JPH0586365A - Perovskite-type luminescent crystal and its production - Google Patents

Perovskite-type luminescent crystal and its production

Info

Publication number
JPH0586365A
JPH0586365A JP27185691A JP27185691A JPH0586365A JP H0586365 A JPH0586365 A JP H0586365A JP 27185691 A JP27185691 A JP 27185691A JP 27185691 A JP27185691 A JP 27185691A JP H0586365 A JPH0586365 A JP H0586365A
Authority
JP
Japan
Prior art keywords
oxide
crystal
ions
earth metal
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27185691A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kodama
展宏 小玉
Yuka Naitou
由香 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP27185691A priority Critical patent/JPH0586365A/en
Publication of JPH0586365A publication Critical patent/JPH0586365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain the subject crystal excellent in luminescent intensity, etc., by mixing a carbonate of an alkaline earth metal ion with two specified oxides of rare earth metal ions and an oxide of aluminum in a specified mixing ratio, melting the resulting mixture, and solidifying the melt. CONSTITUTION:A carbonate or oxide (A) of an alkaline earth metal ion selected between Ca<2+> and Sr<2+> (e.g. CaCO3), an oxide (B) of a rare earth metal ion selected between Tm<3+> and Pr<3+> (e.g. Tm2O3), an oxide (C) of a rare earth metal ion selected from among Y<3+>, Gd<3+> and La<3+> (e.g. Y2O3), and an oxide (D) of aluminum are mixed together in an atomic ratio, ions of component A/ions of component B/ions of component C/ions of component D, of 1:x:(1-x):1 (wherein 0.001<=x<=0.2). The resulting mixture is molten in an atmosphere of an inert gas or an oxidizing gas, and the melt is solidified to obtain a perovskite-type luminescent crystal of the formula (wherein A is Ca<2+> or Sr<2+>; B is Tm<3+> or Pr<3+>; and Ln is Y<3+>, Gd<3+> or La<3+>).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光材料として有用
で、光学用計測、光情報処理、光医療、光プロセッシン
グ等コヒーレント光を利用する光応用計測、光医療、光
プロセッシングの分野に於いて、発光材料、レーザー材
料、光増幅材料として有用なペロブスカイト型発光結晶
及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is useful as a light emitting material, and is in the fields of optical measurement, optical information processing, optical medical treatment, optical applied measurement using coherent light such as optical processing, optical medical treatment, and optical processing. , A perovskite type light emitting crystal useful as a light emitting material, a laser material and a light amplifying material, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、ABLn1−xAlO(A:
アルカリ土類イオン、B:発光イオン、Ln:希土類イ
オン)で表される結晶で、発光性を有するものとして
は、発光イオンとしてNd3+を用いたCaNd
0.050.95AlO(E.F.Kustov
et al、Phys.stat.sol.41,37
9(1977))、Nd3+を用いたCaNdGd
1−xAlO(Z.S.Appen et al、I
norg.Mater.(USSR)21,716(1
985))が知られている。
2. Description of the Related Art Conventionally, AB x Ln 1-x AlO 4 (A:
A crystal represented by an alkaline earth ion, B: a light emitting ion, and Ln: a rare earth ion, which has a light emitting property, is CaNd using Nd 3+ as a light emitting ion.
0.05 Y 0.95 AlO 4 (EF Kustv
et al, Phys. stat. sol. 41, 37
9 (1977)), CaNd x Gd using Nd 3+
1-x AlO 4 (ZS Appen et al, I
norg. Mater. (USSR) 21,716 (1
985)) is known.

【0003】しかし、上記結晶の内、CaNdLn
1−xAlO(Ln:Y3+、Gd3+)について
は、最も強い発光が1080nm近辺であり、440〜
550nm領域内での発光は弱い。
However, among the above crystals, CaNd x Ln
For 1-x AlO 4 (Ln: Y 3+ , Gd 3+ ), the strongest light emission is near 1080 nm, and 440 to 440 nm.
Light emission in the 550 nm region is weak.

【0004】[0004]

【発明が解決しようとする課題】本発明は、特に、44
0〜550又は600〜650nm領域内での発光の強
い発光材料、又、従来知られていない組成の結晶で、発
光材料として有用な希土類イオンを添加したペロブスカ
イト型結晶を提供することを目的とするものである。
The present invention is particularly applicable to 44
An object of the present invention is to provide a light emitting material having a strong light emission in the range of 0 to 550 or 600 to 650 nm, and a perovskite type crystal having a composition not known so far, to which a rare earth ion is added, which is useful as a light emitting material. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
点の解決のため、従来のNdを添加したCaNdLn
1−xAlO(Ln:Y3+、Gd3+)とは、発光
イオンを異にすること、ホストペロブスカイト結晶の組
成を選択することに着目し種々の検討を行った結果本発
明を完成した。即ち本発明は、発光イオンとして、Tm
3+又はPr イオンを含んだ、組成式ABLn
1−xAlO(A:Ca2+又はSr 、B:Tm
3+又はPr3+、Ln:Y3+、Gd3+、La3+
から選ばれる一種、x:0.001≦x≦0.2)で表
されるペロブスカイト型発光結晶に関するものである。
次に本発明を更に詳細に説明する。
In order to solve the above problems, the inventors of the present invention have proposed CaNd x Ln containing CaNd x Ln containing conventional Nd.
As a result of various studies, the present invention has been completed as a result of focusing on the fact that 1-x AlO 4 (Ln: Y 3+ , Gd 3+ ) has different luminescent ions and selecting the composition of the host perovskite crystal. That is, the present invention uses Tm as the luminescent ion.
Composition formula AB x Ln containing 3+ or Pr 3 + ions
1-x AlO 4 (A: Ca 2+ or Sr 2 + , B: Tm
3+ or Pr 3+ , Ln: Y 3+ , Gd 3+ , La 3+
And a perovskite type light emitting crystal represented by x: 0.001 ≦ x ≦ 0.2).
Next, the present invention will be described in more detail.

【0006】本発明で発光イオンとして用いるTm3+
又はPr3+の量は上記した組成式のxで示すように
0.001≦x≦0.2であるが、この量が0.001
より小であると結晶の発光強度が弱く、0.2より大で
あると濃度消光を起こすので好ましくない。
Tm 3+ used as a luminescent ion in the present invention
Alternatively, the amount of Pr 3+ is 0.001 ≦ x ≦ 0.2 as indicated by x in the above composition formula, but this amount is 0.001
If it is smaller than 0.2, the emission intensity of the crystal is weak, and if it is larger than 0.2, concentration quenching occurs, which is not preferable.

【0007】次に本発明の製造方法について説明する。
本発明の結晶を得るのに用いる原料は、結晶を構成する
夫々の成分の酸化物等を用いる。即ち、組成式AB
−xAlOに於いて、アルカリ土類イオンA
(A:Ca2+又はSr2+)の炭酸塩又は酸化物、希
土類イオンB(B:Tm3+又はPr3+)の酸化物、
希土類イオンンLn(Ln:Y3+、Gd3+、La
3+から選ばれる一種)の酸化物、及びAlの酸化物を
用い、これらを原子比で、A:B:Ln:Al=1:
x:1−x:1(0.001≦x≦0.2)の量比で混
合し、この混合物を不活性ガス、例えば、N、Ar、
Heの雰囲気下で、又は、酸化性ガス、例えば酸素を含
んだガス雰囲気下で溶融する。ここで用いる酸素を含ん
だガス雰囲気は好ましくは酸素を0.1vol%以上含
んだ雰囲気である。
Next, the manufacturing method of the present invention will be described.
As the raw material used to obtain the crystal of the present invention, an oxide or the like of each component constituting the crystal is used. That is, the composition formula AB x L
In n 1 -x AlO 4 , the alkaline earth ion A
(A: Ca 2+ or Sr 2+ ) carbonate or oxide, rare earth ion B (B: Tm 3+ or Pr 3+ ) oxide,
Rare earth ion Ln (Ln: Y 3+ , Gd 3+ , La
1 ) oxide selected from 3+ ) and Al oxide are used, and these are in an atomic ratio of A: B: Ln: Al = 1:
x: 1-x: 1 (0.001 ≦ x ≦ 0.2) are mixed in a quantity ratio, and the mixture is mixed with an inert gas such as N 2 , Ar,
Melting is performed in an atmosphere of He or in a gas atmosphere containing an oxidizing gas such as oxygen. The oxygen-containing gas atmosphere used here is preferably an atmosphere containing 0.1 vol% or more of oxygen.

【0008】又、還元性雰囲気でこれを行うと、得られ
る結晶に酸素欠陥が生じ、これがカラーセンターとなり
発光材料としての品質の低下をもたらす。更に、発光イ
オンの価数が2価となる場合があり、発光を阻害する原
因となる。
Further, when this is performed in a reducing atmosphere, oxygen defects are generated in the obtained crystal, which serves as a color center and deteriorates the quality as a light emitting material. Further, the valence of the luminescent ion may be divalent, which may cause the luminescence to be inhibited.

【0009】特に酸素を0.1vol%以上含んだ雰囲
気では、結晶のカラーセンターの発生が非常に少なく、
高品質な結晶が得られる。
Particularly in an atmosphere containing 0.1 vol% or more of oxygen, the generation of crystal color centers is very small,
High quality crystals are obtained.

【0010】本発明の製造方法での溶融温度は1600
〜1850℃で、フローティングゾーン法、チョコラル
スキー法、ブリッジマン法等の方法で溶融固化して得
る。
The melting temperature in the manufacturing method of the present invention is 1600.
It is obtained by melting and solidifying at ˜1850 ° C. by a floating zone method, Czochralski method, Bridgman method, or the like.

【0011】[0011]

【実施例】次に本発明を実施例により更に詳細に説明す
る。
EXAMPLES The present invention will now be described in more detail by way of examples.

【0012】[0012]

【実施例1】CaCO、Tm、Y、Al
を、Ca:Tm:Y:Al=1:0.01:0.
99:1となるように調製して混合した混合物を、イリ
ジウムルツボに入れて加熱し、1vol%の酸素を含む
Arガス雰囲気下、結晶の回転数を10rpm、引上げ
速度を1mm/hで、チョコラルスキー法により、直径
20mm、長さ50mmの単結晶を得た。
Example 1 CaCO 3 , Tm 2 O 3 , Y 2 O 3 and Al
2 O 3 , Ca: Tm: Y: Al = 1: 0.01: 0.
The mixture prepared and mixed so as to have a ratio of 99: 1 was placed in an iridium crucible and heated, and in an Ar gas atmosphere containing 1 vol% oxygen, the rotation speed of the crystal was 10 rpm, the pulling rate was 1 mm / h, and the chocolate A single crystal having a diameter of 20 mm and a length of 50 mm was obtained by the Rusky method.

【0013】得られた結晶のX線回折の結果を図1に示
す。X線の回折結から、得られた結晶はペロブスカイト
型単相結晶で、格子定数はa=3.655A、c=1
1.012Aであった。又、元素分析の結果、CaTm
0.0090.991AlOの組成であった。又こ
の結晶は、可視域では440〜500nmの領域で強い
発光が見られた。発光スペクトルを図2(図中1)に示
す。
The result of X-ray diffraction of the obtained crystal is shown in FIG. From the X-ray diffraction pattern, the obtained crystal was a perovskite-type single-phase crystal, and the lattice constant was a = 3.655A, c = 1.
It was 1.012A. In addition, as a result of elemental analysis, CaTm
The composition was 0.009 Y 0.991 AlO 4 . Further, this crystal showed strong light emission in the visible region of 440 to 500 nm. The emission spectrum is shown in FIG. 2 (1 in the figure).

【0014】[0014]

【実施例2】CaCO、Tm、Gd、A
を、Ca:Tm:Gd:Al=1:0.01:
0.99:1となるように調製して混合した混合物を、
イリジウムルツボに入れて加熱し、1vol%の酸素を
含むArガス雰囲気下、結晶の回転数を8rpm、引上
げ速度を1mm/hで、チョコラルスキー法により単結
晶を得た。得られた結晶のX線回折(図3)の結果、実
施例1と同様に単相結晶であることを確認した。この結
晶の励起及び発光スペクトルは実施例1で得た結晶と類
似していた。発光スペクトルを図2(図中2)に示す。
Example 2 CaCO 3 , Tm 2 O 3 , Gd 2 O 3 and A
l 2 O 3 was added to Ca: Tm: Gd: Al = 1: 0.01:
The mixture prepared and mixed so that it becomes 0.99: 1,
A single crystal was obtained by the Czochralski method in an iridium crucible and heated, and in an Ar gas atmosphere containing 1 vol% oxygen, the crystal rotation speed was 8 rpm, and the pulling rate was 1 mm / h. As a result of X-ray diffraction (FIG. 3) of the obtained crystal, it was confirmed to be a single-phase crystal as in Example 1. The excitation and emission spectra of this crystal were similar to those of the crystal obtained in Example 1. The emission spectrum is shown in FIG. 2 (2 in the figure).

【0015】[0015]

【実施例3】SrCO、Tm、Gd
Alを、Sr:Tm:Gd:Al=1:0.0
2:0.98:1となるように調製して混合した混合物
を、実施例1と同様の方法で結晶化した。得られた結晶
のX線回折の結果、単相であることを確認した。この結
晶の発光スペクトルは実施例1で得た結晶と類似してお
り、450〜480nm付近で発光が見られた。
Example 3 Sr 2 CO 3 , Tm 2 O 3 , Gd 2 O 3 ,
Al 2 O 3 was added to Sr: Tm: Gd: Al = 1: 0.0
The mixture prepared and mixed at 2: 0.98: 1 was crystallized in the same manner as in Example 1. As a result of X-ray diffraction of the obtained crystal, it was confirmed to be a single phase. The emission spectrum of this crystal was similar to that of the crystal obtained in Example 1, and emission was observed at around 450 to 480 nm.

【0016】[0016]

【実施例4】CaCO、Pr、Gd、A
を、Ca:Pr:Gd:Al=1:0.01:
0.99:1となるように調製して混合した混合物を、
実施例1と同様の方法で結晶化した。得られた結晶のX
線回折の結果、単相であることを確認した。この結晶の
発光スペクトルを測定した結果、480〜510nm、
600〜650nm付近で発光が見られた。
Example 4 CaCO 3 , Pr 2 O 3 , Gd 2 O 3 and A
l 2 O 3 was added to Ca: Pr: Gd: Al = 1: 0.01:
The mixture prepared and mixed so that it becomes 0.99: 1,
Crystallization was carried out in the same manner as in Example 1. X of the obtained crystal
As a result of line diffraction, it was confirmed to be a single phase. As a result of measuring the emission spectrum of this crystal, 480-510 nm,
Light emission was observed in the vicinity of 600 to 650 nm.

【0017】[0017]

【実施例5】SrCO、Pr、Gd
Alを、Sr:Pr:Gd:Al=1:0.0
2:0.98:1となるように調製して混合した混合物
を、実施例1と同様の雰囲気下で、結晶の回転数を15
rpm、引上げ速度を1mm/hで、チョコラルスキー
法により結晶を得た。得られた結晶のX線回折の結果ペ
ロブスカイト型単相結晶であることが確認された。この
結晶の発光スペクトルを測定した結果、実施例4で得た
ものと類似しており、480〜510nm、620〜6
50nm付近で発光が見られた。
Example 5 Sr 2 CO 3 , Pr 2 O 3 , Gd 2 O 3 ,
Al 2 O 3 was added to Sr: Pr: Gd: Al = 1: 0.0
The mixture was prepared and mixed so as to have a ratio of 2: 0.98: 1, and the number of rotations of the crystal was 15 in the same atmosphere as in Example 1.
Crystals were obtained by the Czochralski method at rpm and a pulling rate of 1 mm / h. As a result of X-ray diffraction of the obtained crystal, it was confirmed to be a perovskite type single phase crystal. As a result of measuring the emission spectrum of this crystal, it was similar to that obtained in Example 4, and it was found that 480-510 nm, 620-6.
Light emission was observed near 50 nm.

【0018】[0018]

【発明の効果】本発明の発光結晶は発光強度が強く、光
学機器類の発光材料として有用である。
The luminescent crystal of the present invention has a high luminescence intensity and is useful as a luminescent material for optical devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で得た発光結晶のX線回折図FIG. 1 is an X-ray diffraction diagram of a light emitting crystal obtained in Example 1 of the present invention.

【図2】本発明の実施例1、2で得た発光結晶の発光ス
ペクトルを示す図
FIG. 2 is a diagram showing an emission spectrum of the light emitting crystals obtained in Examples 1 and 2 of the present invention.

【図3】本発明の実施例2で得た発光結晶のX線回折図FIG. 3 is an X-ray diffraction diagram of the light emitting crystal obtained in Example 2 of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】発光イオンとして、Tm3+又はPr3+
イオンを含んだ、組成式ABLn1−xAlO
(A:Ca2+又はSr2+、B:Tm3+又はPr
3+、Ln:Y3+、Gd3+、La3+から選ばれる
一種、x:0.01≦x0.2)で表されるペロブスカ
イト型発光結晶。
1. Tm 3+ or Pr 3+ as luminescent ions
Composition formula AB x Ln 1-x AlO containing ions
4 (A: Ca 2+ or Sr 2+ , B: Tm 3+ or Pr
3+ , Ln: Y 3+ , a kind selected from Gd 3+ and La 3+ , x: 0.01 ≦ x0.2), a perovskite type light emitting crystal represented by the formula:
【請求項2】アルカリ土類イオンA(A:Ca2+又は
Sr2+)の炭酸塩又は酸化物、希土類イオンB(B:
Tm3+又はPr3+)の酸化物、希土類イオンンLn
(Ln:Y3+、Gd3+、La3+から選ばれる一
種)の酸化物、及びAlの酸化物を、A:B:Ln:A
l(原子比)=1:x:1−x:1の量比で混合し、不
活性ガス又は酸化性ガス雰囲気下で溶融し固化すること
を特徴とするペロブスカイト型発光結晶の製造方法。
2. Alkaline earth ion A (A: Ca 2+ or Sr 2+ ) carbonate or oxide, rare earth ion B (B:
Tm 3+ or Pr 3+ ) oxide, rare earth ion Ln
An oxide of (Ln: Y 3+ , a kind selected from Gd 3+ , La 3+ ) and an oxide of Al are A: B: Ln: A.
A method for producing a perovskite type luminescent crystal, which comprises mixing in an amount ratio of l (atomic ratio) = 1: x: 1-x: 1 and melting and solidifying in an inert gas or oxidizing gas atmosphere.
【請求項3】不活性ガスとしてN、Ar、Heを用い
る請求項2記載の製造方法。
3. The method according to claim 2 , wherein N 2 , Ar or He is used as the inert gas.
【請求項4】酸化性ガスとして0.1vol%以上の酸
素を含んだガスをを用いる請求項2又は3記載の製造方
法。
4. The method according to claim 2, wherein a gas containing 0.1 vol% or more oxygen is used as the oxidizing gas.
JP27185691A 1991-09-25 1991-09-25 Perovskite-type luminescent crystal and its production Pending JPH0586365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27185691A JPH0586365A (en) 1991-09-25 1991-09-25 Perovskite-type luminescent crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27185691A JPH0586365A (en) 1991-09-25 1991-09-25 Perovskite-type luminescent crystal and its production

Publications (1)

Publication Number Publication Date
JPH0586365A true JPH0586365A (en) 1993-04-06

Family

ID=17505840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27185691A Pending JPH0586365A (en) 1991-09-25 1991-09-25 Perovskite-type luminescent crystal and its production

Country Status (1)

Country Link
JP (1) JPH0586365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559506A (en) * 2018-04-24 2018-09-21 长江大学 A kind of blue emitting material and its luminescent method based on ultraviolet excitation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559506A (en) * 2018-04-24 2018-09-21 长江大学 A kind of blue emitting material and its luminescent method based on ultraviolet excitation

Similar Documents

Publication Publication Date Title
Jouini et al. Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel
JPS62293791A (en) Lanthanide-magnesium mixed galliumate and laser made of single crystal of the galliumate
US5998313A (en) Cesium-lithium borate crystal
JPH0586365A (en) Perovskite-type luminescent crystal and its production
JPH0586367A (en) Erbium-containing perovskite-type luminescent crystal and its production
JP3301036B2 (en) Glass composition and method for producing the same
JP3334182B2 (en) Laser crystal and manufacturing method thereof
JP5984058B2 (en) Method for producing lithium tantalate single crystal and lithium tantalate single crystal
JP3286680B2 (en) Laser crystal and manufacturing method thereof
Weller et al. Chemical and optical studies of samarium doped caf2 type single crystals
EP0786542B1 (en) Cesium-lithium borate crystal
KR960000065B1 (en) Process for preparing barium titanate single crystals
X Cheng et al. Growth and optical properties of NaY (WO4) 2: Eu crystals
JP2744604B2 (en) Cesium lithium borate crystal
JPH06350181A (en) Laser crystal and its manufacture
JPH0710694A (en) Terbium aluminate and its production
JPH05238897A (en) Rare earth vanadate single crystal
JPH0388800A (en) Oxide single crystal for laser
JPH01108124A (en) Titanium-added gadolinium scandium, aluminum garnet crystal and its production
JPH0692721A (en) Laser crystal and its production
Chen et al. Study of effects of F/Cl ratio on crystal growth and X-ray excited luminescence of PbFCl
JP2005531480A (en) Apatite ceramic pigment
JPH06128090A (en) Perovskite type laser crystal
JPH06314838A (en) Laser crystal and manufacture thereof
JPH0920599A (en) Terbium-containing luminescent material and its production