JPH06135799A - Perovskite-type crystal having composite structure - Google Patents

Perovskite-type crystal having composite structure

Info

Publication number
JPH06135799A
JPH06135799A JP31113592A JP31113592A JPH06135799A JP H06135799 A JPH06135799 A JP H06135799A JP 31113592 A JP31113592 A JP 31113592A JP 31113592 A JP31113592 A JP 31113592A JP H06135799 A JPH06135799 A JP H06135799A
Authority
JP
Japan
Prior art keywords
crystal
laser
composition
perovskite
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31113592A
Other languages
Japanese (ja)
Inventor
Yuka Naitou
由香 内藤
Nobuhiro Kodama
展宏 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP31113592A priority Critical patent/JPH06135799A/en
Publication of JPH06135799A publication Critical patent/JPH06135799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To miniturize an element and to improve laser oscillation efficiency in the perovskite-type crystal useful as a laser oscillating material and mixed with rare-earth elements by forming a kind of waveguide at the center of the crystal. CONSTITUTION:Almost the central part of the cross section of the perovskite- type crystal optically cut vertically to the center of the crystal has a waveguide structure of the composition expressed by APrxLn1-xAl contg. Pr<3+> as the laser active ion, and the periphery consists of a composition 2 shown by ALnAlO4. In the formulas, A is Ca<2+> or Sr<2+>, Ln is one kind among Y<3+>, Ga<3+> and La<3+> and 0.001<=x<=0.2. When x<0.001, the laser oscillation intensity is weak, and concn. extinction is unfavorably caused when x>0.2. This crystal is useful as the laser oscillating material in the near infrared and visible regions, and its oscillation efficiency is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光材料として有用で
あり、光計測、光情報処理、光医療、光プロセッシング
等コヒーレント光を利用する分野において、各種光デバ
イス、例えばレーザー素子、光増幅素子の小型、高効率
化に有効な、組成、添加物濃度の異なる複合構造ペロブ
スカイト型結晶に関する。
INDUSTRIAL APPLICABILITY The present invention is useful as a light emitting material, and in the field of utilizing coherent light such as optical measurement, optical information processing, optical medical treatment, optical processing, various optical devices such as laser elements and optical amplification elements. The present invention relates to a composite structure perovskite type crystal having different compositions and additive concentrations, which is effective for miniaturization and high efficiency.

【0002】[0002]

【従来の技術】従来、組成式ABxLn1-xAlO
4(A:アルカリ土類金属イオン、B:レーザー活性イ
オン、Ln:希土類イオン)で表される結晶で発光性を
有するものとしては、発光イオンとしてNd3+を含んだ
CaNd0.050.95AlO4、Er3+を含んだCaEr
0.050.95AlO4(E.F.Kustov et a
l、Phys.Stat.sol.41,379(19
77))、CaNdxGd1-xAlO4(Z.S.App
en et al、Inorg.Mater.(USS
R)21,716(1985))、Er3+を含むAEr
xLn1-xAlO4(A:Ca2+又はSr2+、Ln:Gd
3+又はLa3+)、Tm3+又はPr3+を含むABxLn1-x
AlO4(A:Ca2+又はSr2+、B:Tm3+又はPr
3+、Ln:Y3+、Gd3+、La3+から選ばれる一種)な
どが知られている。これらの結晶はそれ自体単一組成の
結晶である。
2. Description of the Related Art Conventionally, the composition formula AB x Ln 1-x AlO is used.
A crystal represented by 4 (A: alkaline earth metal ion, B: laser active ion, Ln: rare earth ion) having a light emitting property is CaNd 0.05 Y 0.95 AlO 4 containing Nd 3+ as a light emitting ion. , CaEr containing Er 3+
0.05 Y 0.95 AlO 4 (EF Kustov et a
1, Phys. Stat. sol. 41,379 (19
77)), CaNd x Gd 1-x AlO 4 (ZS App.
en et al, Inorg. Mater. (USS
R) 21,716 (1985)), AEr containing Er 3+
x Ln 1-x AlO 4 (A: Ca 2+ or Sr 2+ , Ln: Gd
3x or La 3+ ), Tm 3+ or Pr 3+ containing AB x Ln 1-x
AlO 4 (A: Ca 2+ or Sr 2+ , B: Tm 3+ or Pr
3+ , Ln: Y 3+ , a kind selected from Gd 3+ , La 3+ ) and the like are known. These crystals are themselves single composition crystals.

【0003】又、上記結晶のレーザー効率、又はアップ
コンバージョンレーザー発振効率は必ずしも高くはな
く、本発明のような組成でかつ結晶の中心部に一種の導
波路が形成され、その周囲との組成が異なる複合構造を
持つ結晶は知られていない。
Further, the laser efficiency or the up-conversion laser oscillation efficiency of the crystal is not necessarily high, and the composition as in the present invention is formed, and a kind of waveguide is formed in the center of the crystal, and the composition with the surrounding is. Crystals with different composite structures are not known.

【0004】[0004]

【発明が解決しようとする課題】本発明は、近赤外及び
可視域でレーザー発振材料として有用な希土類を添加し
たペロブスカイト型結晶であって、素子の小型化、レー
ザー発振効率の高効率化が可能な、しかも特殊な複合構
造を持つ結晶を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention is a perovskite type crystal added with a rare earth which is useful as a laser oscillation material in the near infrared and visible regions, and is capable of reducing the size of an element and increasing the efficiency of laser oscillation. The object is to provide a crystal which is possible and has a special composite structure.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
の解決のため、結晶の中心部にレーザー活性イオンを含
んだ組成を持つ、一種の光導波路が形成されており、そ
の周囲は活性イオンを含まない組成を有する複合構造の
結晶に着目し、種々の検討を行った結果、本発明を完成
した。
In order to solve the above-mentioned problems, the inventors of the present invention have formed a kind of optical waveguide having a composition containing laser-active ions in the center of a crystal, and surrounding it. The present invention has been completed as a result of various investigations focusing on a crystal having a composite structure having a composition containing no active ions.

【0006】即ち、本発明は、結晶の中心軸に垂直に任
意に切断した際の断面のほぼ中央部が、Pr3+含む組成
式APrxLn1-xAlO4(A:Ca2+又はSr2+、L
n:Y3+、Gd3+、La3+から選ばれる一種、x:0.
001≦x≦0.2)で表される組成の導波路構造を有
し、その周囲が組成式ALnAlO4(A:Ca2+又は
Sr2+、Ln:Y3+、Gd3+、La3+から選ばれる一
種)で表される組成からなる複合構造を持つペロブスカ
イト型結晶に関するものである。
Namely, the present invention is substantially central portion of the section taken along arbitrarily perpendicular to the central axis of the crystal, the composition formula including Pr 3+ APr x Ln 1-x AlO 4 (A: Ca 2+ or Sr 2+ , L
n: one selected from Y 3+ , Gd 3+ , La 3+ , x: 0.
001 ≦ x ≦ 0.2) and has a waveguide structure with a composition formula ALnAlO 4 (A: Ca 2+ or Sr 2+ , Ln: Y 3+ , Gd 3+ , La). The present invention relates to a perovskite-type crystal having a composite structure composed of a composition represented by (a type selected from 3+ ).

【0007】次に本発明を更に詳細に説明する。本発明
の結晶を図面に基づいて説明する。図1は本発明の一実
施態様の結晶をその中心軸に垂直な面で切断したものの
斜視図である。図中1はレーザー活性イオンを含んだ組
成(組成1)からなり、ほぼ前記中心軸に添って存在し
ており、導波路構造を有している。2は前記レーザー活
性イオンを含んだ組成とは異なる組成(組成2)からな
るものである。
Next, the present invention will be described in more detail. The crystal of the present invention will be described based on the drawings. FIG. 1 is a perspective view of a crystal according to one embodiment of the present invention cut along a plane perpendicular to its central axis. In the figure, 1 is composed of a composition containing laser-active ions (composition 1), exists along the central axis, and has a waveguide structure. 2 has a composition (composition 2) different from the composition containing the laser-active ions.

【0008】本発明の結晶は、異なる組成を持つ部分か
らなることが特徴であるが、1の組成は、組成式APr
xLn1-xAlO4で表されるもので、式中AはCa2+
はSr2+、LnはY3+、Gd3+、La3+から選ばれる一
種である。Pr3+はレーザー活性イオンである。
The crystal of the present invention is characterized by being composed of parts having different compositions.
x Ln 1-x AlO 4 in which A is Ca 2+ or Sr 2+ and Ln is a type selected from Y 3+ , Gd 3+ and La 3+ . Pr 3+ is a laser active ion.

【0009】1の組成におけるレーザー活性イオンの含
量は上記した組成式のxで示すようにその範囲が0.0
01≦x≦0.2となる量であるが、この量が0.00
1より小であるとレーザー発振強度が弱く、0.2より
大であると濃度消光を起こすので好ましくない。活性イ
オンを含んだ結晶中心部の導波路部の直径は約500μ
m以下、又、導波モードをシングルモードにする上で好
ましくは20μm以下の直径とすることである。
The content of the laser active ion in the composition of 1 is 0.0 in the range as indicated by x in the above composition formula.
The amount is 01 ≦ x ≦ 0.2, but this amount is 0.00
When it is less than 1, the laser oscillation intensity is weak, and when it is more than 0.2, concentration quenching occurs, which is not preferable. The diameter of the waveguide at the center of the crystal containing active ions is about 500μ.
In order to make the waveguide mode a single mode, the diameter is preferably 20 μm or less.

【0010】又、本発明の2の組成は、組成式ALnA
lO4(A:Ca2+又はSr2+、Ln:Y3+、Gd3+
La3+から選ばれる一種)で表される組成からなるもの
である。
The second composition of the present invention is the composition formula ALnA.
lO 4 (A: Ca 2+ or Sr 2+, Ln: Y 3+, Gd 3+,
It has a composition represented by (a type selected from La 3+ ).

【0011】本発明は次のような方法で製造することが
できる。図2は本発明の複合構造結晶を製造するために
用いられる装置の一例の断面図である。図中11は外る
つぼ、12は内るつぼで、外るつぼに内装されている。
13は内るつぼを固定する固定部、14は外管、15は
内管でこれらの管は二重管で構成されており、内管の内
部は、レーザー活性イオンを含むペロブスカイト融液部
16と導通しており、内管の外壁と外管の内壁とで構成
される間隙と、活性イオンを含まないペロブスカイト融
液部17と導通している。19は種結晶であり、18は
複合構造のペロブスカイト型結晶である。
The present invention can be manufactured by the following method. FIG. 2 is a cross-sectional view of an example of an apparatus used for producing the composite structured crystal of the present invention. In the figure, 11 is an outer crucible, 12 is an inner crucible, which is installed in the outer crucible.
13 is a fixing part for fixing the inner crucible, 14 is an outer pipe, 15 is an inner pipe, and these pipes are composed of a double pipe. The inner pipe has a perovskite melt portion 16 containing laser active ions. It is electrically connected, and is electrically connected to the gap formed by the outer wall of the inner tube and the inner wall of the outer tube, and the perovskite melt portion 17 containing no active ions. Reference numeral 19 is a seed crystal, and 18 is a perovskite type crystal having a composite structure.

【0012】外るつぼ内の融液(組成1)と内るつぼ内
の融液(組成2)は、夫々に導通した管及び間隙を、毛
細管作用により上昇し、種結晶により引上げられ各パイ
プの上端部で合流し固化して結晶化し複合構造を持った
結晶となる。この際の、融液の上昇高さは融液の表面張
力、融液の密度、内管の内径、外管と内管の間隔及び融
液の管表面に対する接触角で決定される。
The melt in the outer crucible (composition 1) and the melt in the inner crucible (composition 2) rise in the tubes and gaps that have been conducted to each other by the capillary action and are pulled up by the seed crystal, and are pulled up by the upper end of each pipe. At the parts, they merge and solidify to crystallize to form crystals with a composite structure. At this time, the rising height of the melt is determined by the surface tension of the melt, the density of the melt, the inner diameter of the inner pipe, the distance between the outer pipe and the inner pipe, and the contact angle of the melt to the pipe surface.

【0013】本発明の結晶を得るのに用いられる原料
は、結晶を構成する各々の成分の酸化物又は炭酸塩であ
る。即ち、結晶の中心部の導波路部については、組成式
ABxLn1-xAlO4において、アルカリ土類金属イオ
ンAの酸化物又は炭酸塩、希土類イオンB、Lnの酸化
物、及びAl3+イオンの酸化物を用い、これらを結晶の
原子比が、A:B:Ln:Al=1:x:1−x:1
(0.001≦x≦0.2)の量比になるように混合し
たものを用いる。
The raw material used for obtaining the crystal of the present invention is an oxide or carbonate of each component constituting the crystal. That is, for the waveguide portion at the center of the crystal, in the composition formula AB x Ln 1-x AlO 4 , an oxide or carbonate of an alkaline earth metal ion A, an oxide of a rare earth ion B, an oxide of Ln, and Al 3 A + ion oxide is used, and the atomic ratio of these crystals is A: B: Ln: Al = 1: x: 1-x: 1.
The mixture is used so that the amount ratio is (0.001 ≦ x ≦ 0.2).

【0014】又、結晶導波路部の周囲の結晶について
は、組成式ALnAlO4において、アルカリ土類金属
イオンAの酸化物又は炭酸塩、希土類イオンLnの酸化
物、及びAl3+イオンの酸化物を用い、これらを結晶の
原子比が、例えばA:Ln:Al=1:1:1の量比に
なるように混合したものを用いる。
Regarding the crystal around the crystal waveguide, in the composition formula ALnAlO 4 , an oxide or carbonate of an alkaline earth metal ion A, an oxide of a rare earth ion Ln, and an oxide of an Al 3+ ion. And a mixture of these is used so that the atomic ratio of the crystals is, for example, A: Ln: Al = 1: 1: 1.

【0015】これらの混合物は、不活性ガス、例えばH
e、Ar、N2の雰囲気下、還元性ガス雰囲気、例えば
水素ガス単独、水素と二酸化炭素又は一酸化炭素との混
合ガス、又はこれらのガスをHe、Ar、N2の一種類
以上と混合したガス雰囲気下で、これら化合物の溶融す
る温度、例えば1600〜1900℃で溶融する。るつ
ぼ内で溶融した融液は夫々の導通路を通り毛細管作用に
より、パイプ中を上昇し、二重管の2つのパイプの上端
で合流させた融液は種結晶を介して引上げることにより
結晶化させ、複合構造を持った結晶を育成する。ここで
水素を含んだガスを用いる場合、その雰囲気は好ましく
は水素を0.1vol%以上含んだガス雰囲気である。
又、酸化性雰囲気でこれを行うと、レーザー活性イオン
であるPr3+が酸化されPr4+となり、Pr3+濃度が減
少し、レーザーの発振効率及び光学的品質の低下をもた
らす。
These mixtures contain an inert gas such as H 2.
e, Ar, N 2 atmosphere, reducing gas atmosphere, for example, hydrogen gas alone, mixed gas of hydrogen and carbon dioxide or carbon monoxide, or these gases mixed with one or more of He, Ar, N 2 In the above gas atmosphere, these compounds are melted at a melting temperature, for example, 1600 to 1900 ° C. The melt melted in the crucible goes up through the respective conduits and rises in the pipe by capillary action, and the melt merged at the upper ends of the two pipes of the double pipe is crystallized by pulling up through the seed crystal. To grow a crystal having a composite structure. When a gas containing hydrogen is used here, the atmosphere is preferably a gas atmosphere containing 0.1 vol% or more of hydrogen.
Further, when this is performed in an oxidizing atmosphere, the laser active ions Pr 3+ are oxidized to Pr 4+ , the Pr 3+ concentration is reduced, and the laser oscillation efficiency and optical quality are degraded.

【0016】本発明の結晶は概ね柱状であり、前記した
装置のパイプの形状を適宜選択することにより、円柱
状、角柱状として得ることができる。又、その長さ、径
はこの結晶の使用目的によって異なり特に限定されな
い。
The crystal of the present invention is generally columnar, and can be obtained as a columnar or prismatic column by appropriately selecting the shape of the pipe of the above apparatus. Further, the length and diameter are different depending on the purpose of use of the crystal and are not particularly limited.

【0017】[0017]

【実施例】次に本発明を実施例により更に詳細に説明す
る。
EXAMPLES The present invention will now be described in more detail with reference to Examples.

【0018】実施例1 複合構造結晶の育成には、図2に示した、イリジウム製
の内管、外管及び二重るつぼを使用した。結晶中心部の
導波構造となる組成部として、CaCO3、Pr611
Gd23、Al23を、結晶の原子比がCa:Pr:G
d:Al=1:0.01:0.99:1になるように調
整した混合物を外るつぼに、又、周囲の組成部として、
CaCO3、Gd23、Al23を同じくCa:Gd:
Al=1:1:1の量比になるように調整した混合物を
内るつぼに入れ、これらの原料混合物を高周波誘導加熱
によって、0.5vol%の水素を含むHeガス雰囲気
下、約1860℃で溶融した。
Example 1 For growing a composite structure crystal, the inner tube, outer tube and double crucible made of iridium shown in FIG. 2 were used. As the composition part that becomes the waveguide structure in the crystal center part, CaCO 3 , Pr 6 O 11 ,
Gd 2 O 3 and Al 2 O 3 have a crystal atomic ratio of Ca: Pr: G.
The mixture prepared so that d: Al = 1: 0.01: 0.99: 1 was placed in the outer crucible, and as the surrounding composition part,
CaCO 3 , Gd 2 O 3 , and Al 2 O 3 are the same as Ca: Gd:
A mixture adjusted to have a volume ratio of Al = 1: 1: 1 was put into an inner crucible, and these raw material mixtures were subjected to high frequency induction heating at about 1860 ° C. in a He gas atmosphere containing 0.5 vol% hydrogen. Melted

【0019】2種の融液を管中で上昇させ、管の上端で
合流させた後、a軸方位の種結晶を付け、1mm/hで
引上げ結晶化させ、直径5mm、長さ30mmの結晶を
得た。得られた結晶は、X線回折の結果から目的とする
結晶であることを確認した。X線回折図を図3に示す。
After the two kinds of melts are raised in the tube and merged at the upper end of the tube, a seed crystal in the a-axis direction is attached and pulled up at 1 mm / h for crystallization, and a crystal having a diameter of 5 mm and a length of 30 mm. Got It was confirmed from the results of X-ray diffraction that the obtained crystals were the desired crystals. The X-ray diffraction pattern is shown in FIG.

【0020】又、断面の直径方向における元素分析を行
った結果、Pr3+は結晶の中心軸から約100μmの円
内に存在していた。即ち、レーザー活性イオンとしてP
rが結晶の中心から直径約200μmに分布した導波構
造を持つ複合構造ペロブスカイト型結晶が得られた。ま
た吸収測定によりPr3+イオンの吸収スペクトルが確認
された。図4に300〜900nmの範囲の吸収スペク
トルを示す。発光は300〜1700nmに存在する吸
収ピークの波長、例えば488nmのアルゴンレーザー
で励起することによって確認した。この際の発光スペク
トルを図5に示す。レーザー発振はこの結晶を用い可視
域あるいは近赤外域で得られる。
As a result of elemental analysis in the diameter direction of the cross section, Pr 3+ was present within a circle of about 100 μm from the central axis of the crystal. That is, P as a laser active ion
A complex structure perovskite type crystal having a waveguide structure in which r was distributed in a diameter of about 200 μm from the center of the crystal was obtained. Further, the absorption spectrum confirmed the absorption spectrum of Pr 3+ ions. FIG. 4 shows an absorption spectrum in the range of 300 to 900 nm. Emission was confirmed by exciting with an argon laser having an absorption peak wavelength existing at 300 to 1700 nm, for example, 488 nm. The emission spectrum at this time is shown in FIG. Laser oscillation can be obtained in the visible region or near infrared region using this crystal.

【0021】実施例2 実施例1と同様の装置を用い、原料として、CaC
3、Pr611、Y23、Al23を原子比Ca:P
r:Y:Al=1:0.01:0.99:1の量比にな
るように調整した混合物を外るつぼに入れ、CaC
3、Y23、Al23を原子比Ca:Y:Al=1:
1:1:の量比になるように調整した混合物を内るつぼ
に入れ、1vol%の水素を含んだArガス雰囲気下、
1860℃で溶融したものを用い、実施例1と同様に融
液を引上げ結晶を得た。
Example 2 Using the same apparatus as in Example 1, CaC was used as a raw material.
O 3 , Pr 6 O 11 , Y 2 O 3 , and Al 2 O 3 are used in the atomic ratio Ca: P.
The mixture adjusted to have a ratio of r: Y: Al = 1: 0.01: 0.99: 1 was put in an outer crucible, and CaC was added.
O 3 , Y 2 O 3 , and Al 2 O 3 have an atomic ratio of Ca: Y: Al = 1:
A mixture adjusted to have a volume ratio of 1: 1 was put in an inner crucible, and in an Ar gas atmosphere containing 1 vol% hydrogen,
Using the melted material at 1860 ° C., the melt was pulled up in the same manner as in Example 1 to obtain crystals.

【0022】得られた結晶は、結晶の直径方向の元素分
析の結果、Pr3+は中心軸を中心として直径約300μ
mの円状に存在する複合構造結晶であった。また、吸収
スペクトルを測定した結果、実施例1と同様なスペクト
ルが得られた。
As a result of elemental analysis in the diameter direction of the crystal, Pr 3+ was found to have a diameter of about 300 μ around the central axis.
It was a complex structure crystal existing in a circle of m. Further, as a result of measuring the absorption spectrum, the same spectrum as in Example 1 was obtained.

【0023】実施例3 SrCO3、Pr611、Gd23、Al23を結晶の原
子比、Sr:Pr:Gd:Al=1:0.01:0.9
9:1の量比になるように調製した混合物を外るつぼに
入れ、Sr23、Gd23、Al23を原子比、Sr:
Gd:AL=1:1:1の比になるように調製した混合
物を内るつぼに入れ、約1800℃で、1vol%の酸
素を含むHeガス雰囲気下で溶融し、実施例1と同様に
して結晶を得た。
Example 3 SrCO 3 , Pr 6 O 11 , Gd 2 O 3 and Al 2 O 3 were used as crystal atomic ratios, Sr: Pr: Gd: Al = 1: 0.01: 0.9.
A mixture prepared so as to have a volume ratio of 9: 1 was put in an outer crucible, and Sr 2 O 3 , Gd 2 O 3 , and Al 2 O 3 were added in an atomic ratio Sr:
A mixture prepared to have a ratio of Gd: AL = 1: 1: 1 was placed in an inner crucible and melted at about 1800 ° C. in a He gas atmosphere containing 1 vol% oxygen, and then the same procedure as in Example 1 was performed. Crystals were obtained.

【0024】得られた結晶は元素分析の結果結晶断面の
中心から約100μmの円状領域にPr3+が存在してい
ることを確認した。吸収、発光については実施例1とほ
ぼ同様なスペクトルが得られた。
As a result of elemental analysis, it was confirmed that Pr 3+ was present in a circular region approximately 100 μm from the center of the crystal cross section of the obtained crystal. With respect to absorption and emission, almost the same spectra as in Example 1 were obtained.

【0025】実施例4 CaCO3、Pr611、La23、Al23を導波結晶
部の結晶が原子比、Ca:Pr:La:Al=1:0.
01:0.99:1の比になるように調製した混合物を
外るつぼに入れ、CaCO3、La23、Al23を原
子比、Ca:La:Al=1:1:1の比になるように
調製した混合物を内るつぼに入れ、1vol%の水素を
含むAr雰囲気下、約1820℃で溶融し、実施例1と
同様にして結晶を得た。
Example 4 CaCO 3 , Pr 6 O 11 , La 2 O 3 and Al 2 O 3 were crystallographically in an atomic ratio of Ca: Pr: La: Al = 1: 0.
A mixture prepared to have a ratio of 01: 0.99: 1 was placed in an outer crucible, and CaCO 3 , La 2 O 3 , and Al 2 O 3 were mixed at an atomic ratio of Ca: La: Al = 1: 1: 1. The mixture prepared to have a ratio was put in an inner crucible and melted at about 1820 ° C. in an Ar atmosphere containing 1 vol% hydrogen to obtain crystals in the same manner as in Example 1.

【0026】得られた結晶は元素分析の結果、中心軸か
ら約50μm内でPr3+が分布した複合構造を持つ結晶
であった。結晶中心部の吸収、発光スペクトルについて
は実施例2とほぼ同様であった。
As a result of elemental analysis, the obtained crystal was a crystal having a composite structure in which Pr 3+ was distributed within about 50 μm from the central axis. The absorption and emission spectra of the crystal center were almost the same as in Example 2.

【0027】実施例5 CaCO3、Pr611、Y23、Al23を、結晶の原
子比、Ca:Pr::Y:Al=1:0.01:0.9
9:1の量比になるように調製した混合物を外るつぼに
入れ、CaCO3、Y23、Al23を原子比、Ca:
Y:Al=1:1:1の比になるように調製した混合物
を内るつぼに入れ、1vol%の水素を含んだArガス
雰囲気下、約1820℃で溶融し、実施例1と同様にし
て結晶を得た。
Example 5 CaCO 3 , Pr 6 O 11 , Y 2 O 3 and Al 2 O 3 were mixed at a crystal atomic ratio of Ca: Pr :: Y: Al = 1: 0.01: 0.9.
A mixture prepared so as to have a volume ratio of 9: 1 was put into an outer crucible, and CaCO 3 , Y 2 O 3 , and Al 2 O 3 were mixed at an atomic ratio of Ca:
A mixture prepared to have a ratio of Y: Al = 1: 1: 1 was placed in an inner crucible and melted at about 1820 ° C. in an Ar gas atmosphere containing 1 vol% hydrogen, and then the same procedure as in Example 1 was performed. Crystals were obtained.

【0028】得られた結晶は元素分析の結果、中心軸か
ら約200μmの円内でPr3+が分布した複合構造を持
つ結晶であることを確認した。結晶中心部の導波部の吸
収、発光スペクトルは実施例1のものに比べ僅かに短波
長側にシフトしているスペクトルが得られた。
As a result of elemental analysis, it was confirmed that the obtained crystal was a crystal having a composite structure in which Pr 3+ was distributed within a circle of about 200 μm from the central axis. The absorption and emission spectra of the waveguide at the center of the crystal were slightly shifted to the shorter wavelength side than that of Example 1.

【0029】実施例6 CaCO3、Pr611、Gd23、Al23を結晶の原
子比、Ca:Pr:Gd:Al=1:0.01:0.9
9:1の量比になるように調製した混合物を外るつぼに
入れ、CaCO3、Gd23、Al23を原子比、C
a:Gd:AL=1:1:1の比になるように調製した
混合物を内るつぼに入れ、高周波誘導加熱により約18
60℃で溶融した。育成雰囲気は、水素と二酸化炭素ガ
スを体積比で500:1に調整したガスをHeガスに混
合し、酸素分圧10-8atmで、実施例1と同様にして
結晶を得た。
Example 6 CaCO 3 , Pr 6 O 11 , Gd 2 O 3 and Al 2 O 3 were used in an atomic ratio of crystals, Ca: Pr: Gd: Al = 1: 0.01: 0.9.
A mixture prepared to have a volume ratio of 9: 1 was put in an outer crucible, and CaCO 3 , Gd 2 O 3 , and Al 2 O 3 were added at an atomic ratio of C.
The mixture prepared so that the ratio of a: Gd: AL = 1: 1: 1 was put into an inner crucible and heated to about 18 by high frequency induction heating.
Melted at 60 ° C. As a growth atmosphere, a gas in which hydrogen and carbon dioxide gas were adjusted to a volume ratio of 500: 1 was mixed with He gas, and an oxygen partial pressure was 10 −8 atm, and crystals were obtained in the same manner as in Example 1.

【0030】得られた結晶はX線回折の結果から目的と
する結晶であることを確認した。又元素分析の結果結晶
断面の中心から約100μmの円状領域にPr3+が存在
していることを確認した。吸収測定によりPr3+イオン
の吸収スペクトルが確認された。発光は例えば488n
mのアルゴンレーザーで励起することによって確認し
た。レーザー発光はこの結晶を用い近赤外域でも得られ
る。
The obtained crystal was confirmed to be the target crystal from the result of X-ray diffraction. As a result of elemental analysis, it was confirmed that Pr 3+ was present in a circular region of about 100 μm from the center of the crystal cross section. The absorption spectrum confirmed the absorption spectrum of Pr 3+ ions. Light emission is, for example, 488n
It was confirmed by exciting with an argon laser of m. Laser emission can also be obtained in the near infrared region using this crystal.

【0031】本発明の結晶は、近赤外及び可視域でのレ
ーザー発振材料として有用であり、発振効率が高い。
The crystal of the present invention is useful as a laser oscillation material in the near infrared and visible regions, and has high oscillation efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の結晶の中心軸に垂直な断面を示す斜視
図。
FIG. 1 is a perspective view showing a cross section perpendicular to a central axis of a crystal of the present invention.

【図2】本発明の結晶を製造する装置の一例の断面図。FIG. 2 is a sectional view of an example of an apparatus for producing a crystal of the present invention.

【図3】本発明の実施例1で得た結晶のX線回折図。FIG. 3 is an X-ray diffraction diagram of the crystal obtained in Example 1 of the present invention.

【図4】本発明の実施例1で得た結晶のPr3+イオンの
吸収スペクトルを示す図。
FIG. 4 is a diagram showing an absorption spectrum of Pr 3+ ions of the crystal obtained in Example 1 of the present invention.

【図5】本発明の実施例1で得た結晶の発光スペクトル
を示す図。
FIG. 5 is a diagram showing an emission spectrum of the crystal obtained in Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1:本発明の結晶のレーザー活性イオンを含んだ組成部
分 2:本発明の結晶のもう一方の組成部分 11:外るつぼ 12:内るつぼ 13:内るつぼを固定するリング 14:外管 15:内管 16:一方の融液部 17:他方の融液部 18:複合構造のペロブスカイト型結晶 19:種結晶
1: Composition of the crystal of the present invention containing laser-active ions 2: The other composition of the crystal of the present invention 11: Outer crucible 12: Inner crucible 13: Ring fixing inner crucible 14: Outer tube 15: Inner Tube 16: One melt part 17: Another melt part 18: Perovskite type crystal of composite structure 19: Seed crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】結晶の中心軸に対して垂直に任意に切断し
た際の断面のほぼ中央部が、Pr3+を含む組成式APr
xLn1-xAlO4(A:Ca2+又はSr2+、Ln:
3+、Gd3+、La3+から選ばれる一種、x:0.00
1≦x≦0.2)で表される組成の導波路構造を有し、
その周囲が組成式ALnAlO4(A:Ca2+又はSr
2+、Ln:Y3+、Gd3+、La3+から選ばれる一種)で
表される組成からなる複合構造を持つペロブスカイト型
結晶。
1. A composition formula APr containing Pr 3+ in a substantially central portion of a cross section when arbitrarily cut perpendicular to the central axis of a crystal.
x Ln 1-x AlO 4 (A: Ca 2+ or Sr 2+ , Ln:
One selected from Y 3+ , Gd 3+ and La 3+ , x: 0.00
1 ≦ x ≦ 0.2), and a waveguide structure having a composition represented by
Around the composition formula ALnAlO 4 (A: Ca 2+ or Sr
A perovskite type crystal having a composite structure having a composition represented by 2+ , Ln: Y 3+ , Gd 3+ , and La 3+ .
JP31113592A 1992-10-28 1992-10-28 Perovskite-type crystal having composite structure Pending JPH06135799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31113592A JPH06135799A (en) 1992-10-28 1992-10-28 Perovskite-type crystal having composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31113592A JPH06135799A (en) 1992-10-28 1992-10-28 Perovskite-type crystal having composite structure

Publications (1)

Publication Number Publication Date
JPH06135799A true JPH06135799A (en) 1994-05-17

Family

ID=18013552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31113592A Pending JPH06135799A (en) 1992-10-28 1992-10-28 Perovskite-type crystal having composite structure

Country Status (1)

Country Link
JP (1) JPH06135799A (en)

Similar Documents

Publication Publication Date Title
DE69104100T2 (en) Strontium and lanthanide mixed oxides and lasers of the single crystals of these oxides are used.
US5164041A (en) Method of growing rare earth doped orthosilicates(ln2-xrexsio5)
Qi et al. Potential laser gain media with the stoichiometric formula RETiNbO6
DE2456180C2 (en) Substituted beryllium lanthanate single crystal and its use
JPH06128090A (en) Perovskite type laser crystal
JPH06135799A (en) Perovskite-type crystal having composite structure
US5796762A (en) Room temperature stable color center laserLiF:F2 +** material and method of lasing
Ehrentraut et al. Epitaxial growth and spectroscopic investigation of BaSO4: Mn6+ layers
KR960000065B1 (en) Process for preparing barium titanate single crystals
JP3286680B2 (en) Laser crystal and manufacturing method thereof
JP3334182B2 (en) Laser crystal and manufacturing method thereof
JPH06350181A (en) Laser crystal and its manufacture
EP1640431A1 (en) Transition metal doped spinel type mgal sb 2 /sb o sb 4 /sb phosphor, laser apparatus including the same and process for producing the phosphor
US6051062A (en) Optical single crystal film, process for producing the same and optical element comprising the same
EP4083276A1 (en) Absorbing material based on samarium-doped garnet for suppression of amplified spontaneous emission of the active medium of solid-state laser, use of this material, method of its production and monolithic element containing this absorbing material
Deshazer et al. Tunable titanium doped sapphire fiber laser
JP2833920B2 (en) Method for producing barium titanate single crystal
JPH042558B2 (en)
US20060243197A1 (en) Transition metal doped spinel type mgal2o4 fluorescent material and laser apparatus using, and method of making, such fluorescent material
JPH06314838A (en) Laser crystal and manufacture thereof
JPH0692721A (en) Laser crystal and its production
JPH06350180A (en) Laser crystal and its manufacture
JP3001067B2 (en) Barium titanate single crystal
JPH0586365A (en) Perovskite-type luminescent crystal and its production
JPH06350182A (en) Perovskite laser crystal and its manufacture