in the lowest unoccupied molecular orbital of the dye by light irradiation. However, as described above, oxygen is dissolved in the plating solution such as electroless copper, and the electrons generated in the lowest unoccupied molecular orbital are consumed by the reduction of oxygen. Therefore, reduction of ions such as copper is not performed until the dissolved oxygen is reduced almost completely. The sacrificial oxidant of this example can accelerate the rate of reduction of dissolved oxygen, and as a result, the start time of the reduction of ions such as copper by the electrons generated in the lowest unoccupied molecular orbital is accelerated, and thick copper, etc. Can be formed.

【0031】図1は、かかる本具体例の犠牲酸化剤の溶
存酸素に対する効果を示したものである。本具体例の犠
牲酸化剤であるアミノカルボン酸に属するエチレンジア
ミン4酢酸−2ナトリウムは、従来の還元剤であるアル
コールに比べ、短時間の光照射で溶存酸素を完全に還元
でき、無電解銅めっきの開始を早めることができること
がわかる。
FIG. 1 shows the effect of the sacrificial oxidant of this example on the dissolved oxygen. Ethylenediaminetetraacetic acid-2 sodium salt belonging to aminocarboxylic acid which is a sacrificial oxidant of this example can completely reduce dissolved oxygen by light irradiation for a short time as compared with alcohol which is a conventional reducing agent, and thus electroless copper plating. It can be seen that the start of can be accelerated.

【0032】本結果は、以下に示す実験によって求め
た。まず、エチレンジアミン4酢酸−2ナトリウムと、
アジン系色素であるリボフラビンと、銅イオンを供給す
るための塩化銅を夫々0.02モル/l、1×10-5
ル/l、0.01モル/l混合した水溶液と、比較のた
めに、従来の還元剤としてメタノールを10vol%混
合した水溶液を作製した。エチレンジアミン4酢酸−2
ナトリウムを用いた場合の水溶液のpHは約12.3で
あり、エタノールを用いた場合の水溶液のpHは該水溶
液が通常用いるpHである3とした。次に、水溶液中の
溶存酸素の濃度を検出するために、これらの水溶液中に
溶存酸素濃度検出用の電極を挿入した。次に、両水溶液
全体に光があたるように可視光線を照射し、照射時間に
対する溶存酸素濃度の変化を求めた。
This result was obtained by the following experiment. First, ethylenediaminetetraacetic acid-2 sodium,
For comparison, an aqueous solution prepared by mixing riboflavin, which is an azine-based dye, and copper chloride for supplying copper ions in an amount of 0.02 mol / l, 1 × 10 −5 mol / l, and 0.01 mol / l, respectively. An aqueous solution was prepared by mixing 10 vol% of methanol as a conventional reducing agent. Ethylenediaminetetraacetic acid-2
The pH of the aqueous solution when sodium was used was about 12.3, and the pH of the aqueous solution when ethanol was used was 3 which is the pH usually used by the aqueous solution. Next, in order to detect the concentration of dissolved oxygen in the aqueous solution, an electrode for detecting the dissolved oxygen concentration was inserted into these aqueous solutions. Next, visible light was irradiated so that the entire aqueous solution was exposed to light, and the change in the dissolved oxygen concentration with respect to the irradiation time was determined.

【0033】可視光線を照射後、溶存酸素が完全に還元
された時点から約2分後に、微細な銅が析出し、リボフ
ラビンを含む溶液が銅色を呈するのが確認された。
It was confirmed that, after irradiation with visible light, about 2 minutes after the time when the dissolved oxygen was completely reduced, fine copper was deposited and the solution containing riboflavin exhibited a copper color.

【0034】(第3具体例)本具体例は、第1発明の光
利用めっき方法において、無電解銅、ニッケル、コバル
トおよび錫のめっき液に添加する犠牲酸化剤として、光
照射された色素の最高被占分子軌道に生成する空準位に
電子を供給できる性質を有すると同時に、無電解銅等の
めっき液中において、銅等のイオンを安定化させる性質
を有する、すなわち、錯化剤として使用される物質を用
いる。このような犠牲酸化剤として、トリエタノールア
ミン、エチレンジアミン4酢酸、酒石酸カリウムナトリ
ウム、モノエタノールアミン、ジエタノールアミン、ポ
リエチレンイミン、エチレンジアミン、ジエチレンジア
ミン、ジエチレントリアミン、ジエチレントリアミン5
酢酸、トリエチレンテトラミン、トリアミノトリエチル
アミン、テトラエチレンペンタミン、ペンタエチレンヘ
キサミン、ニトリロトリ酢酸、グルコン酸、ペンタヒド
ロキシプロピルジエチレントリアミン、N−ヒドロキシ
エチルエチレンジアミントリ酢酸、クアドロール、トリ
イソプロパノールアミン等がある。
(Third Specific Example) This third specific example is the photo-utilizing plating method of the first aspect of the invention, in which a photo-irradiated dye is used as a sacrificial oxidant added to a plating solution of electroless copper, nickel, cobalt and tin. It has the property of supplying electrons to the vacant level generated in the highest occupied molecular orbital, and at the same time, it has the property of stabilizing ions such as copper in a plating solution such as electroless copper, that is, as a complexing agent. Use the substance used. Examples of such sacrificial oxidizers include triethanolamine, ethylenediamine tetraacetic acid, potassium sodium tartrate, monoethanolamine, diethanolamine, polyethyleneimine, ethylenediamine, diethylenediamine, diethylenetriamine, diethylenetriamine 5
Examples include acetic acid, triethylenetetramine, triaminotriethylamine, tetraethylenepentamine, pentaethylenehexamine, nitrilotriacetic acid, gluconic acid, pentahydroxypropyldiethylenetriamine, N-hydroxyethylethylenediaminetriacetic acid, quadrol and triisopropanolamine.

【0035】本具体例の如く、犠牲酸化剤に錯化剤とし
ての働きを持たせる場合には、その濃度は、前記した如
く、無電解銅等のめっき液中の溶存酸素濃度より1桁以
上高くするとともに、無電解銅等のめっき液に添加され
ている銅等のイオン濃度の2〜25倍がよい。2倍以下
では、無電解銅等のめっき液が不安定となり、25倍以
上では、無電解銅等のめっき液が過度に安定になりすぎ
てめっき速度が低下するため好ましくない。
When the sacrificial oxidizing agent is made to function as a complexing agent as in this example, its concentration is at least one digit higher than the concentration of dissolved oxygen in the plating solution such as electroless copper as described above. It is preferable to increase it and to set it to 2 to 25 times the ion concentration of copper or the like added to the plating solution of electroless copper or the like. When it is 2 times or less, the plating solution such as electroless copper becomes unstable, and when it is 25 times or more, the plating solution such as electroless copper becomes excessively stable and the plating rate decreases, which is not preferable.

【0036】このように、溶存酸素の還元に錯化剤でも
ある犠牲酸化剤が多少使われても無電解めっき液中の錯
化剤の濃度は0.2〜0.3モル/lと溶存酸素濃度が
2〜3×10-4モル/lであるのに対し約1000倍高
濃度であって、無電解銅等のめっき液の組成はほとんど
変化しない。
As described above, the concentration of the complexing agent in the electroless plating solution is 0.2 to 0.3 mol / l even if the sacrificial oxidizing agent which is also a complexing agent is used for the reduction of dissolved oxygen. The oxygen concentration is 2 to 3 × 10 -4 mol / l, while the oxygen concentration is about 1000 times higher, and the composition of the plating solution such as electroless copper hardly changes.

【0037】無電解銅等のめっき液は、前記したように
通常、銅等のイオンの塩、還元剤と錯化剤から構成され
るが、本具体例の如く犠牲酸化剤が錯化剤としても使え
る物質であれば、無電解銅等のめっき液に錯化剤を別途
添加する必要がなく、めっき液の組成が簡易なものとな
り、かつ、取扱いも容易になる。また、貴金属イオンの
還元は、光照射によって色素の最低空分子軌道に生成し
た電子によって行われ、溶存酸素の還元よりも起き易
い、したがって、使用する犠牲酸化剤の濃度は貴金属イ
オン濃度以上であれば、特に限定されるものではない。
As described above, the plating solution of electroless copper or the like is usually composed of an ionic salt of copper or the like, a reducing agent and a complexing agent. If it is a substance that can also be used, it is not necessary to add a complexing agent to the plating solution such as electroless copper, the composition of the plating solution is simple, and the handling is easy. Further, the reduction of the noble metal ion is performed by the electrons generated in the lowest unoccupied molecular orbital of the dye by light irradiation, and is more likely to occur than the reduction of dissolved oxygen. Therefore, the concentration of the sacrificial oxidant used should be at least the concentration of the noble metal ion. However, it is not particularly limited.

【0038】(実施例1)まず、純度96%のアルミナ
基板を33枚用意した(No.1〜33)。これらの基
板を試薬特級のアセトン中で3分間超音波洗浄後、1モ
ル/lのHF溶液中で60分間浸漬してエッチングし
た。その後、1モル/lのNaOH水溶液中に60分間
浸漬して中和し、さらに水洗、乾燥した。次に、表1〜
3に示す33種類の色素溶液を使用して、イオン交換
水、エタノールまたはアセトンを溶媒として2×10-4
モル/lの濃度の色素溶液を用意し、No.1〜33の
各アルミナ基板を所定の時間浸漬後、使用した各溶媒で
洗浄して乾燥した。かかる処理を施すことによって、基
板表面に色素が吸着し、色素層が形成された。
(Example 1) First, 33 alumina substrates having a purity of 96% were prepared (Nos. 1 to 33). These substrates were ultrasonically cleaned in acetone of a special grade reagent for 3 minutes, and then immersed in a 1 mol / l HF solution for 60 minutes for etching. Then, it was immersed in a 1 mol / l NaOH aqueous solution for 60 minutes for neutralization, washed with water and dried. Next, Table 1
33 kinds of dye solutions shown in 3 are used, and 2 × 10 −4 is used with ion-exchanged water, ethanol or acetone as a solvent.
Prepare a dye solution having a concentration of mol / l, and Each of the alumina substrates 1 to 33 was dipped for a predetermined time, washed with each solvent used, and dried. By performing such a treatment, the dye was adsorbed on the surface of the substrate, and the dye layer was formed.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】次に、犠牲酸化剤であるエチレンジアミン
4酢酸(EDTA)が錯化剤を兼ねる無電解銅めっき液
(表4)を用意した。室温に保持された無電解銅めっき
液中に、前記色素層を形成したアルミナ基板を浸漬し、
光照射に伴う銅の析出状況をSEMにより調査した。光
源としては、超高圧水銀ランプ(250W)を使用し、
熱の効果を除くため、光を赤外線カットフィルター透過
させ、透過後の全光をマスクを通して照射した。
Next, an electroless copper plating solution (Table 4) in which ethylenediaminetetraacetic acid (EDTA), which is a sacrificial oxidizing agent, also serves as a complexing agent was prepared. In an electroless copper plating solution kept at room temperature, dip the alumina substrate on which the dye layer is formed,
The state of copper deposition accompanying light irradiation was investigated by SEM. An ultra-high pressure mercury lamp (250W) is used as the light source,
In order to eliminate the effect of heat, light was passed through an infrared cut filter, and all the light after passing was irradiated through a mask.

【0043】[0043]

【表4】 [Table 4]

【0044】表5〜8に、吸着した色素、無電解銅めっ
き条件、銅の析出状態を示す。5分間光照射後、無電解
銅めっき液から引き上げたアルミナ基板上には、光を照
射した部分に直径数100〜数1000Åの半球状の銅
が島状に析出していた。光照射を停止後、そのままめっ
き液中に60時間放置したアルミナ基板上には、光照射
した部分に10〜60μmの銅の析出層が形成されてい
た。また、この銅の析出層をX線回折により物質同定を
行ったところ、Cu2 O等の銅以外の回折線は観察され
ず、純粋な銅皮膜であることが確認された。また、光を
照射しない部位には銅の析出が認められず、本実施例の
光利用めっき方法によって光照射部に銅を厚く析出でき
ることが確認された。また、銅が島状に析出した場合で
も、析出した銅を核として連続的な厚い銅めっき膜を形
成できることがわかる。また、トリエタノールアミン
(TEA)型、酒石酸カリウムナトリウム(Tart)
型の無電解銅めっき液を使用した場合、基板としてガラ
スーエポキシ基板を使用した場合にも同様の結果が得ら
れた。
Tables 5 to 8 show the adsorbed dye, electroless copper plating conditions, and copper deposition state. After the light irradiation for 5 minutes, hemispherical copper having a diameter of several hundred to several thousand Å was deposited in an island shape on the light-irradiated portion on the alumina substrate pulled up from the electroless copper plating solution. After the light irradiation was stopped, a 10 to 60 μm copper deposition layer was formed on the light-irradiated portion on the alumina substrate which was left in the plating solution for 60 hours as it was. In addition, when the substance of the deposited layer of copper was identified by X-ray diffraction, diffraction lines other than copper such as Cu 2 O were not observed, and it was confirmed that the copper deposit was a pure copper film. Further, no copper deposition was observed in the areas not irradiated with light, confirming that copper could be deposited thickly in the light-irradiated areas by the light-utilizing plating method of this example. Further, it is understood that even when copper is deposited in an island shape, a continuous thick copper plating film can be formed by using the deposited copper as a nucleus. Also, triethanolamine (TEA) type, potassium sodium tartrate (Tart)
Similar results were obtained when a mold-type electroless copper plating solution was used and a glass-epoxy substrate was used as the substrate.

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【表6】 [Table 6]

【0047】[0047]

【表7】 [Table 7]

【0048】[0048]

【表8】 [Table 8]

【0049】なお、無電解銅めっき液中に酸素濃度検出
用の電極を挿入し、光照射後のめっき液中の溶存酸素量
の推移を調べたところ、約4分で酸素量が0になった。
その際、各基板表面の状態を観察したところ、溶存酸素
量が0になってから約3分後に銅色になるのが見られ、
本実施例の犠牲酸化剤を用いると溶存酸素を短時間に還
元でき、銅の析出開始時間を早めることができる。
An electrode for detecting the oxygen concentration was inserted into the electroless copper plating solution, and the transition of the amount of dissolved oxygen in the plating solution after the light irradiation was examined. As a result, the oxygen content became 0 in about 4 minutes. It was
At that time, when the state of the surface of each substrate was observed, it was observed that the color of copper became a color about 3 minutes after the amount of dissolved oxygen became 0,
By using the sacrificial oxidant of this example, the dissolved oxygen can be reduced in a short time, and the copper deposition start time can be shortened.

【0050】(実施例2)実施例1に記載したと同様の
方法によって、脱脂、エッチング、水洗、乾燥したアル
ミナ基板を各試料について9枚づつ用意した(No.3
4、35)。No.34のアルミナ基板については、1
g/lのTiO2 ゾル(日産化学工業株式会社製、粒径
100〜200Å、ルチル/アナターゼ混合)溶液に2
秒間浸漬後、10秒間流水中で水洗して乾燥した。乾燥
後、さらに500℃で1時間焼成し、半導体であるTi
2 を担持したアルミナ基板とした。No.35のアル
ミナ基板については、実施例1に記載したNo.8と同
じ方法によってアルミナ基板上にエオシン Yからなる
色素層を形成した。つぎに、2mm角の窓を設けたマス
クを用意し、このマスクを前記アルミナ基板の色素層に
被せ、実施例1と同じ方法によってアルミナ基板に光照
射を5分間行った後、無電解銅めっき液(EDTA型)
の中に16時間放置して、2mm角の窓の部分に銅の析
出したアルミナ基板を作製した。この基板を市販の無電
解ニッケルめっき液(日本カニゼン株式会社製、S75
4)中で、15分間ニッケルをめっきした後、250℃
の溶融はんだ中に5秒間保持することにより、めっき部
位に、錫めっき銅線をはんだ付けしてピール密着強度の
測定を行った。表9に、測定されたピール密着強度を示
す。このデータは各試料とも9枚の平均である。エオシ
ン Yからなる色素層を形成したアルミナ基板では、T
iO2 を担持したアルミナ基板に比較して、ピール密着
強度は70%増加しており、半導体であるTiO2 を担
持したアルミナ基板よりも、色素層を形成したアルミナ
基板の方が、光照射部に析出した銅の基板に対し密着力
が向上することが確認された。
(Example 2) By the same method as described in Example 1, nine degreased, etched, washed and dried alumina substrates were prepared for each sample (No. 3).
4, 35). No. 1 for 34 alumina substrates
2 g / l TiO 2 sol (manufactured by Nissan Chemical Industries, Ltd., particle size 100-200Å, rutile / anatase mixture) solution 2
After soaking for 2 seconds, it was washed with running water for 10 seconds and dried. After drying, it is further baked at 500 ° C. for 1 hour to obtain Ti which is a semiconductor.
An alumina substrate supporting O 2 was used. No. Regarding the alumina substrate No. 35, No. 35 described in Example 1 was used. A dye layer made of eosin Y was formed on the alumina substrate by the same method as in 8. Next, a mask provided with a 2 mm square window was prepared, the mask was covered with the dye layer of the alumina substrate, and the alumina substrate was irradiated with light for 5 minutes by the same method as in Example 1, and then electroless copper plating was performed. Liquid (EDTA type)
It was left inside for 16 hours to prepare an alumina substrate in which copper was deposited on a 2 mm square window portion. A commercially available electroless nickel plating solution (manufactured by Nippon Kanigen Co., Ltd., S75
4) in nickel after plating for 15 minutes at 250 ° C
The tin-plated copper wire was soldered to the plated portion by holding it in the molten solder for 5 seconds, and the peel adhesion strength was measured. Table 9 shows the measured peel adhesion strength. This data is an average of 9 sheets for each sample. In the alumina substrate on which the dye layer made of Eosin Y is formed,
Compare the iO 2 to carrying alumina substrate, the peel adhesion strength is increased by 70%, than the alumina substrate carrying TiO 2 which is a semiconductor, is more of an alumina substrate formed with the dye layer, the light irradiation unit It was confirmed that the adhesion of the copper deposited on the substrate improved with respect to the substrate.

【0051】[0051]

【表9】 [Table 9]

【0052】(実施例3)実施例1に記載したと同様の
方法によって、脱脂、エッチング、水洗、乾燥したアル
ミナ基板を16枚用意した(No.36〜51)。N
o.36、37、44、45のアルミナ基板について
は、実施例1に記載したNo.6と同じ方法によってア
ルミナ基板上にローズ ベンガルからなる色素層を形成
した。No.38、39、46、47のアルミナ基板に
ついては、実施例1に記載したNo.7と同じ方法によ
ってアルミナ基板上にエリスロシン Bからなる色素層
を形成した。No.40、41、48、49のアルミナ
基板については、実施例1に記載したNo.8と同じ方
法によってアルミナ基板上にエオシン Yからなる色素
層を形成した。No.42、43、50、51のアルミ
ナ基板については、実施例1に記載したNo.10と同
じ方法によってアルミナ基板上にジブロモフルオレッセ
インからなる色素層を形成した。
(Example 3) Sixteen alumina substrates that had been degreased, etched, washed with water, and dried were prepared by the same method as described in Example 1 (Nos. 36 to 51). N
o. Regarding the alumina substrates of Nos. 36, 37, 44, and 45, No. 3 described in Example 1 was used. A dye layer made of rose bengal was formed on the alumina substrate by the same method as in 6. No. Regarding the alumina substrates of Nos. 38, 39, 46 and 47, No. 1 described in Example 1 was used. A dye layer made of erythrosine B was formed on the alumina substrate by the same method as in 7. No. For the alumina substrates of 40, 41, 48, and 49, No. 40 described in Example 1 was used. A dye layer made of eosin Y was formed on the alumina substrate by the same method as in 8. No. The alumina substrates of Nos. 42, 43, 50, and 51 were No. 1 described in Example 1. A dye layer made of dibromofluorescein was formed on an alumina substrate by the same method as in 10.

【0053】次に、犠牲酸化剤であるトリイソプロパノ
ールアミン(TIPA)が錯化剤を兼ねる無電解ニッケ
ルめっき液(表10)、無電解コバルトめっき液(表1
1)を用意した。各めっき液のpHは10.0または1
1.0とし、沈澱物等が生じた場合には、濾過後、使用
した。また、液温は、60〜65℃とした。該めっき液
中に前記アルミナ基板を浸漬し、各基板に実施例1と同
一光源を用いて光を照射し、光照射に伴うニッケル、コ
バルトの析出状態をSEMにより観察した。表12、1
3に吸着した色素、無電解めっき液の種類、試験条件、
ニッケルおよびコバルトの析出状態を示す。
Next, an electroless nickel plating solution (Table 10) and an electroless cobalt plating solution (Table 1) in which triisopropanolamine (TIPA), which is a sacrificial oxidizing agent, also serves as a complexing agent.
1) was prepared. PH of each plating solution is 10.0 or 1
The value was set to 1.0, and if a precipitate or the like was generated, it was used after filtration. The liquid temperature was 60 to 65 ° C. The alumina substrate was immersed in the plating solution, each substrate was irradiated with light using the same light source as in Example 1, and the state of deposition of nickel and cobalt accompanying light irradiation was observed by SEM. Table 12, 1
Dye adsorbed on 3, type of electroless plating solution, test conditions,
The precipitation state of nickel and cobalt is shown.

【0054】[0054]

【表10】 [Table 10]

【0055】[0055]

【表11】 [Table 11]

【0056】[0056]

【表12】 [Table 12]

【0057】[0057]

【表13】 [Table 13]

【0058】光照射後、ローズ ベンガル、エリスロシ
ン B、エオシン Y、ジブロモフルオレッセインを吸
着した基板上の光照射部には、ニッケルおよびコバルト
が直径約1000Åの半球状に析出していた(No.3
6、38、40、42、44、46、48、50)。ま
た、光照射を停止し、そのままめっき液中に2時間放置
したアルミナ基板上には、光照射した部分に約10μm
のニッケルまたは約2μmコバルトの析出層が形成され
ていた(No.37、39、41、43、45、47、
49、51)。これらニッケルおよびコバルトの析出層
をX線回折により物質同定を行ったところ、それぞれニ
ッケルおよびコバルトであることが確認された。
After the light irradiation, nickel and cobalt were deposited in a hemispherical shape with a diameter of about 1000Å on the light irradiated portion on the substrate on which Rose Bengal, erythrosin B, eosin Y and dibromofluorescein were adsorbed (No. Three
6, 38, 40, 42, 44, 46, 48, 50). On the alumina substrate left to stand in the plating solution for 2 hours after the light irradiation was stopped, the light-irradiated portion was about 10 μm.
Of nickel or about 2 μm cobalt was formed (No. 37, 39, 41, 43, 45, 47,
49, 51). When the nickel and cobalt deposited layers were identified by X-ray diffraction, it was confirmed that they were nickel and cobalt, respectively.

【0059】また、光を照射しない部分には、ニッケル
およびコバルトの析出が認められず、本実施例の光利用
めっき方法によって光照射部のみに、ニッケルおよびコ
バルトを厚く析出できることが確認された。
Further, no precipitation of nickel and cobalt was observed in the portion not irradiated with light, and it was confirmed that nickel and cobalt could be deposited thickly only in the irradiated portion by the light utilizing plating method of this example.

【0060】また、ニッケルおよびコバルトが島状に析
出した場合でも、析出したニッケルおよびコバルトを核
として連続的な厚いニッケルおよびコバルトのめっき膜
を形成できることがわかる。
Further, it can be seen that even when nickel and cobalt are deposited in an island shape, a continuous thick nickel and cobalt plating film can be formed by using the deposited nickel and cobalt as nuclei.

【0061】また、クエン酸(Cit)型、トリエタノ
ールアミン(TEA)型の無電解ニッケルめっき液を使
用した場合、ニトリロトリ酢酸(NTA)型の無電解コ
バルトめっき液を使用した場合、基板としてガラス−エ
ポキシ基板を使用した場合にも同様の結果が得られた。
When a citric acid (Cit) type or triethanolamine (TEA) type electroless nickel plating solution is used, or when a nitrilotriacetic acid (NTA) type electroless cobalt plating solution is used, a glass is used as a substrate. Similar results were obtained when using an epoxy substrate.

【0062】(実施例4)実施例1に記載したと同様の
方法によって、脱脂、エッチング、水洗、乾燥したアル
ミナ基板を各試料について6枚づつ用意した(No.5
2〜57)。次に、実施例1に記載したNo.8と同じ
方法によってアルミナ基板上にエオシンYからなる色素
層を形成した。
(Example 4) By the same method as described in Example 1, six degreased, etched, washed and dried alumina substrates were prepared for each sample (No. 5).
2-57). Next, No. 1 described in Example 1 was used. A dye layer made of eosin Y was formed on the alumina substrate by the same method as in 8.

【0063】次に、犠牲酸化剤であるエチレンジアミン
4酢酸(EDTA)とパラジウムイオンを含む溶液(表
14)を用意した。室温にて、該溶液中に前記アルミナ
基板を浸漬し、各基板に実施例1と同一光源を用いて光
を照射し、充分水洗後、室温条件で無電解銅めっき液
(表4、EDTA型)、無電解ニッケルめっき液(表1
0、Cit型、pH=11.0)、無電解コバルトめっ
き液(表11、Tart型、pH=11.0)中に浸漬
し、光照射に伴う銅、ニッケルおよびコバルトの析出状
態をSEMにより観察した。表15に、無電解めっき液
の種類、試験条件、銅、ニッケルおよびコバルトの析出
状態を示す。
Next, a solution containing ethylenediaminetetraacetic acid (EDTA) as a sacrificial oxidant and palladium ions was prepared (Table 14). The alumina substrate was immersed in the solution at room temperature, each substrate was irradiated with light using the same light source as in Example 1, thoroughly washed with water, and then electroless copper plating solution (Table 4, EDTA type) at room temperature. ), Electroless nickel plating solution (Table 1
0, Cit type, pH = 11.0), immersed in an electroless cobalt plating solution (Table 11, Tart type, pH = 11.0), and the deposition state of copper, nickel and cobalt accompanying light irradiation was observed by SEM. I observed. Table 15 shows the type of electroless plating solution, test conditions, and the state of deposition of copper, nickel, and cobalt.

【0064】[0064]

【表14】 [Table 14]

【0065】[0065]

【表15】 [Table 15]

【0066】光照射後、基板上の光照射部には、直径数
100Åの半球状にパラジウムが析出していた(No.
52、54、56)。また、光照射を停止し、そのまま
めっき液中に2時間放置したアルミナ基板上には、光照
射した部分に約2μmの銅、ニッケルおよびコバルトの
析出層が形成されていた(No.53、55、57)。
これら銅、ニッケルおよびコバルトの析出層をX線回折
により物質同定を行ったところ、それぞれ銅、ニッケル
およびコバルトであることが確認された。
After the light irradiation, palladium was deposited in a hemispherical shape having a diameter of several hundred liters on the light irradiated portion on the substrate (No.
52, 54, 56). Further, on the alumina substrate which was left to stand in the plating solution for 2 hours after the light irradiation was stopped, about 2 μm of a deposited layer of copper, nickel and cobalt was formed in the light irradiated portion (No. 53, 55). 57).
When the deposited layers of copper, nickel and cobalt were identified by X-ray diffraction, they were confirmed to be copper, nickel and cobalt, respectively.

【0067】また、光を照射しない部分には、銅、ニッ
ケルおよびコバルトの析出が認められず、本実施例の光
利用めっき方法によって光照射部のみに、銅、ニッケル
およびコバルトを厚く析出できることが確認された。
Further, no deposition of copper, nickel and cobalt was observed in the portions not irradiated with light, and it was possible to deposit copper, nickel and cobalt thickly only in the irradiated portions by the light utilizing plating method of this embodiment. confirmed.

【0068】(実施例5)実施例1に記載したと同様の
方法によって、脱脂、エッチング、水洗、乾燥したアル
ミナ基板を用意した(No.58、59)。これらのア
ルミナ基板は、実施例1に記載したNo.8と同じ方法
によってアルミナ基板上にエオシン Yからなる色素層
を形成した。次に、犠牲酸化剤であるエチレンジアミン
4酢酸(EDTA)を0.3モル/l、硫酸銅を0.0
4モル/l含むpH=12.5の溶液を用意した。
(Example 5) By the same method as described in Example 1, degreased, etched, washed with water, and dried alumina substrates were prepared (Nos. 58 and 59). These alumina substrates are No. 1 and No. 2 described in Example 1. A dye layer made of eosin Y was formed on the alumina substrate by the same method as in 8. Next, 0.3 mol / l of ethylenediaminetetraacetic acid (EDTA), which is a sacrificial oxidant, and 0.0% of copper sulfate.
A solution having a pH of 12.5 containing 4 mol / l was prepared.

【0069】この溶液中に前記色素層を形成した各アル
ミナ基板を浸漬した後、引上げ、実施例1と同一光源を
用いて5分間溶液を介して色素層に光を照射した。その
後、室温条件で無電解銅めっき液(表4、EDTA型)
中に浸漬し、光照射に伴う銅の析出状態をSEMにより
観察した光照射後、No.58の基板上の光照射部に
は、直径数100Åの半球状に銅が析出していた。ま
た、光照射を停止し、そのままめっき液中に60時間放
置したNo.59のアルミナ基板上には、光照射した部
分に約40μmの銅の析出層が形成されていた。この銅
の析出層をX線回折により物質同定を行ったところ、銅
であることが確認された。また、光を照射しない部分に
は、銅の析出は認められず、本実施例の光利用めっき方
法によって光照射部のみに、銅を厚く析出できることが
確認された。
Each alumina substrate having the dye layer formed thereon was dipped in this solution, then pulled up, and the dye layer was irradiated with light using the same light source as in Example 1 for 5 minutes. Then, at room temperature, electroless copper plating solution (Table 4, EDTA type)
After irradiating with light, the state of precipitation of copper was observed by SEM. Copper was deposited in a hemispherical shape having a diameter of several hundred liters on the light irradiation portion of the substrate 58. Moreover, the light irradiation was stopped and the sample was left in the plating solution for 60 hours as it was. On the alumina substrate of No. 59, a copper deposition layer of about 40 μm was formed in the light-irradiated portion. When the substance of the deposited layer of copper was identified by X-ray diffraction, it was confirmed to be copper. Further, no copper deposition was observed in the portions not irradiated with light, and it was confirmed that copper could be deposited thickly only in the light-irradiated portions by the light-utilizing plating method of this example.

【図面の簡単な説明】[Brief description of drawings]

【図1】光照射時間と溶存酸素濃度の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between light irradiation time and dissolved oxygen concentration.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板表面に色素分子からなる色素層を形
成する工程と、不可逆的に酸化分解して電子を供給する
犠牲酸化剤と、銅、ニッケル、コバルトおよび錫イオン
の少なくとも1種とを含む無電解めっき液中に、前記色
素層を形成した基板を浸漬する工程と、前記色素層に色
素の励起エネルギー以上のエネルギーを持つ光を照射す
る工程とからなり、色素層の光を照射した部分に、銅、
ニッケル、コバルトおよび錫の少なくとも1種を含むめ
っき膜を形成することを特徴とする光利用めっき方法。
1. A step of forming a dye layer composed of dye molecules on the surface of a substrate, a sacrificial oxidant which irreversibly oxidatively decomposes and supplies electrons, and at least one of copper, nickel, cobalt and tin ions. In the electroless plating solution containing, the step of immersing the substrate on which the dye layer is formed, and the step of irradiating the dye layer with light having energy higher than the excitation energy of the dye, Part, copper,
A light utilizing plating method, which comprises forming a plating film containing at least one of nickel, cobalt and tin.
【請求項2】 基板表面に色素分子からなる色素層を形
成する工程と、不可逆的に酸化分解して電子を供給する
犠牲酸化剤と貴金属イオンを含む溶液中に、前記色素層
を形成した基板を浸漬する工程と、前記色素層に色素の
励起エネルギー以上のエネルギーを持つ光を照射する工
程と、銅、ニッケル、コバルトおよび錫イオンの少なく
とも1種を含む無電解めっき液中に、前記色素層を形成
した基板を浸漬する工程とからなり、色素層の光を照射
した部分に、銅、ニッケル、コバルトおよび錫の少なく
とも1種を含むめっき膜を形成することを特徴とする光
利用めっき方法。
2. A substrate on which the dye layer is formed in a step of forming a dye layer composed of dye molecules on the surface of the substrate and a solution containing a sacrificial oxidant that irreversibly oxidatively decomposes to supply electrons and a noble metal ion. The step of immersing the dye layer in the electroless plating solution containing at least one of copper, nickel, cobalt and tin ions; And a step of immersing the substrate on which the light has been formed, wherein a plating film containing at least one of copper, nickel, cobalt and tin is formed on the light-irradiated portion of the dye layer.
【請求項3】 基板と、この基板上に形成した色素分子
からなる色素層と、この色素層表面の光を照射した部分
に形成した、銅、ニッケル、コバルトおよび錫の少なく
とも1種を含むめっき膜を有することを特徴とするめっ
き膜形成体。
3. A substrate, a dye layer made of dye molecules formed on the substrate, and plating containing at least one of copper, nickel, cobalt and tin formed on the light-irradiated portion of the surface of the dye layer. A plated film forming body having a film.
【請求項4】 基板表面に色素分子からなる色素層を形
成する工程と、不可逆的に酸化分解して電子を供給する
犠牲酸化剤と、銅、ニッケル、コバルトおよび錫イオン
の少なくとも1種とを含む溶液または不可逆的に酸化分
解して電子を供給する犠牲酸化剤と貴金属イオンを含む
溶液を前記色素層上に付着する工程と、前記色素層に色
素の励起エネルギー以上のエネルギーを持つ光を照射す
る工程と、銅、ニッケル、コバルトおよび錫イオンの少
なくとも1種を含む無電解めっき液中に、前記色素層を
形成した基板を浸漬する工程とからなり、色素層の光を
照射した部分に、銅、ニッケル、コバルトおよび錫の少
なくとも1種を含むめっき膜を形成することを特徴とす
る光利用めっき方法。
4. A step of forming a dye layer composed of dye molecules on the surface of a substrate, a sacrificial oxidant which irreversibly oxidatively decomposes and supplies electrons, and at least one of copper, nickel, cobalt and tin ions. Depositing a solution containing a sacrificial oxidant that supplies electrons by irreversibly oxidatively decomposing and a noble metal ion on the dye layer, and irradiating the dye layer with light having an energy higher than the excitation energy of the dye. And a step of immersing the substrate on which the dye layer is formed in an electroless plating solution containing at least one of copper, nickel, cobalt and tin ions. A light-utilizing plating method comprising forming a plating film containing at least one of copper, nickel, cobalt and tin.
JP5154193A 1992-02-17 1993-02-16 Plating method utilizing light and plating film forming body Pending JPH06136547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5154193A JPH06136547A (en) 1992-02-17 1993-02-16 Plating method utilizing light and plating film forming body

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6916592 1992-02-17
JP26951992 1992-09-11
JP4-69165 1992-09-11
JP4-269519 1992-09-11
JP5154193A JPH06136547A (en) 1992-02-17 1993-02-16 Plating method utilizing light and plating film forming body

Publications (1)

Publication Number Publication Date
JPH06136547A true JPH06136547A (en) 1994-05-17

Family

ID=27294351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5154193A Pending JPH06136547A (en) 1992-02-17 1993-02-16 Plating method utilizing light and plating film forming body

Country Status (1)

Country Link
JP (1) JPH06136547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163447A (en) * 2000-12-15 2008-07-17 Arizona Board Of Regents Method for patterning metal using nanoparticle containing precursor
JP2009228097A (en) * 2008-03-25 2009-10-08 Institute Of Physical & Chemical Research Photoreduction processing method for three-dimensional nano-structure of metal
JP2016176116A (en) * 2015-03-20 2016-10-06 株式会社Adeka Composition for nickel film formation and method for manufacturing nickel film using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163447A (en) * 2000-12-15 2008-07-17 Arizona Board Of Regents Method for patterning metal using nanoparticle containing precursor
US8557017B2 (en) 2000-12-15 2013-10-15 The Arizona Board Of Regents Method for patterning metal using nanoparticle containing precursors
US8779030B2 (en) 2000-12-15 2014-07-15 The Arizona Board of Regents, The University of Arizone Method for patterning metal using nanoparticle containing precursors
JP2009228097A (en) * 2008-03-25 2009-10-08 Institute Of Physical & Chemical Research Photoreduction processing method for three-dimensional nano-structure of metal
JP2016176116A (en) * 2015-03-20 2016-10-06 株式会社Adeka Composition for nickel film formation and method for manufacturing nickel film using the same

Similar Documents

Publication Publication Date Title
CN1055818C (en) Method for-selectively metallizing a substrate
US5405656A (en) Solution for catalytic treatment, method of applying catalyst to substrate and method of forming electrical conductor
US5389496A (en) Processes and compositions for electroless metallization
JPH05202483A (en) Method and composition for electroless metallization
JPH04232278A (en) Conditioning of substrate for electroless plating onto substrate
JPH05148657A (en) Light-utilizing plating solution and plating method
CA2083196C (en) Process for extending the life of a displacement plating bath
JP2004343109A (en) Method of forming metal wiring and electromagnetic wave shielding filter using this
JP3058063B2 (en) Activating catalyst solution for electroless plating and electroless plating method
KR20030095688A (en) Printed circuit board and plating method thereof
US5314725A (en) Photo-plating process
US5989787A (en) Activating catalytic solution for electroless plating and method for electroless plating
JPH06136547A (en) Plating method utilizing light and plating film forming body
JP3237098B2 (en) Electroless palladium plating method and electroless plating bath used therein
JP3111891B2 (en) Activating catalyst solution for electroless plating and electroless plating method
JPH01502123A (en) Improved photo-selective plating method
US20080199627A1 (en) Catalytic treatment method, electroless plating method, and method for forming circuit using electroless plating
JPH04215855A (en) Catalyst-treating liquid, catalyst-carrying method and conductor-forming method
JPH0480374A (en) Production of printed circuit board
EP0308011B1 (en) Method of locally providing metal on a surface of a substrate
JPH0677626A (en) Formation of plated circuit
EP1629703A1 (en) Method for the structured metal-coating of polymeric and ceramic support materials, and compound that can be activated and is used in said method
JPS6177393A (en) Partial metalization of substrate surface
JP3161407B2 (en) Activating catalyst solution for electroless plating and electroless plating method
JPH0499283A (en) Method for depositing catalytic metal