JPH06135793A - Double-layered ceramic crucible - Google Patents

Double-layered ceramic crucible

Info

Publication number
JPH06135793A
JPH06135793A JP4312900A JP31290092A JPH06135793A JP H06135793 A JPH06135793 A JP H06135793A JP 4312900 A JP4312900 A JP 4312900A JP 31290092 A JP31290092 A JP 31290092A JP H06135793 A JPH06135793 A JP H06135793A
Authority
JP
Japan
Prior art keywords
crucible
layer
heat absorbing
heat absorption
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4312900A
Other languages
Japanese (ja)
Other versions
JP2763239B2 (en
Inventor
Atsuo Kawada
敦雄 川田
Akira Sato
佐藤  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP31290092A priority Critical patent/JP2763239B2/en
Publication of JPH06135793A publication Critical patent/JPH06135793A/en
Application granted granted Critical
Publication of JP2763239B2 publication Critical patent/JP2763239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a double-layered ceramic crucible having a long service life because the heat absorbing layer made of pyrolytic graphite does not peel off the substrate of the crucible or the coating layer made of electric insulating ceramics does not peel off the heat absorbing layer even when the crucible is repeatedly heated and cooled. CONSTITUTION:When a heat absorbing layer made of pyrolytic graphite is joined to the surface of the substrate of a crucible made of pyrolytic boron nitride and a coating layer made of electric insulating ceramics is formed on the heat absorbing layer to obtain a double-layered ceramic crucible, the surface roughness Rmax of both the substrate of the crucible and the heat absorbing layer is regulated to >=5mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複層セラミックスるつ
ぼ、特には化合物半導体の分子線エピタキシ−用に好適
とされる複層セラミックスるつぼに関するものである。
FIELD OF THE INVENTION The present invention relates to a multilayer ceramic crucible, and more particularly to a multilayer ceramic crucible suitable for molecular beam epitaxy of compound semiconductors.

【0002】[0002]

【従来の技術】従来、化合物半導体の分子線エピタキシ
−用に使用される蒸発源るつぼとしては、熱分解窒化ほ
う素などの高耐熱性セラミックスからなるるつぼが用い
られてきており、これについてはこの熱分解窒化ほう素
からなるるつぼ基材上に熱吸収率の高い熱分解グラファ
イトからなる熱吸収層を設け、これに電気絶縁性セラミ
ックスを被覆してなる複層セラミックスるつぼも開発さ
れている。
2. Description of the Related Art Conventionally, as an evaporation source crucible used for molecular beam epitaxy of a compound semiconductor, a crucible made of highly heat-resistant ceramics such as pyrolytic boron nitride has been used. A multi-layer ceramic crucible has also been developed in which a heat absorbing layer made of pyrolytic graphite having a high heat absorption rate is provided on a crucible substrate made of pyrolytic boron nitride, and the heat absorbing layer is coated with an electrically insulating ceramic.

【0003】[0003]

【発明が解決しようとする課題】しかし、この熱分解窒
化ほう素などからなる従来のるつぼでは、この熱分解窒
化ほう素が熱吸収率の低いものであるために、これを蒸
発源るつぼとして用いると開口部付近の温度が相対的に
低いものとなり、蒸発が不安定になるという欠点があ
る。そのため、これについてはこの低温部に熱分解グラ
ファイトなどからなる熱吸収層を設けて温度を均一化す
ることも行われているが、これは前記した電気絶縁性セ
ラミックスからなる被覆層とこの熱吸収層がるつぼ基材
とを一体化しているために、それらの熱膨張の差によっ
て温度が変化するとその接合部に熱応力が発生し、この
被覆層や熱吸収層がるつぼ基材から剥離してしまうとい
う欠点がある。
However, in a conventional crucible made of this pyrolytic boron nitride, etc., this pyrolytic boron nitride has a low heat absorption rate, so that it is used as an evaporation source crucible. The temperature around the opening is relatively low, and the evaporation becomes unstable. Therefore, for this, a heat absorption layer made of pyrolytic graphite or the like is provided in the low temperature part to make the temperature uniform. This is because the coating layer made of the electrically insulating ceramics and the heat absorption layer are formed. Since the layer is integrated with the crucible base material, when the temperature changes due to the difference in their thermal expansion, thermal stress is generated at the joint, and this coating layer or heat absorption layer separates from the crucible base material. There is a drawback that it ends up.

【0004】[0004]

【課題を解決するための手段】本発明はこのような不
利、欠点を解決した複層セラミックスるつぼに関するも
のであり、これは熱分解窒化ほう素からなるるつぼ基材
の表面に熱分解グラファイトからなる熱吸収層を接合
し、その上に電気絶縁性セラミックスからなる被覆層を
設けてなる複層セラミックスるつぼにおいて、該るつぼ
基材と該熱吸収層の表面粗さRmaxをともに5μm 以上の
ものとしてなることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a multi-layer ceramics crucible which solves the above disadvantages and drawbacks, which comprises a pyrolytic graphite on the surface of a crucible substrate made of pyrolytic boron nitride. In a multi-layer ceramic crucible in which a heat absorbing layer is joined and a coating layer made of electrically insulating ceramics is provided thereon, the surface roughness R max of the crucible base material and the heat absorbing layer are both 5 μm or more. It is characterized by becoming.

【0005】すなわち、発明者らは従来公知の複層セラ
ミックスるつぼの欠点を解決した複層セラミックスるつ
ぼを開発すべく種々検討した結果、これについては熱分
解窒化ほう素からなるるつぼ基材の表面に熱吸収層とし
て熱分解グラファイト層を接合し、この上に電気絶縁性
セラミックスを被覆してなる公知の複層セラミックスる
つぼおいて、このるつぼ基材と熱吸収層とをその表面粗
さRmaxが5μm 以上のものとすればこの被覆層や熱吸収
層がるつぼ基材から剥離することがなくなるということ
を見出すと共に、これによればこのものを化合物半導体
の分子線エピタキシ−用に使用しても不純物による汚染
が生ずることがなくなるということを確認して本発明を
完成させた。以下にこれをさらに詳述する。
That is, as a result of various investigations by the inventors to develop a multi-layer ceramic crucible which solves the drawbacks of the conventionally known multi-layer ceramic crucible, it was found on the surface of a crucible substrate made of pyrolytic boron nitride. A pyrolytic graphite layer is bonded as a heat absorption layer, and in a known multilayer ceramic crucible formed by coating an electrically insulating ceramics thereon, the crucible base material and the heat absorption layer have a surface roughness R max. It was found that if the thickness is 5 μm or more, the coating layer and the heat absorption layer will not be peeled off from the crucible substrate, and according to this, even when this is used for molecular beam epitaxy of compound semiconductors. The present invention has been completed by confirming that contamination with impurities will not occur. This will be described in more detail below.

【0006】[0006]

【作用】本発明は複層セラミックスるつぼに関するもの
で、これは熱分解窒化ほう素からなるるつぼ基材の表面
に熱分解グラファイトからなる熱吸収層を接合し、その
上に電気絶縁性セラミックスからなる被覆層を設けてな
る複層セラミックスるつぼにおいて、該るつぼ基材と該
熱吸収層の表面粗さRmaxをともに5μm 以上のものとし
てなることを特徴とするものであるが、このものはその
被覆層と熱吸収層がるつぼ基材から剥離することがなく
なるので、これは長寿命なものとなり、このものは化合
物半導体の分子線エピタキシ−法に好適なものになると
いう有利性をもつものになる。
The present invention relates to a multi-layer ceramic crucible, which comprises a crucible substrate made of pyrolytic boron nitride, a heat absorbing layer made of pyrolytic graphite bonded to the surface of the crucible substrate, and an electrically insulating ceramic formed thereon. A multilayer ceramic crucible provided with a coating layer is characterized in that both the surface roughness R max of the crucible base material and the heat absorption layer are 5 μm or more. Since the layer and the heat-absorbing layer do not separate from the crucible substrate, it has a long life, which has the advantage of being suitable for molecular beam epitaxy of compound semiconductors. .

【0007】本発明の複層セラミックスるつぼは熱分解
窒化ほう素からなるるつぼ基材の表面に熱分解グラファ
イトからなる熱吸収層を接合し、その上に電気絶縁性セ
ラミックスからなる被覆層を設けてなるものであること
から、これ自体の構成は公知のものとされる。しかし、
この複層セラミックスるつぼについてはこのるつぼ基材
と熱吸収層の表面粗さが5μm 以下であると、このもの
はるつぼ基材と熱吸収層および被複層が一体化している
ために、使用時から1,100 ℃までの昇温、降温をくり返
しているとその熱膨張係数の差によって温度が変化した
ときにこの接合部に熱応力が発生して、この熱吸収層や
被覆層がるつぼ基材から剥離するということが見出され
た。
In the multi-layer ceramic crucible of the present invention, a heat absorbing layer made of pyrolytic graphite is bonded to the surface of a crucible base material made of pyrolytic boron nitride, and a coating layer made of electrically insulating ceramics is provided thereon. Therefore, the structure itself is known. But,
Regarding this multi-layer ceramic crucible, when the surface roughness of the crucible base material and the heat absorption layer is 5 μm or less, the crucible base material, the heat absorption layer and the layer to be coated are integrated. If the temperature rises and falls from 1 to 1,100 ° C repeatedly, thermal stress is generated in this joint when the temperature changes due to the difference in the coefficient of thermal expansion, and this heat absorption layer or coating layer is removed from the crucible base material. It was found to peel off.

【0008】しかるに、本発明にしたがってこのるつぼ
基材と熱吸収層の表面粗さRmaxを5μm 以上のものとす
ると、その上に接合される熱吸収層または被覆層との物
理的強度がアンカ−効果によって増大するために、これ
によれば使用時に常温から1,100 ℃までの昇温、降温を
くり返して温度が変化たときでもこの接合部での熱吸収
層、被覆層の剥離は起こらず、これは寿命の長いものに
なるという有利性が与えられる。
However, when the surface roughness R max of the crucible base material and the heat absorption layer is set to 5 μm or more according to the present invention, the physical strength of the heat absorption layer or the coating layer bonded thereon is anchored. -In order to increase by the effect, according to this, peeling of the heat absorption layer and the coating layer does not occur at this joint even when the temperature changes from room temperature to 1,100 ° C by repeatedly raising and lowering the temperature. This gives the advantage of a long life.

【0009】本発明の複層セラミックスるつぼは前記し
たようにるつぼ基材、熱吸収層および被覆層とからなる
ものとされるが、このるつぼ基材は電気絶縁性セラミッ
クからなるもので、これがIII.V 族化合物半導体プロセ
スに使用されるものであることから、これとは同族化合
物である窒化ほう素からなるものとされるが、このもの
は例えばアンモニアと三塩化ほう素とを1,800 〜2,100
℃、10ト−ルの条件下で反応させたものとすればよい。
The multi-layer ceramic crucible of the present invention is composed of the crucible base material, the heat absorption layer and the coating layer as described above, and the crucible base material is composed of the electrically insulating ceramic. Since it is used in Group V compound semiconductor processes, it is said to consist of a homologous compound, boron nitride, which contains, for example, ammonia and boron trichloride from 1,800 to 2,100.
The reaction may be carried out under the conditions of ° C and 10 torr.

【0010】つぎにこのるつぼ基材と接合される熱吸収
剤は窒化ほう素との付着性が比較的よいということから
熱分解グラファイトからなるものとされるが、このもの
は例えばメタンガスを1,900 〜2,100 ℃、5ト−ルとい
う条件下で熱分解させることによって作ったものとすれ
ばよい。
Next, the heat absorbent to be joined to the crucible base material is made of pyrolytic graphite because of its relatively good adhesion to boron nitride, and this is made of, for example, methane gas from 1,900 to It may be prepared by thermal decomposition under the conditions of 2,100 ° C. and 5 torr.

【0011】また、この熱分解グラファイトの上に被覆
される被覆剤は電気絶縁性セラミックスからなるものと
されるが、これはこのるつぼ基材が熱分解窒化ほう素か
らなるものであることから、窒化ほう素からなるものと
することがよく、したがってこれはるつぼ基材としての
熱分解窒化ほう素と同様にアンモニアと三塩化ほう素と
を1,800 〜2,100 ℃、5〜10ト−ルという条件下で熱分
解して作ったものとすればよい。
Further, the coating agent coated on the pyrolytic graphite is made of electrically insulating ceramics, since this crucible base material is made of pyrolytic boron nitride. It is preferably made of boron nitride. Therefore, this is similar to the pyrolytic boron nitride used as the crucible base material, in the condition of ammonia and boron trichloride at 1,800 to 2,100 ° C and 5 to 10 Torr. It can be made by thermal decomposition.

【0012】このようにして作られたるつぼ基材として
の熱分解窒化ほう素、熱分解グラファイトからなる熱吸
収層は上記したようにその表面粗さRmaxが5μm 以上の
ものとされるが、このるつぼ基材と熱吸収層の表面粗さ
はこれらをサンドブラスト処理すればよくこれによれば
その表面粗さRmaxを容易に5〜10μm のものとすること
ができる。
The heat absorbing layer made of pyrolytic boron nitride and pyrolytic graphite as the crucible substrate thus produced has a surface roughness R max of 5 μm or more as described above. The surface roughness of the crucible base material and the heat absorption layer may be sandblasted, and the surface roughness R max can be easily adjusted to 5 to 10 μm.

【0013】なお、このようにして作られた複層セラミ
ックスるつぼはそのるつぼ基材と熱吸収層の表面粗さが
5μm 以上のものとされているので、この熱吸収層と被
覆層がるつぼ基材から剥離することがなくなり、高い寿
命をもつものになるが、このものはこれを化合物半導体
の分子線エピタキシ−法に使用してもこの被覆層が窒化
ほう素とされているので、これがIV族元素で汚染される
ことはないし、このるつぼ基材、熱吸収層も化学気相蒸
着法で作られたもので、焼結法で作られたものに比べて
不純物を含んでいない高純度のものであるので、これは
これを半導体プロセスに使用しても半導体がこれらの不
純物によって汚染することはないという有利性が与えら
れる。
Since the multi-layer ceramic crucible thus produced has a surface roughness of the crucible base material and the heat absorption layer of 5 μm or more, the heat absorption layer and the coating layer are the crucible base. It does not come off from the material and has a long life, but even if this is used for the molecular beam epitaxy method of compound semiconductors, this coating layer is considered to be boron nitride. It is not contaminated with group elements, and this crucible base material and heat absorption layer are also made by chemical vapor deposition, and are of high purity with no impurities compared to those made by sintering. As such, it offers the advantage that its use in semiconductor processing does not contaminate the semiconductor with these impurities.

【0014】[0014]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1、比較例1 アンモニアと三塩化ほう素とを2,000 ℃、10ト−ルとい
う条件下で反応させて、直径80mm、 厚さ1mmの熱分解窒
化ほう素のるつぼを作ったのち、その表面をサンドブラ
スト処理して表面粗さRmaxが5μm のものとし、このる
つぼの表面でメタンガスを2,200 ℃、 5ト−ルという条
件下で熱分解させてここに厚さ30μm の熱分解グラファ
イトからなる熱吸収層を形成させ、この表面をサンドブ
ラスト処理してその表面粗さRmaxが5μm のものとし
た。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Example 1 and Comparative Example 1 Ammonia and boron trichloride were reacted under the conditions of 2,000 ° C. and 10 Torr to prepare a pyrolytic boron nitride crucible having a diameter of 80 mm and a thickness of 1 mm. The surface is sandblasted to have a surface roughness R max of 5 μm, and methane gas is pyrolyzed on the surface of this crucible under the conditions of 2,200 ° C. and 5 torr, and it is composed of pyrolyzed graphite with a thickness of 30 μm. A heat absorbing layer was formed and the surface was sandblasted to have a surface roughness R max of 5 μm.

【0015】ついで、この熱吸収層の上でアンモニアと
三塩化ほう素とを2,000 ℃、10ト−ルという条件下で反
応させて、ここに厚さ50μm の電気絶縁性セラミックス
としての熱分解窒化ほう素からなる被複層を形成させて
複層セラミックスるつぼを作った。このものは室温から
1,100 ℃まで100 回昇温、降温をくり返しても、るつぼ
基材と発熱層との接合部には剥離が発生せず、長い寿命
をもつものであり、これは化合物半導体としてのGaAsの
分子線エピタキシ−用に使用したところ、6ケ月間毎日
昇降温をくり返しても剥離は発生せず、安定した蒸発を
維持することができるという好結果を与えた。
Then, ammonia and boron trichloride are reacted on the heat absorption layer under the condition of 2,000 ° C. and 10 torr, and then, pyrolysis nitriding as a 50 μm-thick electrically insulating ceramic is carried out. A multilayer ceramic crucible was made by forming multiple layers of boron. This is from room temperature
Even if the temperature is raised and lowered 100 times up to 1,100 ° C, no peeling occurs at the junction between the crucible substrate and the heat generation layer, and it has a long life. This is due to the molecular beam epitaxy of GaAs as a compound semiconductor. -When it was used for the purpose, peeling did not occur even if the temperature was raised and lowered every day for 6 months, and it was possible to maintain stable evaporation.

【0016】しかし、比較のためにこのるつぼ基材およ
び熱吸収層の表面粗さRmaxを2μmとしたほかは実施例
1と全く同様に処理して複層セラミックるつぼを作り、
これについて同様の試験を行ったところ、このものは24
回の昇温、降温で接合部に剥離が発生した。
However, for comparison, a multilayer ceramic crucible was prepared by the same procedure as in Example 1 except that the surface roughness R max of the crucible base material and the heat absorption layer was 2 μm.
When a similar test was conducted on this,
Peeling occurred at the joint part after the temperature was raised and lowered once.

【0017】実施例2、比較例2 アンモニアと三塩化ほう素とを1,800 ℃、10ト−ルとい
う条件下で反応させて、直径50mm、 厚さ1mmの熱分解窒
化ほう素のるつぼをつくり,この表面をサンドブラスト
処理してその表面粗さRmaxを10μm としたのち、このる
つぼの表面でメタンガスを2,000 ℃、 10ト−ルという条
件下で熱分解させて、ここに厚さ50μmの熱分解グラフ
ァイトからなる熱吸収層を形成させ、この表面をサンド
ブラスト処理してこの表面粗さRmaxが8μm のものとし
た。
Example 2 and Comparative Example 2 Ammonia and boron trichloride were reacted under the conditions of 1,800 ° C. and 10 Torr to form a crucible of pyrolytic boron nitride having a diameter of 50 mm and a thickness of 1 mm. After sandblasting this surface to a surface roughness R max of 10 μm, methane gas was pyrolyzed on the surface of this crucible under the conditions of 2,000 ° C and 10 Torr, and a 50 μm-thick pyrolysis film was obtained. A heat absorption layer made of graphite was formed, and the surface was sandblasted to have a surface roughness R max of 8 μm.

【0018】ついで、この熱吸収層の上でアンモニアと
三塩化ほう素とを1,900 ℃、10ト−ルという条件下で反
応させて、ここに厚さ100 μm の電気絶縁性セラミック
スとしての熱分解窒化ほう素からなる被複層を形成させ
て複層セラミックスるつぼを作ったが、これは室温から
1,100 ℃まで100 回の昇温、降温をくり返してもるつぼ
基材と発熱層の接合部に剥離は発生しなかった。
Then, ammonia and boron trichloride were reacted on the heat absorption layer under the conditions of 1,900 ° C. and 10 Torr, and pyrolysis as an electrically insulating ceramic having a thickness of 100 μm was carried out. A multi-layer ceramic crucible was made by forming multiple layers of boron nitride.
No peeling occurred at the joint between the crucible base material and the heat generating layer even when the temperature was raised and lowered 100 times to 1,100 ° C.

【0019】しかし、比較のためにるつぼ基材と熱吸収
層の表面粗さRmaxをそれぞれ4μm、3μm としたほか
は実施例2と同様に処理して複層セラミックスるつぼを
作り、これについて同様の試験をしたところ、このもの
は18回の昇温降温で接合部に剥離が発生した。
However, for comparison, a multilayer ceramic crucible was prepared in the same manner as in Example 2 except that the surface roughnesses R max of the crucible base material and the heat absorbing layer were 4 μm and 3 μm, respectively. As a result of the test, the peeling of the joint occurred at the temperature rising / falling temperature of 18 times.

【0020】[0020]

【発明の効果】本発明は複層セラミックスるつぼに関す
るものであり、これは前記したように熱分解窒化ほう素
からなるるつぼ基材の表面に熱分解グラファイトからな
る熱吸収層と接合し、その上に電気絶縁性セラミックス
からなる被覆層を設けてなる積層セラミックスるつぼに
おいて、該るつぼ基材と該熱吸収層の表面粗さRmaxをと
もに5μm 以上のものとしてなることを特徴とするもの
であるが、このものはそのるつぼ基材と熱吸収層の表面
粗さが5μm 以上のものとされているのでこの上に接合
される熱吸収層または被覆層との物理的強度がアンカ−
効果により増大され、使用時に温度差が生じてもその接
合部に発生する熱応力がこの接合強度より小さいので、
この接合部で熱吸収層や被覆層が剥離することがなくな
って寿命の長いものとなるし、これはIV族元素などで汚
染されることもないので、これはIII-V 族化合物半導体
の分子線エピタキシ−法などに使用することができると
う有利性が与えられる。
The present invention relates to a multi-layer ceramic crucible, which, as described above, is bonded to the surface of a crucible substrate made of pyrolytic boron nitride with a heat absorption layer made of pyrolytic graphite, and In a multilayer ceramic crucible having a coating layer made of electrically insulating ceramics provided on the surface of the crucible base material and the heat absorption layer, the surface roughness R max is 5 μm or more. However, since the surface roughness of the crucible base material and the heat absorption layer is 5 μm or more, the physical strength of the heat absorption layer or the coating layer bonded onto the crucible base material is an anchor.
Due to the effect, the thermal stress generated in the joint is smaller than this joint strength even if a temperature difference occurs during use.
Since the heat absorption layer and the coating layer do not peel off at this joint and the life is long, and it is not contaminated by group IV elements, etc., this is the molecule of III-V group compound semiconductor. It offers the advantage that it can be used in line epitaxy methods and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱分解窒化ほう素からなるるつぼ基材の表
面に熱分解グラファイトからなる熱吸収層を接合し、そ
の上に電気絶縁性セラミックスからなる被覆層を設けて
なる複層セラミックスるつぼにおいて、該るつぼ基材と
該熱吸収層の表面粗さRmaxをともに5μm 以上のものと
してなることを特徴とする複層セラミックスるつぼ。
1. A multi-layer ceramic crucible in which a heat absorbing layer made of pyrolytic graphite is bonded to the surface of a crucible substrate made of pyrolytic boron nitride, and a coating layer made of electrically insulating ceramics is provided on the heat absorbing layer. A multi-layer ceramic crucible characterized in that the crucible base material and the heat absorption layer both have a surface roughness R max of 5 μm or more.
JP31290092A 1992-10-28 1992-10-28 Multi-layer ceramic crucible Expired - Fee Related JP2763239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31290092A JP2763239B2 (en) 1992-10-28 1992-10-28 Multi-layer ceramic crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31290092A JP2763239B2 (en) 1992-10-28 1992-10-28 Multi-layer ceramic crucible

Publications (2)

Publication Number Publication Date
JPH06135793A true JPH06135793A (en) 1994-05-17
JP2763239B2 JP2763239B2 (en) 1998-06-11

Family

ID=18034815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31290092A Expired - Fee Related JP2763239B2 (en) 1992-10-28 1992-10-28 Multi-layer ceramic crucible

Country Status (1)

Country Link
JP (1) JP2763239B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759416A3 (en) * 1995-08-22 1997-06-04 Shinetsu Chemical Co Vessel of pyrolytic boron nitride
JP2014118600A (en) * 2012-12-17 2014-06-30 Shin Etsu Chem Co Ltd Production method of pyrolytic boron nitride-coated carbonaceous substrate
CN108271381A (en) * 2016-03-04 2018-07-10 琳得科株式会社 Sheet for processing semiconductor
CN112410732A (en) * 2020-11-20 2021-02-26 湖南烁科晶磊半导体科技有限公司 In-situ pretreatment method for molecular beam epitaxy source material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465982B1 (en) * 2012-11-19 2014-11-28 한국수력원자력 주식회사 Metallic sector for glass melter and coating method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759416A3 (en) * 1995-08-22 1997-06-04 Shinetsu Chemical Co Vessel of pyrolytic boron nitride
US5759646A (en) * 1995-08-22 1998-06-02 Shin-Etsu Chemical Co., Ltd. Vessel of pyrolytic boron nitride
JP2014118600A (en) * 2012-12-17 2014-06-30 Shin Etsu Chem Co Ltd Production method of pyrolytic boron nitride-coated carbonaceous substrate
CN108271381A (en) * 2016-03-04 2018-07-10 琳得科株式会社 Sheet for processing semiconductor
CN112410732A (en) * 2020-11-20 2021-02-26 湖南烁科晶磊半导体科技有限公司 In-situ pretreatment method for molecular beam epitaxy source material
CN112410732B (en) * 2020-11-20 2022-08-26 湖南烁科晶磊半导体科技有限公司 In-situ pretreatment method for molecular beam epitaxy source material

Also Published As

Publication number Publication date
JP2763239B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
JP2749759B2 (en) Ceramic heater with electrostatic chuck
US5665260A (en) Ceramic electrostatic chuck with built-in heater
JP2004023024A (en) Heating device having electrostatic attraction function
US3986822A (en) Boron nitride crucible
JPH06135793A (en) Double-layered ceramic crucible
JP4498476B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JPH01293970A (en) Fitting and manufacture thereof and method of joining part
JPH10189452A (en) Thermal decomposition boron nitride crucible for electric beam epitaxy
JP2011100844A (en) Device having electrostatic chucking function and method of manufacturing the same
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JPH06135794A (en) Drouble-layered ceramic crucible
JP3057670B2 (en) Multilayer ceramic heater
JPH06263568A (en) Method for improving oxidation resistance of carbonaceous material
JPS6027699A (en) Preparation of single crystal film of silicon carbide
JP2006103997A (en) Method for manufacturing semiconductor crystal
JP2915750B2 (en) Ceramic heater with electrostatic chuck
JPS6045154B2 (en) fireproof material
JPH0798708B2 (en) Method for producing pyrolytic boron nitride coated article
JPH0310076A (en) Method for forming pyrolytic boron nitride film
JPH0789776A (en) Production of boron nitride coated carbon material
JP2948357B2 (en) Multilayer ceramic heater
JPH05194046A (en) Double-layer ceramic heater
JP2855458B2 (en) Processing material for semiconductor
JP3519744B2 (en) Multilayer ceramic heater
JPH06140132A (en) Layered ceramic heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees