JPH06124876A - Optical element and manufacture therefor - Google Patents

Optical element and manufacture therefor

Info

Publication number
JPH06124876A
JPH06124876A JP27284492A JP27284492A JPH06124876A JP H06124876 A JPH06124876 A JP H06124876A JP 27284492 A JP27284492 A JP 27284492A JP 27284492 A JP27284492 A JP 27284492A JP H06124876 A JPH06124876 A JP H06124876A
Authority
JP
Japan
Prior art keywords
optical element
multilayer film
thin film
substrate
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27284492A
Other languages
Japanese (ja)
Other versions
JP3240189B2 (en
Inventor
Hiroaki Oiizumi
博昭 老泉
Masaaki Ito
昌昭 伊東
Souichi Katagiri
創一 片桐
Takashi Soga
隆 曽我
Eiji Takeda
英次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27284492A priority Critical patent/JP3240189B2/en
Publication of JPH06124876A publication Critical patent/JPH06124876A/en
Application granted granted Critical
Publication of JP3240189B2 publication Critical patent/JP3240189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To fabricate an optical element such as a reflection type mask or the like which enables substrate recycling. CONSTITUTION:A thin film layer 119 is provided between a substrate 11 and a multi-layer film 22 in an optical element. Thus if a defect is found in the multi-layer film 22, the multi-layer film 22 and the thin film layer 19 are removed to re-use the expensive substrate 11. Since the thin film layer protects the substrate surface in removing the multi-layer film, the substrate can be recycled without losing super-smoothness of the substrate, thereby reducing a manufacturing cost in optical element fabrication.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学素子及び光学素子の
製造方法、更に詳しく言えば、真空紫外線又はX線の照
射により,像形成を行わせるために使用する光学素子の
構成及びその製造に係り,特に半導体のパタ−ン転写に
用いる縮小X線リソグラフィ用反射型マスクに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element and a method for manufacturing the optical element, and more particularly, to the construction of the optical element used for forming an image by irradiation with vacuum ultraviolet rays or X-rays and the manufacturing thereof. In particular, the present invention relates to a reflective mask for reduced X-ray lithography used for pattern transfer of semiconductors.

【0002】[0002]

【従来の技術】従来の反射型X線マスクは,文献イクス
テンデッド アブストラクツ オブジ 18 コンファ
レンス オン ソリッド ステイト デバイス アンド
マテリアル 1986年 第18頁−第20頁(Exte
nded Abstracts of the 18thConference on Solid Stat
e Devices and Material,1986,p17-p20.)に記載され
ているように,真空紫外線又はX線に対して非反射性の
基板1に直接付着した多層膜反射鏡(以下多層膜)2が
形成され,パタ−ンは反射の有無で形成される。例えば
図5(a)のように集束イオンビ−ム5によって多層膜反
射鏡2を変質して非反射部3を形成するものである。ま
た図5(b)のように多層膜2を除去して,非反射部3を
形成するものもある。ここで反射鏡やX線マスク等の光
学素子として使用する基板1には,高い反射率を得るた
めに粗さの無い超平滑基板が必要であり,一般には高価
となる。また,図5(c)のように超平滑基板1に直接付
着した多層膜2の上に所定の厚さ及び形を有する吸収体
パタ−ン35を形成し,非反射部とする反射型マスクの
例もある(公開特許公報 特開昭64−4021号)。
また,他の反射型マスクの例としては,図5(d)に示す
ように,反射型マスクの超平滑基板1の表面を予めエッ
チング除去し,凹凸構造34を作り,非反射部とする所
定のパタ−ンを形成した後,基板の表面に多層膜2を形
成し,凸構造部を反射部,凹構造部を非反射部とするも
のである(公開特許公報 特開平1−152725
号)。
2. Description of the Related Art A conventional reflection type X-ray mask is described in the document Extended Abstracts of Object 18 Conference on Solid State Device and Material 1986, pp. 18-20.
nded Abstracts of the 18th Conference on Solid Stat
e Devices and Material, 1986, p17-p20.), a multi-layered film mirror (hereinafter referred to as a multi-layered film) 2 directly attached to a substrate 1 that is non-reflective to vacuum ultraviolet rays or X-rays is formed. The pattern is formed with or without reflection. For example, as shown in FIG. 5A, the multi-layered film reflecting mirror 2 is altered by the focused ion beam 5 to form the non-reflecting portion 3. Further, as shown in FIG. 5 (b), there is also one in which the multilayer film 2 is removed to form the non-reflecting portion 3. Here, the substrate 1 used as an optical element such as a reflecting mirror or an X-ray mask needs an ultra-smooth substrate without roughness in order to obtain high reflectance, and is generally expensive. In addition, as shown in FIG. 5C, a reflective mask in which an absorber pattern 35 having a predetermined thickness and shape is formed on the multilayer film 2 directly attached to the ultra-smooth substrate 1 to form a non-reflective portion. (Japanese Patent Laid-Open Publication No. 64-4021).
Further, as another example of the reflection type mask, as shown in FIG. 5D, the surface of the ultra-smooth substrate 1 of the reflection type mask is removed by etching in advance to form a concavo-convex structure 34, and a predetermined non-reflection portion is formed. After the pattern is formed, the multilayer film 2 is formed on the surface of the substrate so that the convex structure portion serves as the reflecting portion and the concave structure portion serves as the non-reflecting portion (Japanese Patent Laid-Open No. 1-152725).
issue).

【0003】[0003]

【発明が解決しようとする課題】しかしながら,図5
(a),(b),(c)に示される従来知られている反射
型マスクはいずれも,超平滑基板1に直接付着した多層
膜2に所定のパタ−ンを形成している。パタ−ン中の欠
陥,特に多層膜の欠陥が存在すると,多層膜2を除去し
再生する必要があるが,多層膜は超平滑基板1に直接付
着しているため、超平滑基板1の表面が荒れを生じさせ
ずに超平滑基板から多層膜を除去するのが難しい。この
ため超平滑基板1の表面に荒れを生じ,良品の超平滑基
板1が不良品となり,高価な基板1が無駄となり,製造
のコストが高くなる問題があった。
However, as shown in FIG.
In all of the conventionally known reflection type masks shown in (a), (b) and (c), a predetermined pattern is formed on the multilayer film 2 directly attached to the ultra-smooth substrate 1. If there is a defect in the pattern, especially a defect of the multilayer film, it is necessary to remove and regenerate the multilayer film 2. However, since the multilayer film is directly attached to the ultra-smooth substrate 1, the surface of the ultra-smooth substrate 1 However, it is difficult to remove the multilayer film from the ultra-smooth substrate without causing roughness. As a result, the surface of the ultra-smooth substrate 1 is roughened, the non-defective ultra-smooth substrate 1 becomes defective, the expensive substrate 1 is wasted, and the manufacturing cost increases.

【0004】また,図5(d)に示される反射型マスク
は,超平滑基板1を直接加工し,凹凸構造34を作り,
パタ−ンを形成しているためこのパタ−ンに欠陥がはい
ると,超平滑基板1が不良品となり,高価な基板が無駄
となるため,製造のコストが高くなる問題があった。従
って,本発明の目的は,基板が再利用でき,コストの安
い光学素子及びその製造方法を実現することである。
Further, in the reflection type mask shown in FIG. 5 (d), the ultra-smooth substrate 1 is directly processed to form an uneven structure 34,
If the pattern is defective because the pattern is formed, the ultra-smooth substrate 1 becomes a defective product, and an expensive substrate is wasted, resulting in a problem of high manufacturing cost. Therefore, an object of the present invention is to realize an optical element and a manufacturing method thereof, in which the substrate can be reused and the cost is low.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め,本発明は,光学素子を基板上に真空紫外線又はX線
に対して相対的に反射率の低い領域と,真空紫外線又は
X線に対して相対的に反射率の高い領域が,所定のパタ
−ンに応じて配置された光学素子において,上記反射率
の高い領域と基板の間に少なくとも1層の薄膜層を形成
した。また,基板上に真空紫外線又はX線に対して相対
的に反射率の低い領域と,真空紫外線又はX線に対して
屈折率の異なる少なくとも2種類の物質を交互に積層し
た多層膜で形成された反射率の高い領域が,所定のパタ
−ンに応じて配置された光学素子において,上記多層膜
で形成された反射率の高い領域と基板の間に少なくとも
1層の薄膜層を形成した。さらに,上記光学素子の製造
において,光学素子の基板となる超平滑基板上に,まず
少なくとも1層の薄膜層を形成した後,真空紫外線又は
X線に対して光学定数の異なる少なくとも2種類の物質
を交互に積層して多層膜を形成して光学素子を製造す
る。
In order to achieve the above object, the present invention provides an optical element on a substrate having a region having a relatively low reflectance with respect to vacuum ultraviolet rays or X-rays, and a vacuum ultraviolet ray or X-rays. On the other hand, in the optical element in which the region having a relatively high reflectance is arranged according to a predetermined pattern, at least one thin film layer is formed between the region having a high reflectance and the substrate. In addition, it is formed of a multilayer film in which a region having a relatively low reflectance for vacuum ultraviolet rays or X-rays and at least two kinds of substances having different refractive indices for vacuum ultraviolet rays or X-rays are alternately laminated on a substrate. In the optical element in which the high reflectance region is arranged according to a predetermined pattern, at least one thin film layer is formed between the high reflectance region formed of the multilayer film and the substrate. Further, in the manufacture of the optical element, at least one thin film layer is first formed on an ultra-smooth substrate which is a substrate of the optical element, and then at least two kinds of substances having different optical constants against vacuum ultraviolet rays or X-rays are formed. Are alternately laminated to form a multilayer film to manufacture an optical element.

【0006】[0006]

【作用】超平滑基板上に,まず少なくとも1層の薄膜層
を形成した後,真空紫外線又はX線に対して光学定数の
異なる少なくとも2種類の物質を交互に積層して多層膜
を形成する。ここで,パタ−ン中の欠陥,特に多層膜の
欠陥が存在して多層膜を除去し再生する必要がある場
合,多層膜は超平滑基板に直接付着せず薄膜層上に形成
しているため,多層膜を除去する際,薄膜層が超平滑基
板の表面を保護するため,超平滑基板の表面の荒れを生
じさせずに多層膜の除去が可能となる。多層膜の除去
後,薄膜層の表面は一般に荒れが生じているが,この薄
膜層を湿式処理等により超平滑基板になんら影響無く除
去できる。
After forming at least one thin film layer on the ultra-smooth substrate, at least two kinds of substances having different optical constants for vacuum ultraviolet rays or X-rays are alternately laminated to form a multilayer film. Here, when there is a defect in the pattern, especially a defect of the multilayer film and it is necessary to remove and regenerate the multilayer film, the multilayer film is formed on the thin film layer without directly adhering to the ultra-smooth substrate. Therefore, when removing the multilayer film, the thin film layer protects the surface of the ultra-smooth substrate, so that the multilayer film can be removed without causing the surface of the ultra-smooth substrate to become rough. After the removal of the multilayer film, the surface of the thin film layer is generally roughened, but this thin film layer can be removed by a wet treatment without affecting the ultra-smooth substrate.

【0007】また,超平滑基板上に,まず薄膜層形成し
た後,この薄膜層表面に所定のパタ−ンに応じて粗さを
形成するか,又は凹凸を形成するか,又は表面に対して
所定の角度で溝を形成した後,真空紫外線又はX線に対
して光学定数の異なる少なくとも2種類の物質を交互に
積層して多層膜を形成する。ここで,パタ−ン中の欠陥
が存在して多層膜を除去し再生する必要がある場合,多
層膜は超平滑基板に直接付着せず薄膜層上に形成してい
るため,多層膜を除去する際,薄膜層が超平滑基板の表
面を保護するため,超平滑基板の表面の荒れを生じさせ
ずに多層膜の除去が可能となる。多層膜の除去後,薄膜
層の表面は一般に荒れが生じているが,この薄膜層を湿
式処理等で超平滑基板になんら影響無く除去できる。い
ずれの光学素子の製造方法の場合にも,再生処理にて高
価な超平滑基板は再度使用可能となり,製造のコストの
低減に大きく寄与する。
Further, after forming a thin film layer on an ultra-smooth substrate, roughness is formed on the surface of the thin film layer according to a predetermined pattern, or unevenness is formed, or the surface is formed. After forming the groove at a predetermined angle, at least two kinds of substances having different optical constants for vacuum ultraviolet rays or X-rays are alternately laminated to form a multilayer film. If there is a defect in the pattern and it is necessary to remove and regenerate the multilayer film, the multilayer film is formed on the thin film layer without directly adhering to the ultra-smooth substrate. In doing so, the thin film layer protects the surface of the ultra-smooth substrate, so that the multilayer film can be removed without causing the surface of the ultra-smooth substrate to become rough. After the removal of the multilayer film, the surface of the thin film layer is generally roughened, but the thin film layer can be removed by wet processing without affecting the ultra-smooth substrate. In any of the optical element manufacturing methods, the expensive ultra-smooth substrate can be reused in the recycling process, which greatly contributes to the manufacturing cost reduction.

【0008】[0008]

【実施例】【Example】

<実施例1>図1は,本発明による光学素子である反射
型X線マスクの一実施例の断面構成図である。シリコン
基板又はSiC基板11上に1層のアルミニウム(Al)の
薄膜層119が形成され,その上に,真空紫外線又はX
線に対して相対的に反射率の低い領域と,真空紫外線又
はX線に対して相対的に反射率の高い炭素(C)膜ニッケ
ル(Ni)膜の多層膜の領域が,所定のパタ−ンに応じて
配置された多層膜パターン22で反射型X線マスクが構
成されている。
<Embodiment 1> FIG. 1 is a cross-sectional view of an embodiment of a reflection type X-ray mask which is an optical element according to the present invention. One layer of aluminum (Al) thin film 119 is formed on a silicon substrate or SiC substrate 11, and vacuum ultraviolet rays or X
A region having a relatively low reflectance with respect to X-rays and a region having a multilayer film of carbon (C) film nickel (Ni) film having a relatively high reflectance with respect to vacuum ultraviolet rays or X-rays have a predetermined pattern. A reflective X-ray mask is constituted by the multilayer film pattern 22 arranged according to the pattern.

【0009】図6は,図1の反射型X線マスクの製造方
法の一実施例の製造工程を示す図である。超平滑面を有
するシリコン基板又はSiC基板11にスパッタリング
蒸着法の一つであるマグネトロンスパッタ法で,アルミ
ニウム(Al)膜119を200nm厚程度蒸着する。この
ときスパッタガスの圧力は出来るかぎり低圧が望まし
い。次に炭素(C)膜1.27nm厚とニッケル(Ni)膜1.27nm
厚とを交互に160層ずつ形成し,多層膜21を作る。そ
の上に,レジストを塗布し,電子線リソグラフィにてレ
ジストパターン38を形成し,レジストパターンをマス
クにして,反応性イオンエッチングにて多層膜を除去
し,多層膜のパターン22を形成し,図1に示されるよ
うな反射型X線マスクを形成した。
FIG. 6 is a view showing a manufacturing process of an embodiment of a method of manufacturing the reflection type X-ray mask of FIG. An aluminum (Al) film 119 is vapor-deposited to a thickness of about 200 nm on a silicon substrate or SiC substrate 11 having an ultra-smooth surface by a magnetron sputtering method which is one of the sputtering vapor deposition methods. At this time, it is desirable that the pressure of the sputtering gas is as low as possible. Next, carbon (C) film 1.27 nm thick and nickel (Ni) film 1.27 nm thick
The thickness and 160 layers are alternately formed to form the multilayer film 21. A resist is applied thereon, a resist pattern 38 is formed by electron beam lithography, the multilayer film is removed by reactive ion etching using the resist pattern as a mask, and a pattern 22 of the multilayer film is formed. A reflective X-ray mask as shown in 1 was formed.

【0010】<実施例2>図2は,本発明による光学素
子である反射型X線マスクの第2の実施例の断面構成図
である。シリコン基板又はSiC基板11上に1層のア
ルミニウム(Al)の薄膜層119が形成され,その上に真
空紫外線又はX線に対して相対的に反射率の低い領域2
22(Beイオンを含む炭素(C)膜ニッケル(Ni)膜の多
層膜)と,真空紫外線又はX線に対して相対的に反射率
の高い炭素(C)膜ニッケル(Ni)膜の多層膜21の領域
が,所定のパタ−ンに応じて配置された層で反射型X線
マスクが構成されている。
<Embodiment 2> FIG. 2 is a sectional structural view of a second embodiment of a reflection type X-ray mask which is an optical element according to the present invention. An aluminum (Al) thin film layer 119 is formed on a silicon substrate or a SiC substrate 11, and a region 2 having a relatively low reflectance for vacuum ultraviolet rays or X-rays is formed on the thin film layer 119.
22 (multilayered film of carbon (C) film nickel (Ni) film containing Be ions) and multilayered film of carbon (C) film nickel (Ni) film having relatively high reflectance to vacuum ultraviolet rays or X-rays. A reflective X-ray mask is composed of layers arranged in a region 21 in accordance with a predetermined pattern.

【0011】図7は図2の反射型X線マスクの製造方法
の一実施例の製造工程を示す図である。本発明の実施例
1と同様に超平滑シリコン基板又はSiC基板11にマ
グネトロンスパッタ法にて,アルミニウム(Al)膜119
を200nm厚ほど蒸着する。このときスパッタガスの
圧力は出来るかぎり低圧が望ましい。次にマグネトロン
スパッタ法にて,炭素(C)膜1.27nm厚とニッケル(Ni)
膜1.27nm厚とを交互に160層ずつ形成し,多層膜21を
作る。次にBeイオンからなる指向性の強い集束イオンビ
−ム5を入射し,所望のパタ−ン222を描画する。こ
のとき入射イオンの種類とイオンビ−ムの入射エネルギ
−を多層膜の厚さに応じて適宜選ぶ必要がある。入射イ
オンの元素はBeの他,N,O,C,Ar,Kr,P,
Xe,F,Cl,B等が挙げられる。イオンビ−ムの入
射した領域222の多層膜はNi膜とC膜間の界面の急
峻さがなくなり,波長5nmの軟X線の反射率は零にな
る。
FIG. 7 is a diagram showing a manufacturing process of an embodiment of a method of manufacturing the reflection type X-ray mask of FIG. The aluminum (Al) film 119 was formed on the ultra-smooth silicon substrate or SiC substrate 11 by magnetron sputtering in the same manner as in Example 1 of the present invention.
Is evaporated to a thickness of 200 nm. At this time, it is desirable that the pressure of the sputtering gas is as low as possible. Next, a carbon (C) film with a thickness of 1.27 nm and nickel (Ni) was formed by a magnetron sputtering method.
A film having a thickness of 1.27 nm is alternately formed in 160 layers to form a multilayer film 21. Next, a focused ion beam 5 having a strong directivity composed of Be ions is made incident, and a desired pattern 222 is drawn. At this time, it is necessary to appropriately select the type of incident ions and the incident energy of the ion beam depending on the thickness of the multilayer film. The elements of the incident ions are Be, N, O, C, Ar, Kr, P,
Examples include Xe, F, Cl, B and the like. In the multilayer film in the region 222 where the ion beam is incident, the steepness of the interface between the Ni film and the C film disappears, and the reflectance of soft X-rays having a wavelength of 5 nm becomes zero.

【0012】<実施例3>図3は,本発明による光学素
子である反射型X線マスクの第3の実施例の断面構成図
である。石英基板11上に1層のアルミニウム(Al)の薄
膜層119が形成され,その上に真空紫外線又はX線に
対して相対的に反射率の低い領域211(Beイオンを含
む炭素(C)膜ニッケル(Ni)膜の多層膜)と,真空紫外
線又はX線に対して相対的に反射率の高い炭素(C)膜ニ
ッケル(Ni)膜の多層膜の領域が,所定のパタ−ンに応
じて配置された層21で反射型X線マスクが構成されて
いる。また,薄膜層119の領域211と接する面は粗
い面1191が形成されている。
<Embodiment 3> FIG. 3 is a sectional view showing the structure of a third embodiment of a reflection type X-ray mask which is an optical element according to the present invention. An aluminum (Al) thin film layer 119 is formed on the quartz substrate 11, and a region 211 (a carbon (C) film containing Be ions) having a relatively low reflectance with respect to vacuum ultraviolet rays or X-rays is formed on the thin film layer 119. The area of the multilayer film of nickel (Ni) film and the multilayer film of carbon (C) film nickel (Ni) film, which has a relatively high reflectance with respect to vacuum ultraviolet rays or X-rays, corresponds to a predetermined pattern. A reflective X-ray mask is constituted by the layers 21 arranged as described above. A rough surface 1191 is formed on the surface of the thin film layer 119 that is in contact with the region 211.

【0013】図8は,図3の反射型X線マスクの製造方
法の一実施例の製造工程を示す図である。実施例1と同
様に超平滑石英基板11にマグネトロンスパッタ法に
て,アルミニウム(Al)膜119を200nm厚ほど蒸着
する。このときスパッタガスの圧力はできるかぎり低圧
が望ましい。次に,アルミニウム(Al)膜119の上に,
レジストを塗布し,電子線リソグラフィにてレジストパ
ターン381を形成した。次にレジストパターンをマス
クにして,イオンミリングにてAlの露出している部分
の表面に荒れ1191を形成した。次にニッケル(Ni)
膜1.27nm厚と炭素(C)膜1.27nm厚とを交互に160層ずつ
形成し,多層膜21を作り,別の反射型X線マスクを形
成した。このとき表面荒れを形成した面の上に形成され
た多層膜は界面粗さが大きく,真空紫外線又はX線に対
して反射率はほぼ零に近い。
FIG. 8 is a diagram showing a manufacturing process of an embodiment of a method of manufacturing the reflection type X-ray mask of FIG. Similar to Example 1, an aluminum (Al) film 119 is vapor-deposited to a thickness of 200 nm on the ultra-smooth quartz substrate 11 by the magnetron sputtering method. At this time, it is desirable that the pressure of the sputtering gas is as low as possible. Next, on the aluminum (Al) film 119,
A resist was applied and a resist pattern 381 was formed by electron beam lithography. Next, using the resist pattern as a mask, the surface of the exposed portion of Al was roughened by ion milling 1191. Next, nickel (Ni)
A film of 1.27 nm thickness and a carbon (C) film of 1.27 nm thickness were alternately formed in 160 layers each to form a multilayer film 21 and another reflective X-ray mask was formed. At this time, the multilayer film formed on the surface having the roughened surface has a large interface roughness, and the reflectance with respect to vacuum ultraviolet rays or X-rays is almost zero.

【0014】<実施例4>図4は,本発明による光学素
子である反射型X線マスクの第4の実施例の断面構成図
である。石英基板11上に1層のアルミニウム(Al)の薄
膜層119,その上に真空紫外線又はX線に対して相対
的に反射率の低い炭素(C)膜ニッケル(Ni)膜の多層膜
21でが形成され,多層膜21上面に所定のパタ−ンの
真空紫外線又はX線を吸収する層35が形成されてい
る。
<Embodiment 4> FIG. 4 is a sectional view showing the construction of a fourth embodiment of a reflection type X-ray mask which is an optical element according to the present invention. A single layer of aluminum (Al) thin film 119 is formed on the quartz substrate 11, and a multilayer film 21 of carbon (C) film nickel (Ni) film, which has a relatively low reflectance with respect to vacuum ultraviolet rays or X-rays, is formed thereon. And a layer 35 that absorbs vacuum ultraviolet rays or X-rays of a predetermined pattern is formed on the upper surface of the multilayer film 21.

【0015】図9は,図4の反射型X線マスクの製造方
法の一実施例の製造工程を示す図である。実施例1と同
様に超平滑面を有するシリコン基板又はSiC基板11
にマグネトロンスパッタ法で,アルミニウム(Al)膜11
9を200nm厚ほど蒸着する。このときスパッタガス
の圧力は出来るかぎり低圧が望ましい。次に炭素(C)膜
1.27nm厚とニッケル(Ni)膜1.27nm厚とを交互に160層
ずつ形成し,多層膜21を作る。その上に,レジストを
塗布し,電子線リソグラフィにてレジストパターン38
を形成し,レジストパターンをマスクにして,Au35
を電子ビ−ム加熱蒸着により200nm厚蒸着し,リフ
トオフ法にてレジストパタ−ンを除去し,多層膜上にA
uのパタ−ン35を形成し,反射型X線マスクを形成し
た。
FIG. 9 is a diagram showing a manufacturing process of an embodiment of a method of manufacturing the reflection type X-ray mask of FIG. A silicon substrate or a SiC substrate 11 having an ultra-smooth surface as in Example 1.
Aluminum (Al) film 11 by magnetron sputtering method
9 is vapor-deposited to a thickness of 200 nm. At this time, it is desirable that the pressure of the sputtering gas is as low as possible. Next, carbon (C) film
The multilayer film 21 is formed by alternately forming 160 layers each having a thickness of 1.27 nm and a nickel (Ni) film of 1.27 nm. A resist is applied thereon, and a resist pattern 38 is formed by electron beam lithography.
And using the resist pattern as a mask, Au35
Is vapor-deposited by electron beam heating to a thickness of 200 nm, the resist pattern is removed by the lift-off method, and A is deposited on the multilayer film.
A u pattern 35 was formed to form a reflective X-ray mask.

【0016】<実施例5>実施例1,2,3,4で形成
した反射型X線マスクをX線顕微鏡にて検査したとこ
ろ,多層膜の欠陥が発見された。そこでAl19と多層
膜21が形成されている超平滑基板11を再生するた
め,まず多層膜21をイオンミリングにて除去した。こ
こで薄膜層のAl(119)の表面は荒れて粗い面を形
成しているが,薄膜層119の下の超平滑基板11には
なんら損傷はなかった。次にりん酸65%,過酸化水素
13%,酢酸13%,硝酸4%,水4%の混合液にAl
が蒸着された基板11を浸すことにより,Alを除去
し,さらに水とメタノ−ルで基板11を洗浄した。この
洗浄後の基板表面は超平滑面であった。次に実施例1,
2,3,4と同様ににて再度,超平滑基板から反射型マ
スクを形成した。再度,X線顕微鏡にて検査したとこ
ろ,多層膜の欠陥は発見されなかった。
<Embodiment 5> When the reflective X-ray masks formed in Embodiments 1, 2, 3, and 4 were inspected with an X-ray microscope, defects in the multilayer film were found. Therefore, in order to regenerate the ultra-smooth substrate 11 on which the Al 19 and the multilayer film 21 are formed, the multilayer film 21 is first removed by ion milling. Here, the surface of Al (119) of the thin film layer was rough and formed a rough surface, but the ultra-smooth substrate 11 under the thin film layer 119 was not damaged at all. Next, Al in a mixed solution of 65% phosphoric acid, 13% hydrogen peroxide, 13% acetic acid, 4% nitric acid, and 4% water.
Al was removed by immersing the substrate 11 on which was vapor-deposited, and the substrate 11 was washed with water and methanol. The substrate surface after this cleaning was a super smooth surface. Next, Example 1,
The reflective mask was again formed from the ultra-smooth substrate in the same manner as in 2, 3, and 4. Upon inspection again with an X-ray microscope, no defect in the multilayer film was found.

【0017】<実施例6>図11に示すX線投影露光装
置に上記実施例5で再生したマスクを装着して,転写実
験を行った。マスク81とウェハ82は,それぞれマス
クステ−ジ83とウェハステ−ジ84に搭載されてい
る。まずマスク81とウェハ82との相対位置をアライ
メント装置85を用いて検出し,制御装置86により駆
動装置87,88を介して位置合せを行う。X線源89
から放射されたX線を反射鏡90で集光411し,マス
ク81上の円弧領域を照明する。マスク81と入射X線
411の位置関係は図12に示すように,より細いパタ
−ンの短軸方向と入射X線の球欠方向,より細いパタ−
ンの長軸方向が入射X線の子午方向になるように設定し
た。
<Embodiment 6> A transfer experiment was carried out by mounting the mask reproduced in Embodiment 5 on the X-ray projection exposure apparatus shown in FIG. The mask 81 and the wafer 82 are mounted on a mask stage 83 and a wafer stage 84, respectively. First, the relative position between the mask 81 and the wafer 82 is detected by using the alignment device 85, and the alignment is performed by the control device 86 via the drive devices 87 and 88. X-ray source 89
The X-rays emitted from the condenser 411 are condensed by the reflecting mirror 90 to illuminate the arc region on the mask 81. As shown in FIG. 12, the positional relationship between the mask 81 and the incident X-ray 411 is as shown in FIG.
The long axis direction of the beam is set to be the meridional direction of the incident X-ray.

【0018】マスク81で反射されたX線41は,波長
5nm近傍のX線からなり,反射鏡91,92,93及
び94からなる結像光学系95により,ウェハ82上に
倍率1/5で結像する。反射鏡91,92,93及び9
4は,マスク81と同様なNi/C系多層膜を蒸着し,
各多層膜の周期長は反射X線の波長が一致するように調
節されている。マスク81とウェハ82を倍率に応じて
同期走査して,マスク81全面のパターン82をウェハ
に転写した。この方法により,ウェハ82上の30mm
角の領域で0.05μm幅のパターンを得ることができ
た。実施例5及び実施例6の転写実験の処理過程の流れ
を図10に示す。
The X-ray 41 reflected by the mask 81 is composed of an X-ray having a wavelength of about 5 nm, and is imaged on the wafer 82 at a magnification of 1/5 by the imaging optical system 95 composed of the reflecting mirrors 91, 92, 93 and 94. Form an image. Reflecting mirrors 91, 92, 93 and 9
4 is vapor-deposited with a Ni / C multilayer film similar to the mask 81,
The cycle length of each multilayer film is adjusted so that the wavelengths of reflected X-rays match. The mask 81 and the wafer 82 were synchronously scanned according to the magnification, and the pattern 82 on the entire surface of the mask 81 was transferred onto the wafer. With this method, 30 mm on the wafer 82
A pattern having a width of 0.05 μm could be obtained in the corner area. FIG. 10 shows the flow of processing steps of the transfer experiment of Examples 5 and 6.

【0019】<実施例7>反射型マスクの多層膜とし
て,マグネトロンスパッタ法にて,ルテニウム(Ru)膜
1.8nm厚と窒化ホウ素(BN)膜1.8nm厚を交互に150層ず
つ形成し,実施例1,2,3,4と同様に反射型X線マ
スクを形成した。次に図11に示すX線投影露光装置を
用いて露光照明し,ウエハ82に反射型マスクのパタ−
ンを結像転写した。反射鏡91,92,93及び94
は,マスクと同様なRu/BN系多層膜を蒸着されてい
る。ここでマスクで反射されたX線は,波長7nm近傍
のX線からなる。実施例4と同様に結像転写したところ
0.07μm幅のパターンを得ることができた。
<Embodiment 7> As a multilayer film of a reflection type mask, a ruthenium (Ru) film is formed by a magnetron sputtering method.
A reflective X-ray mask was formed in the same manner as in Examples 1, 2, 3 and 4 by forming 150 layers each having a thickness of 1.8 nm and a boron nitride (BN) film of 1.8 nm alternately. Next, the X-ray projection exposure apparatus shown in FIG.
The image was transferred. Reflecting mirrors 91, 92, 93 and 94
Is vapor-deposited with a Ru / BN-based multilayer film similar to the mask. Here, the X-rays reflected by the mask consist of X-rays having a wavelength near 7 nm. When an image was transferred in the same manner as in Example 4, a pattern having a width of 0.07 μm could be obtained.

【0020】<実施例8>反射型マスクの多層膜とし
て,マグネトロンスパッタ法にて,ロジウム(Rh)膜2.
6nm厚とBN膜2.6nm厚を交互に100層ずつ形成し,実施
例1,2,3,4と同様に反射型X線マスクを形成し
た。次に図11に示すX線投影露光装置を用いて露光照
明し,ウエハ82に反射型マスク81のパタ−ンを結像
転写した。反射鏡91,92,93及び94は,マスク
81と同様なRh/BN系多層膜が蒸着されている。こ
こでマスク81で反射されたX線41は,波長10nm近
傍のX線からなる。実施例4と同様に結像転写したとこ
ろ0.08μm幅のパターンを得ることができた。
<Embodiment 8> A rhodium (Rh) film was formed by a magnetron sputtering method as a multilayer film of a reflective mask.
A reflective X-ray mask was formed in the same manner as in Examples 1, 2, 3 and 4 by alternately forming 100 layers each having a thickness of 6 nm and a thickness of 2.6 nm of a BN film. Next, the X-ray projection exposure apparatus shown in FIG. 11 was used to expose and illuminate, and the pattern of the reflective mask 81 was image-transferred onto the wafer 82. The reflecting mirrors 91, 92, 93 and 94 are formed by depositing the same Rh / BN multilayer film as the mask 81. Here, the X-ray 41 reflected by the mask 81 is composed of X-rays having a wavelength near 10 nm. When image formation was transferred in the same manner as in Example 4, a pattern having a width of 0.08 μm could be obtained.

【0021】<実施例9>反射型マスクの多層膜とし
て,マグネトロンスパッタ法にて,モリブデン(Mo)膜
3.37nm厚と炭化ケイ素(SiC)膜3.37nm厚を交
互に50層ずつ形成し,実施例1,2,3,4と同様に反
射型X線マスクを形成した。次に図11に示すX線投影
露光装置を用いて露光照明し,ウエハ82に反射型マス
ク81のパタ−ンを結像転写した。反射鏡91,92,
93及び94は,マスクと同様なMo/SiC系多層膜
が蒸着されている。ここでマスク81で反射されたX線
41は,波長13nm近傍のX線からなる。実施例4と
同様に結像転写したところ0.1μm幅のパターンを得
ることができた。
<Embodiment 9> As a multilayer film of a reflective mask, a molybdenum (Mo) film of 3.37 nm thickness and a silicon carbide (SiC) film of 3.37 nm thickness are alternately formed by 50 layers by magnetron sputtering. A reflective X-ray mask was formed in the same manner as in Examples 1, 2, 3, and 4. Next, the X-ray projection exposure apparatus shown in FIG. 11 was used to expose and illuminate, and the pattern of the reflective mask 81 was image-transferred onto the wafer 82. Reflectors 91, 92,
Mo / SiC based multilayer films similar to the mask are vapor-deposited on 93 and 94. Here, the X-rays 41 reflected by the mask 81 consist of X-rays having a wavelength near 13 nm. When an image was transferred in the same manner as in Example 4, a pattern having a width of 0.1 μm could be obtained.

【0022】<実施例10>超平滑基板11と多層膜2
2の間の層としてCrを真空蒸着法のひとつである電子
ビ−ム加熱蒸着法にて,200nm厚蒸着し,実施例7
と同様に反射型X線マスク81を形成した。次に実施例
5と同様にX線顕微鏡を用いて検査を行い,多層膜22
の欠陥を発見したので,基板再生を行った。イオンミリ
ングで多層膜22を除去した後,硝酸第2セリウムアン
モニウム塩溶液を用いてCrを除去した。実施例5と同
様に基板11は超平滑であった。次に再度Crを蒸着
し,実施例7と同様に反射型X線マスクを形成した。こ
れらのマスクを再度X線顕微鏡を用いて検査を行い,多
層膜に欠陥が無いことを確認した後,実施例7と同様に
結像転写したところ0.07μm幅のパターンを得るこ
とができた。
<Embodiment 10> Super smooth substrate 11 and multilayer film 2
As a layer between the two, Cr was vapor-deposited to a thickness of 200 nm by an electron beam heating vapor deposition method which is one of the vacuum vapor deposition methods, and Example 7 was performed.
A reflective X-ray mask 81 was formed in the same manner as in. Next, an inspection was performed using an X-ray microscope in the same manner as in Example 5, and the multilayer film 22
The defect was discovered, so the substrate was regenerated. After removing the multilayer film 22 by ion milling, Cr was removed using a ceric ammonium nitrate salt solution. The substrate 11 was ultra-smooth as in Example 5. Next, Cr was evaporated again to form a reflection type X-ray mask in the same manner as in Example 7. When these masks were inspected again using an X-ray microscope and it was confirmed that the multilayer film had no defects, image transfer was carried out in the same manner as in Example 7, and a pattern with a width of 0.07 μm could be obtained. .

【0023】上記実施例では,超平滑基板と多層膜の間
の薄膜層としてAlとCrの場合のみ説明したが,本発
明は上記実施例の材料に制限されることなく,例えば,
例えば,Ti,Mo,C,Si,Ge,Ta,W,N
i,Au,Pt,Cu,Ag,Pd,Nb,Zr,P
b,Sn等の少なくとも1種類からなる材料であれば、
実施可能である。このとき薄膜材料が湿式処理により除
去できる場合が望ましい。湿式処理に用いる溶液とし
て,りん酸,過酸化水素水,酢酸,硝酸,水,NaO
H,KOH,硝酸第2セリウム,アンモニウム塩,硫
酸,塩酸,弗酸,エチレンジアンミン,ホウ酸を少なく
とも1つを含む溶液を各種薄膜材料ごとに選んで用いる
ことができる。また,薄膜層の形成方法としては本実施
例で述べたようなスパッタリング蒸着法や真空蒸着法の
他に,化学気相成長法,スピン塗布法,液相成長法,メ
ッキ法等が挙げられる。ここで該薄膜層の表面のッキ法
等が実施できる。ここで上記薄膜層の表面の粗さを無く
すように薄膜の形成温度等のプロセス条件に注意する必
要がある。
In the above-mentioned embodiment, the case where Al and Cr are used as the thin film layer between the ultra-smooth substrate and the multilayer film has been described, but the present invention is not limited to the material of the above-mentioned embodiment, and for example,
For example, Ti, Mo, C, Si, Ge, Ta, W, N
i, Au, Pt, Cu, Ag, Pd, Nb, Zr, P
If the material consists of at least one type such as b and Sn,
It is feasible. At this time, it is desirable that the thin film material can be removed by a wet process. As a solution for wet treatment, phosphoric acid, hydrogen peroxide solution, acetic acid, nitric acid, water, NaO
A solution containing at least one of H, KOH, ceric nitrate, ammonium salt, sulfuric acid, hydrochloric acid, hydrofluoric acid, ethylenediamine and boric acid can be selected and used for each thin film material. In addition to the sputtering vapor deposition method and the vacuum vapor deposition method described in this embodiment, the thin film layer may be formed by a chemical vapor deposition method, a spin coating method, a liquid phase growth method, a plating method, or the like. Here, the surface cleaning method of the thin film layer or the like can be performed. Here, it is necessary to pay attention to the process conditions such as the forming temperature of the thin film so as to eliminate the roughness of the surface of the thin film layer.

【0024】本実施例では,多層膜で用いた材料に関し
て,Ni/C,Ru/BN,Rh/BN,Mo/SiC
系多層膜の場合のみを説明したが,本発明は,実施例で
述べたような材料に制限されることなく,例えば,Ni
Cr/C,Ni/Ti,W/C,Ru/C,Rh/C,
Ru/BN,Rh/B4C,RhRu/BN,Ru/B4
C,Mo/Si,Pd/BN,Ag/BN,Mo/Si
N,Mo/B4C,Mo/C,Ru/Beなどの多層膜
の形成可能な材料であれば,実施可能である また、本実施例は反射型マスクの場合のみを説明した
が,反射型マスクに何ら限定されることなく回折格子や
リニアゾーンプレートなどの反射面に微細パタ−ンを有
する光学素子にも適用できる。更に、薄膜層及び多層膜
の除去は、多層膜の欠陥が有る場合のみに限られず,本
発明によって製造された光学素子の基板を他の光学素子
に利用するためにも実施してもよいことは説明するまで
もない。
In this embodiment, the materials used for the multilayer film are Ni / C, Ru / BN, Rh / BN, Mo / SiC.
Although only the case of the system-based multilayer film has been described, the present invention is not limited to the materials described in the embodiments, and may be, for example, Ni.
Cr / C, Ni / Ti, W / C, Ru / C, Rh / C,
Ru / BN, Rh / B 4 C, RhRu / BN, Ru / B 4
C, Mo / Si, Pd / BN, Ag / BN, Mo / Si
Any material capable of forming a multi-layer film such as N, Mo / B 4 C, Mo / C, Ru / Be can be used. In addition, this embodiment describes only the case of the reflection type mask. The present invention is not limited to the mold mask, and can be applied to an optical element having a fine pattern on the reflecting surface such as a diffraction grating or a linear zone plate. Further, the removal of the thin film layer and the multilayer film is not limited to the case where there is a defect in the multilayer film, and the substrate of the optical element manufactured according to the present invention may be used for other optical elements. Needless to say.

【0025】[0025]

【発明の効果】以上述べてきたように,光学素子の製造
において本発明の製造方法を適用することによって,再
生処理にて高価な超平滑基板は再度使用可能となり,光
学素子の製造のコストの低減に大きく寄与する。
As described above, by applying the manufacturing method of the present invention in the manufacture of an optical element, an expensive ultra-smooth substrate can be reused in the reprocessing process, which reduces the manufacturing cost of the optical element. It greatly contributes to the reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による反射型マスクの第1の実施例の側
断面図を示すものである。
FIG. 1 shows a side sectional view of a first embodiment of a reflective mask according to the present invention.

【図2】本発明による反射型マスクの第2の実施例の側
断面図を示すものである。
FIG. 2 shows a side sectional view of a second embodiment of a reflective mask according to the present invention.

【図3】本発明による反射型マスクの第3の実施例の側
断面図を示すものである。
FIG. 3 is a side sectional view of a reflective mask according to a third embodiment of the present invention.

【図4】本発明による反射型マスクの第4の実施例の側
断面図を示すものである。
FIG. 4 is a side sectional view of a reflective mask according to a fourth embodiment of the present invention.

【図5】従来の反射型マスクの側断面図を示すものであ
る。
FIG. 5 is a side sectional view of a conventional reflective mask.

【図6】図1の反射型マスクの製造工程をを示す図であ
る。
FIG. 6 is a diagram showing a manufacturing process of the reflective mask of FIG. 1.

【図7】図2の反射型マスクの製造工程をを示す図であ
る。
FIG. 7 is a diagram showing a manufacturing process of the reflective mask of FIG.

【図8】図3の反射型マスクの製造工程をを示す図であ
る。
FIG. 8 is a diagram showing a manufacturing process of the reflective mask of FIG.

【図9】図4の反射型マスクの製造工程をを示す図であ
る。
FIG. 9 is a diagram showing a manufacturing process of the reflective mask of FIG.

【図10】本発明の反射型マスク効果を測定する処理夫
フロー図である。
FIG. 10 is a flowchart of a processor for measuring the reflective mask effect of the present invention.

【図11】本発明の反射型マスク効果を測定するX線投
影露光装置の構成図を示す。
FIG. 11 is a configuration diagram of an X-ray projection exposure apparatus that measures the reflective mask effect of the present invention.

【図12】図11のマスクと入射X線の関係を示す図で
ある。
12 is a diagram showing the relationship between the mask of FIG. 11 and incident X-rays.

【符号の説明】[Explanation of symbols]

1…基板, 2…反射部,3…
非反射部, 21…多層膜,22…
多層膜パターン, 5…イオンビーム,33
…非反射部の段差, 34…非反射部の段差
上の多層膜,11…シリコン基板又はSiC基板又は石
英基板,35…真空紫外線又はX線を吸収する層,41
…反射率の高い領域からの正反射した真空紫外線又はX
線,42…正反射した真空紫外線又はX線の入射角,3
8,381…レジストパターン, 81…マスク,82
…ウェハ, 83…マスクステー
ジ,84…ウェハステージ, 85…アライ
メント装置,86…制御装置, 87
…駆動装置,88…駆動装置, 89
…X線源,90…反射鏡, 91…
反射鏡,92…反射鏡, 93…反
射鏡,94…反射鏡, 95…結像
光学系,96…同期走査方向, 119…
基板と多層膜間の薄膜層,1191…薄膜層の表面の荒
れた部分,411…入射真空紫外線又はX線,222…
イオンビ−ムを打ち込まれ反射率の低下した多層膜のパ
タ−ン,211…薄膜層の表面の荒れた部分の上に形成
された界面の荒れた多層膜。
1 ... Substrate, 2 ... Reflector, 3 ...
Non-reflection part, 21 ... Multilayer film, 22 ...
Multilayer film pattern, 5 ... Ion beam, 33
... step of non-reflecting portion, 34 ... multilayer film on step of non-reflecting portion, 11 ... silicon substrate or SiC substrate or quartz substrate, 35 ... layer absorbing vacuum ultraviolet rays or X-rays, 41
… Vacuum ultraviolet rays or X that is specularly reflected from a region with high reflectance
Line, 42 ... Incident angle of specularly reflected VUV or X-ray, 3
8, 381 ... Resist pattern, 81 ... Mask, 82
... Wafer, 83 ... Mask stage, 84 ... Wafer stage, 85 ... Alignment device, 86 ... Control device, 87
... Drive device, 88 ... Drive device, 89
… X-ray source, 90… Reflector, 91…
Reflecting mirror, 92 ... Reflecting mirror, 93 ... Reflecting mirror, 94 ... Reflecting mirror, 95 ... Imaging optical system, 96 ... Synchronous scanning direction, 119 ...
Thin film layer between substrate and multilayer film, 1191 ... Rough portion of surface of thin film layer, 411 ... Incident vacuum ultraviolet ray or X-ray, 222 ...
A pattern of a multilayer film in which the reflectance is lowered by being bombarded with ion beams, 211 ... A multilayer film having a rough interface formed on a rough portion of the surface of the thin film layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽我 隆 東京都国分寺市東恋ケ窪1丁目280番地株 式会社日立製作所中央研究所内 (72)発明者 武田 英次 東京都国分寺市東恋ケ窪1丁目280番地株 式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Soga 1-280, Higashi-Kengokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Eiji Takeda 1-280, Higashi-Kengokubo, Kokubunji-shi, Tokyo Central Research Laboratory of Hitachi, Ltd.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】基板上に真空紫外線又はX線に対して相対
的に反射率の低い領域と,真空紫外線又はX線に対して
相対的に反射率の高い領域が,所定のパタ−ンに応じて
配置された光学素子において,上記反射率の高い領域と
上記基板の間に少なくとも1層の薄膜層を形成したこと
を特徴とする光学素子。
1. An area having a relatively low reflectance with respect to vacuum ultraviolet rays or X-rays and an area having a relatively high reflectance with respect to vacuum ultraviolet rays or X-rays have a predetermined pattern on a substrate. In the optical element arranged accordingly, at least one thin film layer is formed between the region having a high reflectance and the substrate.
【請求項2】基板上に真空紫外線又はX線に対して相対
的に反射率の低い領域と,真空紫外線又はX線に対して
屈折率の異なる少なくとも2種類の物質を交互に積層し
た多層膜で形成された反射率の高い領域が,所定のパタ
−ンに応じて配置された光学素子において,上記多層膜
で形成された反射率の高い領域と上記基板の間に少なく
とも1層の薄膜層を形成したことを特徴とする光学素
子。
2. A multilayer film in which a region having a relatively low reflectance for vacuum ultraviolet rays or X-rays and at least two kinds of substances having different refractive indexes for vacuum ultraviolet rays or X-rays are alternately laminated on a substrate. In the optical element, in which the high reflectance region formed in accordance with a predetermined pattern is arranged, at least one thin film layer is formed between the high reflectance region formed of the multilayer film and the substrate. An optical element characterized by being formed.
【請求項3】請求項2記載の光学素子において,上記反
射率の低い領域が真空紫外線又はX線に対して屈折率の
異なる少なくとも2種類の物質を交互に積層した多層膜
で形成された反射率の高い多層膜の上部に真空紫外線又
はX線を吸収する物質で形成されたことを特徴とする光
学素子。
3. The optical element according to claim 2, wherein the region having a low reflectance is formed by a multilayer film in which at least two kinds of substances having different refractive indices with respect to vacuum ultraviolet rays or X-rays are alternately laminated. An optical element, which is formed of a substance that absorbs vacuum ultraviolet rays or X-rays on top of a multilayer film having a high rate.
【請求項4】請求項2記載の光学素子おいて,上記薄膜
層表面と上記多層膜との間に上記所定のパタ−ンに応じ
た粗い面の領域,凹凸面領域又は表面に対して所定の角
度の溝が形成されたことを特徴とする光学素子。
4. The optical element according to claim 2, wherein a region of a rough surface, a concavo-convex region or a surface corresponding to the predetermined pattern is provided between the surface of the thin film layer and the multilayer film. An optical element characterized in that a groove having an angle of is formed.
【請求項5】請求項1,2,3又は4記載の光学素子お
いて,上記薄膜層が湿式処理により除去可能な材料であ
ることを特徴とする光学素子。
5. The optical element according to claim 1, 2, 3 or 4, wherein the thin film layer is a material which can be removed by a wet process.
【請求項6】請求項5記載の光学素子おいて,上記薄膜
層が,Al,Cr,C,Si,Ge,Ti,Mo,T
a,W,Ni,Au,Pt,Cu,Ag,Pd,Nb,
Zr,Pb,Snの少なくとも1種類からなることを特
徴とする光学素子。
6. The optical element according to claim 5, wherein the thin film layer is Al, Cr, C, Si, Ge, Ti, Mo, T.
a, W, Ni, Au, Pt, Cu, Ag, Pd, Nb,
An optical element comprising at least one of Zr, Pb, and Sn.
【請求項7】請求項1,2,3,4,5又は6記載の光
学素子おいて,上記多層膜の一方の材料が,C,Si,
B,Al,Ge,SiO2,SiN,BN,B4C,SiC,
Be,AlN及びこれらの合金の内,少なく一つを含み,
他の材料がMo,W,Ni,Ru,Re,Rh,Au,Pd,
Pt,V,Cu,Cr,Co,Pb,Ta及びこれらの合金,
窒化物,炭化物,ホウ化物の内,少なく一つを含むこと
を特徴とする光学素子。
7. The optical element according to claim 1, 2, 3, 4, 5 or 6, wherein one material of the multilayer film is C, Si,
B, Al, Ge, SiO 2 , SiN, BN, B 4 C, SiC,
Be, AlN and at least one of these alloys,
Other materials are Mo, W, Ni, Ru, Re, Rh, Au, Pd,
Pt, V, Cu, Cr, Co, Pb, Ta and their alloys,
An optical element characterized by containing at least one of nitride, carbide and boride.
【請求項8】基板上に,少なくとも1層の薄膜層を形成
する第1の工程と,上記薄膜の上に真空紫外線又はX線
に対して光学定数の異なる少なくとも2種類の物質を交
互に積層した多層膜を形成する第2の工程と,上記多層
膜に真空紫外線又はX線に対して相対的に反射率の高い
領域と反射率の低い領域を所定のパタ−ンに応じて配置
する第3の工程とを含むことを特徴とする光学素子の製
造方法。
8. A first step of forming at least one thin film layer on a substrate and at least two kinds of substances having different optical constants for vacuum ultraviolet rays or X-rays are alternately laminated on the thin film. And a second step of forming a multilayer film having a high reflectance and a region having a low reflectance with respect to vacuum ultraviolet rays or X-rays on the multilayer film according to a predetermined pattern. 3. The method for manufacturing an optical element, which comprises the step 3).
【請求項9】請求項8記載の光学素子の製造方法におい
て、上記第1の工程が,スパッタリング蒸着法,化学気
相成長法,真空蒸着法,スピン塗布法,液相成長法,メ
ッキ法のうち,少なくともいずれか1つの方法を含むこ
とを特徴とする製造方法。
9. The method for manufacturing an optical element according to claim 8, wherein the first step is a sputtering vapor deposition method, a chemical vapor deposition method, a vacuum vapor deposition method, a spin coating method, a liquid phase epitaxy method, or a plating method. Of these, at least one method is included.
【請求項10】請求項8記載の光学素子の製造方法にお
いて、上記第3の工程が,上記多層膜の上部に真空紫外
線又はX線を吸収する物質で上記を形成することを特徴
とする光学素子の製造方法。
10. The method of manufacturing an optical element according to claim 8, wherein the third step is to form the layer on the upper part of the multilayer film with a substance that absorbs vacuum ultraviolet rays or X-rays. Device manufacturing method.
【請求項11】請求項8記載の光学素子の製造方法にお
いて、上記第3の工程が,上記反射率の低い領域として
上記多層膜を変質させる工程を含むことを特徴とする光
学素子の製造方法。
11. The method of manufacturing an optical element according to claim 8, wherein the third step includes a step of modifying the multilayer film as the region having the low reflectance. .
【請求項12】請求項8記載の光学素子の製造方法にお
いて、上記第3の工程が,上記反射率の低い領域として
上記多層膜を除去させる工程を含むことを特徴とする光
学素子の製造方法。
12. The method of manufacturing an optical element according to claim 8, wherein the third step includes a step of removing the multilayer film as a region having the low reflectance. .
【請求項13】基板上に,少なくとも1層の薄膜層を形
成する第1の工程と,上記薄膜層表面に所定のパタ−ン
に応じて粗さを形成するか,凹凸を形成するか又は表面
に対して所定の角度で溝を形成する第2の工程と,上記
薄膜層上に真空紫外線又はX線に対して屈折率の異なる
少なくとも2種類の物質を交互に積層した多層膜を形成
する第3の工程を含むことを特徴とする製造方法。
13. A first step of forming at least one thin film layer on a substrate, and forming roughness or unevenness on the surface of the thin film layer according to a predetermined pattern, or A second step of forming a groove at a predetermined angle with respect to the surface, and a multilayer film in which at least two kinds of substances having different refractive indexes with respect to vacuum ultraviolet rays or X-rays are alternately laminated on the thin film layer. A manufacturing method comprising a third step.
【請求項14】請求項8,9,10,11,12又は1
3記載の光学素子の製造方法によって製造された光学素
子の上記薄膜層及び上記多層膜を除去し、上記薄膜層及
び上記多層膜が除かれた基板上に更に薄膜層又は多層膜
の少なくとも1つの層を形成する第4の工程を含むこと
を特徴とする製造方法。
14. A method according to claim 8, 9, 10, 11, 12 or 1.
3. The thin film layer and the multilayer film of the optical element manufactured by the method for manufacturing an optical element according to claim 3, and at least one of the thin film layer and the multilayer film on the substrate from which the thin film layer and the multilayer film are removed. A manufacturing method comprising a fourth step of forming a layer.
【請求項15】請求項14記載の光学素子の製造方法に
おいて、上記第4の工程が請求項8,9,10,11,
12又は13記載の光学素子の製造方法によって製造さ
れた光学素子を検査する工程を含み,上記光学素子の多
層膜に欠陥がある場合に上記基板から上記薄膜層と多層
膜を除去することを特徴とする光学素子の製造方法。
15. The method of manufacturing an optical element according to claim 14, wherein the fourth step is the steps of claim 8, 9, 10, 11,
12. An optical element manufactured by the method for manufacturing an optical element according to 12 or 13 is inspected, wherein the thin film layer and the multilayer film are removed from the substrate when the multilayer film of the optical element has a defect. And a method for manufacturing an optical element.
【請求項16】請求項15記載の光学素子の製造方法に
おいて、上記光学素子を検査する工程がX線顕微鏡によ
り検査することを含むことを特徴とする光学素子の製造
方法。
16. The method of manufacturing an optical element according to claim 15, wherein the step of inspecting the optical element includes inspecting with an X-ray microscope.
【請求項17】請求項14,又は15又は16記載の光
学素子の製造方法において、上記基板から上記薄膜層と
多層膜を除去する工程がりん酸,過酸化水素水,酢酸,
硝酸,水,NaOH,KOH,硝酸第2セリウム,アン
モニウム塩,硫酸,塩酸,弗酸,エチレンジアンミン,
ホウ酸の少なくとも1つを含む溶液の湿式処理により行
うことを特徴とする光学素子の製造方法。
17. The method of manufacturing an optical element according to claim 14, 15 or 16, wherein the step of removing the thin film layer and the multilayer film from the substrate is phosphoric acid, hydrogen peroxide solution, acetic acid,
Nitric acid, water, NaOH, KOH, cerium nitrate, ammonium salt, sulfuric acid, hydrochloric acid, hydrofluoric acid, ethylene diamine,
A method for manufacturing an optical element, which comprises performing a wet treatment of a solution containing at least one boric acid.
JP27284492A 1992-10-12 1992-10-12 Optical element and method for manufacturing optical element Expired - Fee Related JP3240189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27284492A JP3240189B2 (en) 1992-10-12 1992-10-12 Optical element and method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27284492A JP3240189B2 (en) 1992-10-12 1992-10-12 Optical element and method for manufacturing optical element

Publications (2)

Publication Number Publication Date
JPH06124876A true JPH06124876A (en) 1994-05-06
JP3240189B2 JP3240189B2 (en) 2001-12-17

Family

ID=17519567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27284492A Expired - Fee Related JP3240189B2 (en) 1992-10-12 1992-10-12 Optical element and method for manufacturing optical element

Country Status (1)

Country Link
JP (1) JP3240189B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191356A2 (en) * 2000-09-20 2002-03-27 Carl Zeiss Stiftung Optical element and method of recovering a substrate
JP2003287875A (en) * 2002-01-24 2003-10-10 Hitachi Ltd Method of manufacturing mask and method of manufacturing semiconductor integrated circuit device
JP2005302963A (en) * 2004-04-09 2005-10-27 Canon Inc Exposure device
DE102008054882A1 (en) 2008-01-08 2009-07-16 Carl Zeiss Smt Ag Repair process for optical elements with coating and corresponding optical elements
JP2011103344A (en) * 2009-11-10 2011-05-26 Toppan Printing Co Ltd Reflection type projection exposure mask blank, reflection type projection exposure mask, and method of manufacturing reflection type projection exposure mask
JP2011222612A (en) * 2010-04-06 2011-11-04 Toppan Printing Co Ltd Reflective mask for euv and method of manufacturing the same
JP2012182289A (en) * 2011-03-01 2012-09-20 Toppan Printing Co Ltd Reflective mask blank and manufacturing method thereof, and reflective mask and manufacturing method thereof
US8488127B2 (en) 2004-06-04 2013-07-16 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
CN104932194A (en) * 2015-07-22 2015-09-23 京东方科技集团股份有限公司 Mask plate, manufacturing method thereof, and recycling method of mask plate
US9334830B2 (en) 2014-06-06 2016-05-10 General Electric Company Piston assembly for a reciprocating engine
US9470179B2 (en) 2014-06-06 2016-10-18 General Electric Company Piston assembly for a reciprocating engine
JP2017181733A (en) * 2016-03-30 2017-10-05 Hoya株式会社 Method for regenerating substrate with multilayer film, method for manufacturing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191356A3 (en) * 2000-09-20 2003-11-19 Carl Zeiss Stiftung Optical element and method of recovering a substrate
EP1191356A2 (en) * 2000-09-20 2002-03-27 Carl Zeiss Stiftung Optical element and method of recovering a substrate
JP2003287875A (en) * 2002-01-24 2003-10-10 Hitachi Ltd Method of manufacturing mask and method of manufacturing semiconductor integrated circuit device
JP2005302963A (en) * 2004-04-09 2005-10-27 Canon Inc Exposure device
US8488127B2 (en) 2004-06-04 2013-07-16 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
US8823948B2 (en) 2004-06-04 2014-09-02 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
DE102008054882A1 (en) 2008-01-08 2009-07-16 Carl Zeiss Smt Ag Repair process for optical elements with coating and corresponding optical elements
US8795839B2 (en) 2008-01-08 2014-08-05 Carl Zeiss Smt Gmbh Repair method for optical elements having a coating and corresponding optical elements
JP2011103344A (en) * 2009-11-10 2011-05-26 Toppan Printing Co Ltd Reflection type projection exposure mask blank, reflection type projection exposure mask, and method of manufacturing reflection type projection exposure mask
JP2011222612A (en) * 2010-04-06 2011-11-04 Toppan Printing Co Ltd Reflective mask for euv and method of manufacturing the same
JP2012182289A (en) * 2011-03-01 2012-09-20 Toppan Printing Co Ltd Reflective mask blank and manufacturing method thereof, and reflective mask and manufacturing method thereof
US9334830B2 (en) 2014-06-06 2016-05-10 General Electric Company Piston assembly for a reciprocating engine
US9470179B2 (en) 2014-06-06 2016-10-18 General Electric Company Piston assembly for a reciprocating engine
CN104932194A (en) * 2015-07-22 2015-09-23 京东方科技集团股份有限公司 Mask plate, manufacturing method thereof, and recycling method of mask plate
JP2017181733A (en) * 2016-03-30 2017-10-05 Hoya株式会社 Method for regenerating substrate with multilayer film, method for manufacturing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Also Published As

Publication number Publication date
JP3240189B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
JP4652946B2 (en) Reflective mask blank substrate manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
US6048652A (en) Backside polish EUV mask and method of manufacture
US5265143A (en) X-ray optical element including a multilayer coating
US5272744A (en) Reflection mask
TWI464528B (en) EUV micro-shadow with a reflective mask base, and EUV micro-shadow with a reflective mask
EP1421443B1 (en) Damascene extreme ultraviolet lithography alternative phase shift photomask and method of making
US20220299862A1 (en) Reflective mask blank for euv lithography, reflective mask for euv lithography, and method for manufacturing mask blank and mask
US5356662A (en) Method for repairing an optical element which includes a multilayer coating
JP3240189B2 (en) Optical element and method for manufacturing optical element
US11822229B2 (en) Reflective mask blank for EUV lithography, mask blank for EUV lithography, and manufacturing methods thereof
US6905801B2 (en) High performance EUV mask
JP7478842B2 (en) Extreme UV mask absorber material
JP2883100B2 (en) Half mirror or beam splitter for soft X-ray and vacuum ultraviolet
CN115427888A (en) Extreme ultraviolet mask absorber material
US5485497A (en) Optical element and projection exposure apparatus employing the same
JPH0727198B2 (en) Multi-layer reflective mask
KR20220139879A (en) Method for manufacturing a reflective mask blank, a reflective mask, and a semiconductor device
WO2022065144A1 (en) Multilayer reflective film-equipped substrate, reflective mask blank, reflective mask manufacturing method, and semiconductor device manufacturing method
JP2000031021A (en) Reflective mask and method of producing device using the same
JPH05144710A (en) Optical element and fabrication thereof
JP2005099571A (en) Multilayered film reflection mirror, film-deposition method of reflection multilayered film, film-deposition device and exposure device
JP2009519593A (en) Reflective photolithography mask and method of making the mask
JPH06177019A (en) Optical element and its manufacture
JP3266994B2 (en) Reflective mask
WO2021026056A1 (en) Euv mask blanks and methods of manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees