JPH06124708A - Conductive composition containing polyvinylidene fluoride and battery using the composition - Google Patents

Conductive composition containing polyvinylidene fluoride and battery using the composition

Info

Publication number
JPH06124708A
JPH06124708A JP4296396A JP29639692A JPH06124708A JP H06124708 A JPH06124708 A JP H06124708A JP 4296396 A JP4296396 A JP 4296396A JP 29639692 A JP29639692 A JP 29639692A JP H06124708 A JPH06124708 A JP H06124708A
Authority
JP
Japan
Prior art keywords
composition
polyvinylidene fluoride
polyaniline
battery
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4296396A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kahata
利幸 加幡
Toshiyuki Osawa
利幸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4296396A priority Critical patent/JPH06124708A/en
Publication of JPH06124708A publication Critical patent/JPH06124708A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a battery having high current density and long cycle lifetime via the use of a conductive composition having enhanced strength and adhesive quality as a positive electrode by applying a conductive composition containing polyvinylidene fluoride or the like as a binding agent. CONSTITUTION:A soluble conductive high polymer and polyvinylidene fluoride are evenly dissolved in a solvent, and thereafter the solvent is removed. As a result, a conductive composition having an adhesive conductive component is formed. In this case, when a composition used concurrently with polyaniline is applied as a binding agent, the strength and binding quality of the polyaniline are enhanced, while the characteristics thereof being maintained. Thus, when a positive electrode made of the composition is used, a battery having high current density and long cycle lifetime can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可溶性導電性高分子及び
ポリフッ化ビニリデンからなる導電性組成物、及びそれ
を電池用電極の結着剤に用いることを特徴とする電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive composition composed of a soluble conductive polymer and polyvinylidene fluoride, and a battery using the same as a binder for a battery electrode.

【0002】[0002]

【従来技術】ポリアニリンは導電性、酸化還元特性を有
することから、導電材料、電磁波シールド、センサー、
電池、コンデンサー等への応用が検討されている。しか
しながら、ポリアニリンは膜としての強度に劣るため種
々の検討が行われている。例えば、第28回電池討論会
予稿集、P125(1987)ではポリアニリンをN−
メチルピロリドンに溶解し、キャストによりポリアニリ
ンフィルムを得る方法が提案されている。しかしながら
ポリアニリンフィルムの強度が十分でなく、基板との密
着性も十分でない。また、WO90/13601公報で
はポリアニリンとポリアミドをギ酸に溶解させキャスト
により高強度ポリアニリン/ポリアミドの組成物を得る
方法が提案されている。しかしながら、溶媒にギ酸を用
いなければならないため基板、機器の腐食の問題があ
る。また、粉末活物質を用いた電池においてはポリフッ
化ビニリデンの安定性、耐溶媒性、結着性に優れること
を利用し、電極の結着剤として用いられている。しかし
ながら、電極反応を行なうためには電極の導電性を高く
する必要があるが、ポリフッ化ビニリデンは絶縁性であ
るため、電極作製には多量の導電剤を使用する必要があ
り、導電性を有する結着剤が求められていた。
2. Description of the Related Art Since polyaniline has conductivity and redox properties, it is used as a conductive material, an electromagnetic wave shield, a sensor,
Applications to batteries, capacitors, etc. are under consideration. However, since polyaniline is inferior in strength as a film, various studies have been conducted. For example, in P125 (1987) of the 28th Battery Symposium Proceedings, polyaniline was used as N-
A method of obtaining a polyaniline film by dissolving it in methylpyrrolidone and casting it has been proposed. However, the strength of the polyaniline film is not sufficient, and the adhesion with the substrate is not sufficient. Further, WO 90/13601 proposes a method of obtaining a high-strength polyaniline / polyamide composition by dissolving polyaniline and polyamide in formic acid and casting. However, since formic acid must be used as a solvent, there is a problem of corrosion of substrates and equipment. Further, in a battery using a powdered active material, it has been used as a binder for electrodes by utilizing the excellent stability, solvent resistance and binding property of polyvinylidene fluoride. However, in order to carry out the electrode reaction, it is necessary to increase the conductivity of the electrode, but since polyvinylidene fluoride is insulative, it is necessary to use a large amount of a conductive agent for electrode preparation, and it has conductivity. A binder was sought.

【0003】[0003]

【本発明が解決しようとする課題】本発明の1つの目的
は、ポリアニリンの特色を生かしつつ、それ自体の強度
と接着性を改良した組成物を提供する点にある。本発明
の他の目的は、ポリフッ化ビニリデンの特色を生かした
組成物を提供する点にある。また、本発明のもう1つの
目的は、該組成物を電極形成用等の結着剤として使用す
る点にある。
SUMMARY OF THE INVENTION One object of the present invention is to provide a composition which has the characteristics of polyaniline while improving its strength and adhesiveness. Another object of the present invention is to provide a composition that takes advantage of the characteristics of polyvinylidene fluoride. Another object of the present invention is to use the composition as a binder for forming electrodes.

【0004】[0004]

【課題を解決するための手段】本発明は、可溶性導電性
高分子とポリフッ化ビニリデンからなる導電性組成物に
関する。
The present invention relates to a conductive composition comprising a soluble conductive polymer and polyvinylidene fluoride.

【0005】前記可溶性導電性高分子とは、ポリフッ化
ビニリデンの溶媒に可溶性の導電性高分子を意味する。
具体的にはポリフッ化ビニリデンはジメチルホルムアミ
ド、N−メチルピロリドン、テトラヒドロフラン等の溶
媒に可溶な導電性高分子であれば差し支えない。この種
の導電性高分子は、例えばつぎのような単量体を重合さ
せることにより得ることができる。すなわち、 (1)アニリン類 特開昭61−197633、特開平1−301714、
特開平2−166165、特開平2−211230、特
開平2−220373、特表平3−505892等参
照。 (2)アニリノアニリン類 例えば、式
The soluble conductive polymer means a conductive polymer soluble in a solvent of polyvinylidene fluoride.
Specifically, polyvinylidene fluoride may be a conductive polymer soluble in a solvent such as dimethylformamide, N-methylpyrrolidone and tetrahydrofuran. This type of conductive polymer can be obtained, for example, by polymerizing the following monomers. That is, (1) anilines, JP-A-61-197633, JP-A-1-301714,
See JP-A-2-166165, JP-A-2-211230, JP-A-2-220373, and JP-A-3-505892. (2) Anilinoanilines For example, the formula

【化1】 (式中、R1やR2は水素、アルキルまたはアルコキシで
あることができる) (3)ピロール類 例えば、式
[Chemical 1] (In the formula, R 1 and R 2 can be hydrogen, alkyl or alkoxy.) (3) Pyrroles

【化2】 (式中、R3、R4、R5は水素、アルキルおよびアルコ
キシよりなる群から選ばれた基であるが、R3、R4、R
5のうちの少なくとも1つはアルキルまたはアルコキシ
である) (4)チオフェン類 例えば、式
[Chemical 2] (In the formula, R 3 , R 4 and R 5 are groups selected from the group consisting of hydrogen, alkyl and alkoxy, and R 3 , R 4 and R 5
At least one of 5 is alkyl or alkoxy) (4) Thiophenes

【化3】 (式中、R6とR7は水素、アルキルおよびアルコキシよ
りなる群から選ばれた基であるが、R6とR7のうち少な
くとも1つはアルキルまたはアルコキシである)などを
挙げることができる。前記〔化1〕のモノマーからは、
[Chemical 3] (In the formula, R 6 and R 7 are groups selected from the group consisting of hydrogen, alkyl and alkoxy, but at least one of R 6 and R 7 is alkyl or alkoxy) and the like. . From the monomer of [Chemical Formula 1],
formula

【化4】 のポリマーが、前記〔化2〕のモノマーからは、式[Chemical 4] From the monomer of the above [Chemical formula 2]

【化5】 のポリマーが、前記〔化3〕のモノマーからは、式[Chemical 5] From the monomer of the above [Chemical formula 3]

【化6】 のポリマーが、それぞれ得られる。導電性や強度等を考
慮するとポリアニリン類が好適である。
[Chemical 6] Polymers are obtained respectively. Polyanilines are preferable in consideration of conductivity and strength.

【0006】本発明の導電性組成物における可溶性導電
性高分子はドープ状態、脱ドープ状態、いずれの状態の
ものも用いることができる。脱ドープ状態の可溶性導電
性高分子は溶媒への溶解性が大きいが導電性を付与する
ためにポリフッ化ビニリデンと複合後、ドーピングを行
う必要がある。ドーピングに用いるドーパントとして
は、特表平3−505892、特開平1−30171
4、特開平2−166165、特開平2−21123
0、特開平2−220373に記載されているようなド
ーパントが使用できる。具体例を挙げれば、塩酸、硫
酸、過塩素酸、硝酸、ホウフッ酸、塩素、臭素、ヨウ
素、塩化水素等のハロゲンアニオン、ヘキサフルオロリ
ン、ヘキサフルオロヒ素、テトラフルオロホウ素等のハ
ロゲン化物アニオン、アルキルベンゼンスルホン酸、ベ
ンゼンスルホン酸、ニトロベンゼンスルホン酸、β−ナ
フタレンスルホン酸等のスルホン酸アニオン、過塩素
酸、過塩素酸カリウム等の過塩素酸アニオン、硫酸等の
硫酸アニオン、クロマニル、ブロマニル、ジクロロベン
ゾキノン、ベンゾキノン、アントラキノン、トルキノ
ン、テトラメチル−p−ベンゾキノン、テトラフルオロ
テトラシアノキノジメタン、テトラシアノキノジメタ
ン、テトラシアノエチレン、2,3−ジクロロ−5,6
−ジシアノ−p−ベンゾキノン等の有機アクセプターが
挙げられ、これらは単独または混合して用いられ、ドー
ピング処理も前記公報記載の処理方法がすべて使用でき
る。1つの具体的方法としては前記ドーパントを含む化
合物と脱ドープ状態の可溶性導電性高分子を接触するこ
とにより得られる。この中でも特に導電性、腐食性、強
度を考慮すると、有機アクセプターが最も好ましい。前
記ドーピング方法により作製したドープ状態の可溶性導
電性高分子を用いる場合は一般に溶媒への溶解性が脱ド
ープ状態のものに比べ劣るが、有機アクセプターをドー
プさせた可溶性導電性高分子は溶媒への溶解性が高く、
組成物の導電性、強度が高く好ましい。
The soluble conductive polymer in the conductive composition of the present invention may be in a doped or undoped state. The soluble conductive polymer in the undoped state has a high solubility in a solvent, but in order to impart conductivity, it is necessary to perform doping after compounding with polyvinylidene fluoride. As a dopant used for doping, Japanese Patent Laid-Open No. 3-505892 and Japanese Patent Laid-Open No. 30171/1991.
4, JP-A-2-166165, JP-A-2-21123
No. 0, a dopant as described in JP-A-2-220373 can be used. Specific examples include halogen anions such as hydrochloric acid, sulfuric acid, perchloric acid, nitric acid, borofluoric acid, chlorine, bromine, iodine and hydrogen chloride, halide anions such as hexafluoroline, hexafluoroarsenic and tetrafluoroboron, and alkylbenzene. Sulfonic acid, benzenesulfonic acid, nitrobenzenesulfonic acid, sulfonate anion such as β-naphthalenesulfonic acid, perchloric acid, perchlorate anion such as potassium perchlorate, sulfate anion such as sulfuric acid, chromanyl, bromanil, dichlorobenzoquinone, Benzoquinone, anthraquinone, toluquinone, tetramethyl-p-benzoquinone, tetrafluorotetracyanoquinodimethane, tetracyanoquinodimethane, tetracyanoethylene, 2,3-dichloro-5,6
Examples thereof include organic acceptors such as -dicyano-p-benzoquinone, which may be used alone or in combination, and the doping treatment may be performed by any of the treatment methods described in the above publications. As one specific method, it can be obtained by contacting a compound containing the dopant with a soluble conductive polymer in a dedoped state. Among these, organic acceptors are most preferable in consideration of conductivity, corrosiveness and strength. When using a soluble conductive polymer in a doped state prepared by the above-mentioned doping method, the solubility in a solvent is generally inferior to that in a dedoped state, but a soluble conductive polymer doped with an organic acceptor does not dissolve in a solvent. High solubility,
The composition is preferable because of its high conductivity and strength.

【0007】本発明における組成物中の可溶性導電性高
分子の量としては1〜99重量%、好ましくは5〜95
重量%、とくに好ましくは20〜90重量%である。
The amount of the soluble conductive polymer in the composition of the present invention is 1 to 99% by weight, preferably 5 to 95%.
%, Particularly preferably 20 to 90% by weight.

【0008】次に本発明の組成物の製造方法について述
べる。本発明の組成物は可溶性導電性高分子及びポリフ
ッ化ビニリデンを溶媒に溶解後、溶媒を除去することに
より均質な可溶性導電性高分子/ポリフッ化ビニリデン
組成物を得ることができる。可溶性導電性高分子及びポ
リフッ化ビニリデンの溶媒としてはN−メチルピロリド
ン、テトラヒドロフラン、ジメチルホルムアミド等を例
示することができる。溶媒の除去方法としては、加熱あ
るいは減圧による蒸発、可溶性導電性高分子及びポリフ
ッ化ビニリデン双方をほとんど溶解しない溶媒への接触
等により除去することができ、求める組成物の形状、強
度等により適宜製造法が選択される。本発明の組成物は
フィルム状、粉末状、繊維状に加工することができる。
また本発明の組成物は結着性を有するため加圧成型、加
熱成型等を行うことにより種々の形状に加工することが
でき、各種粉体活物質(例えば、無機酸化物粉体、無機
カルコゲン化合物粉体、導電性高分子粉体等)の結着剤
として用いることができる。
Next, a method for producing the composition of the present invention will be described. The composition of the present invention can obtain a homogeneous soluble conductive polymer / polyvinylidene fluoride composition by dissolving the soluble conductive polymer and polyvinylidene fluoride in a solvent and then removing the solvent. Examples of the solvent for the soluble conductive polymer and polyvinylidene fluoride include N-methylpyrrolidone, tetrahydrofuran, dimethylformamide and the like. As a method for removing the solvent, the solvent can be removed by evaporation by heating or reduced pressure, contact with a solvent that hardly dissolves both the soluble conductive polymer and polyvinylidene fluoride, and the shape and strength of the desired composition. The law is selected. The composition of the present invention can be processed into a film, powder or fiber.
Further, since the composition of the present invention has a binding property, it can be processed into various shapes by performing pressure molding, heat molding, etc., and various powder active materials (eg, inorganic oxide powder, inorganic chalcogen). Compound powder, conductive polymer powder, etc.).

【0009】さらに、前記可溶性導電性高分子、ポリフ
ッ化ビニリデン、溶媒からなる溶液には他の任意の粉体
を分散することができ、その粉体を分散させた溶液から
溶媒を除去することにより粉体を含有した可溶性導電性
高分子/ポリフッ化ビニリデン組成物を得ることができ
る。本発明の組成物に含有可能な粉体の量としては0〜
95%、好ましくは5〜90%である。本発明の組成物
に含有させる粉体としては各種導電性材料、光機能性材
料、電池材料等の材料を用いることができる。
Further, any other powder can be dispersed in the solution containing the soluble conductive polymer, polyvinylidene fluoride and the solvent, and the solvent is removed from the solution in which the powder is dispersed. A soluble conductive polymer / polyvinylidene fluoride composition containing powder can be obtained. The amount of powder that can be contained in the composition of the present invention is 0 to
95%, preferably 5 to 90%. As the powder to be contained in the composition of the present invention, various conductive materials, optical functional materials, battery materials and the like can be used.

【0010】次に本発明の組成物の最も効果があるケー
スとしては電池の電極用結着剤に用いた場合である。以
下これについて述べる。電極の活物質としての正極活物
質としては本発明の可溶性導電性高分子/ポリフッ化ビ
ニリデン組成物も活物質として機能するが、Mn、C
o、Ni、V、Mo、W等の遷移金属の酸化物、カルコ
ゲン化合物、アルカリ金属との複合酸化物、あるいはポ
リアセチレン、ポリピロール、ポリチオフェン、ポリカ
ルバゾール、ポリアズレン等の導電性高分子、炭素体等
を例示することができる。負極活物質としてはLiとA
l、Mn、Pb等の合金、炭素体等を例示することがで
きる。
The most effective case of the composition of the present invention is when it is used as a binder for battery electrodes. This will be described below. As the positive electrode active material as the electrode active material, the soluble conductive polymer / polyvinylidene fluoride composition of the present invention also functions as the active material, but Mn, C
oxides of transition metals such as o, Ni, V, Mo and W, chalcogen compounds, composite oxides with alkali metals, conductive polymers such as polyacetylene, polypyrrole, polythiophene, polycarbazole and polyazulene, carbon bodies, etc. It can be illustrated. Li and A as the negative electrode active material
Examples thereof include alloys such as 1, Mn, and Pb, carbon bodies, and the like.

【0011】次に前記電極を用いた場合の電池について
述べる。この電池は基本的には、正極、負極、電解質か
ら構成される。本発明の電池は正極として本発明組成物
を結着剤として成形した電極が用いられる。負極として
は前記電極のほか、Li、Na、K等のアルカリ金属、
LiとAl、Mn、Pb等の合金、炭素体等を使用する
ことができる。
Next, a battery using the above electrode will be described. This battery is basically composed of a positive electrode, a negative electrode and an electrolyte. In the battery of the present invention, an electrode formed by using the composition of the present invention as a binder is used as the positive electrode. As the negative electrode, in addition to the above electrodes, alkali metals such as Li, Na and K
An alloy of Li and Al, Mn, Pb, or the like, a carbon body, or the like can be used.

【0012】前記電解質としては、以下に示す陰イオン
または陽イオンが用いられる。陰イオンとしては、例え
ばPF6 -、SbF6 -、As6 -等のVa族の元素のハロゲ
ン化物アニオン、BF4 -、BR4 - (Rはフェニル基、
アルキル基)等のIIIa族元素のアニオン、Cl-、Br
-、I- 等のハロゲンアニオン、過塩素酸アニオン、ト
リフルオロメタンスルホン酸アニオン等が挙げられる。
陽イオンとしては例えばLi+、Na+、K+ 等のアルカ
リ金属カチオン、(R4N)+(Rは炭素数1〜20の炭
化水素基)等が挙げられる。前記電解質を与える化合物
としてはたとえば、LiPF6、LiSbF6、LiAs
6、LiBF4、LiClO4、LiCF3SO3、Li
I、KPF6、KClO4、NaPF6、〔(n−Bu)4
N〕BF4、〔(n−Bu)4N〕ClO4、LiAlC
4等を例示することができるが特にこれらに限定され
るものではない。
The following anions or cations are used as the electrolyte. Examples of the anion include halide anions of Va group elements such as PF 6 , SbF 6 , As 6 , BF 4 , BR 4 (R is a phenyl group,
Anions of group IIIa elements such as alkyl groups), Cl , Br
- , I-, and other halogen anions, perchlorate anions, trifluoromethanesulfonate anions, and the like.
For example Li + as a cation, Na +, K +, etc. of an alkali metal cation, (R 4 N) + ( R is a hydrocarbon group having 1 to 20 carbon atoms) and the like. Examples of the compound that provides the electrolyte include LiPF 6 , LiSbF 6 , and LiAs.
6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , Li
I, KPF 6 , KClO 4 , NaPF 6 , [(n-Bu) 4
N] BF 4 , [(n-Bu) 4 N] ClO 4 , LiAlC
Examples thereof include l 4 and the like, but the invention is not limited thereto.

【0013】電解質溶液を構成する溶媒は特に限定する
ものではないが、比較的、極性の大きい溶媒が好適に用
いられる。具体的には、プロピレンカーボネート、エチ
レンカーボネート、ベンゾニトリル、アセトニトリル、
テトラヒドロフラン、2−メチルテトラヒドロフラン、
γ−ブチルラクトン、ジオキソラン、トリエチルホスフ
ァイト、ジメチルホルムアミド、ジメチルアセトアミ
ド、ジメチルスルホキシド、ジオキサン、ジメトキシエ
タン、ポリエチレングリコール、スルホラン、ジクロロ
エタン、クロルベンゼン、ニトロベンゼン等の有機溶媒
の1種又は2種以上の混合液が挙げられる。
The solvent constituting the electrolyte solution is not particularly limited, but a solvent having a relatively large polarity is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, acetonitrile,
Tetrahydrofuran, 2-methyltetrahydrofuran,
One or a mixture of two or more organic solvents such as γ-butyl lactone, dioxolane, triethyl phosphite, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane, dichloroethane, chlorobenzene and nitrobenzene. Is mentioned.

【0014】セパレータとしては、電解質溶液のイオン
移動に対して低抵抗であり、かつ、溶液保持性に優れた
ものが用いられ、例えば、ガラス繊維フィルタ、ポリエ
ステル、テフロン、ポリフロン、ポリプロピレン等の高
分子ボアフィルタ不織布、あるいは、ガラス繊維とこれ
らの高分子からなる不織布等が挙げられる。また、これ
ら電解液、セパレータのかわりに用いられるものとし
て、固体電解質が挙げられる。例えば、無機系では、A
gCl、AgBr、AgI、LiI等の金属ハロゲン化
物、RbAg45、RbAg44CN等が挙げられる。
また、有機系では、ポリエチレンオキサイド、ポリプロ
ピレンオキサイド、ポリフッ化ビニリデン、ポリアクリ
ルアミド等をポリマーマトリクスとし、前記の電解質塩
をポリマーマトリクス中に溶解した複合体、あるいはこ
れらのゲル架橋体、低分子量ポリエチレンオキサイド、
クラウンエーテル等のイオン解離基をポリマー主鎖にグ
ラフト化した高分子固体電解質、あるいは高分子量重合
体に前記電解液を含有させたゲル状高分子固体電解質が
挙げられる。その1つの具体例としては、本出願人の特
願昭60−172036記載のセパレータ等がある。本
発明の電池の形態は特に限定するものではないが、コイ
ン型、シート型、円筒型、ガム型等の各種電池に実装す
ることができる。
As the separator, one having a low resistance to the movement of ions of the electrolyte solution and an excellent solution holding property is used. For example, a polymer such as a glass fiber filter, polyester, Teflon, polyflon, polypropylene or the like is used. Examples thereof include a bore filter non-woven fabric or a non-woven fabric made of glass fiber and these polymers. A solid electrolyte is used as a substitute for the electrolytic solution and the separator. For example, in an inorganic system, A
Examples thereof include metal halides such as gCl, AgBr, AgI and LiI, RbAg 4 I 5 and RbAg 4 I 4 CN.
Further, in the organic system, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylamide and the like as a polymer matrix, a complex in which the electrolyte salt is dissolved in the polymer matrix, or a gel cross-linked product thereof, a low molecular weight polyethylene oxide,
Examples thereof include a polymer solid electrolyte in which an ionic dissociation group such as crown ether is grafted to the polymer main chain, or a gel polymer solid electrolyte in which the electrolyte solution is contained in a high molecular weight polymer. One specific example thereof is a separator described in Japanese Patent Application No. 60-172036 of the present applicant. The form of the battery of the present invention is not particularly limited, but the battery can be mounted on various batteries such as a coin type, a sheet type, a cylinder type and a gum type.

【0015】[0015]

【実施例】【Example】

ポリアニリンの製造 過硫酸アンモニウムと塩酸からA.G.MacDiar
mid et al.,Conducting Pol
ymers.,105(1987)に示す方法によりポ
リアニリンを合成した。 実施例1 ポリアニリン0.45g、昭和電工製ポリフッ化ビニリ
デン0.05gを10mlのn−メチルピロリドンに溶
解した。この溶液をSUS304基板に塗布した後、1
70℃で加熱し、n−メチルピロリドンを除去した。S
US304基板上には均質なポリアニリン/ポリフッ化
ビニリデン組成物フィルムが得られた。 実施例2 ポリアニリン0.3g、昭和電工製ポリフッ化ビニリデ
ン0.2gを10mlのn−メチルピロリドンに溶解し
た。この溶液をガラス基板に塗布した後、170℃で加
熱し、n−メチルピロリドンを除去した。ガラス基板上
には均質なポリアニリン/ポリフッ化ビニリデン組成物
フィルムが得られた。 実施例3 ポリアニリン0.1g、昭和電工製ポリフッ化ビニリデ
ン0.4gを10mlのジメチルホルムアミドに溶解し
た。この溶液をアルミニウム基板に塗布した後、170
℃で加熱し、ジメチルホルムアミドを除去した。アルミ
ニウム基板上には均質なポリアニリン/ポリフッ化ビニ
リデン組成物フィルムが得られた。
Production of polyaniline A. from ammonium persulfate and hydrochloric acid. G. MacDiar
mid et al. , Conducting Pol
ymers. , 105 (1987) to synthesize polyaniline. Example 1 0.45 g of polyaniline and 0.05 g of polyvinylidene fluoride manufactured by Showa Denko were dissolved in 10 ml of n-methylpyrrolidone. After applying this solution to the SUS304 substrate, 1
It heated at 70 degreeC and removed n-methyl pyrrolidone. S
A homogeneous polyaniline / polyvinylidene fluoride composition film was obtained on a US304 substrate. Example 2 0.3 g of polyaniline and 0.2 g of polyvinylidene fluoride manufactured by Showa Denko were dissolved in 10 ml of n-methylpyrrolidone. After applying this solution to a glass substrate, it was heated at 170 ° C. to remove n-methylpyrrolidone. A homogeneous polyaniline / polyvinylidene fluoride composition film was obtained on the glass substrate. Example 3 0.1 g of polyaniline and 0.4 g of polyvinylidene fluoride manufactured by Showa Denko were dissolved in 10 ml of dimethylformamide. After applying this solution to an aluminum substrate, 170
Heated at ° C to remove dimethylformamide. A homogeneous polyaniline / polyvinylidene fluoride composition film was obtained on an aluminum substrate.

【0016】実施例4 実施例1で製造したポリアニリン/ポリフッ化ビニリデ
ン組成物フィルムを1M過塩素酸HClO4水溶液中に
12時間浸漬した。洗浄、乾燥後、電気伝導度を測定し
たところ1S/cmであった。 実施例5 実施例2で製造したポリアニリン/ポリフッ化ビニリデ
ン組成物フィルムを1M硫酸水溶液中に12時間浸漬し
た。洗浄、乾燥後、電気伝導度を測定したところ0.4
S/cmであった。 実施例6 ポリアニリン0.45g、昭和電工製ポリフッ化ビニリ
デン0.05gを50mMテトラシアノキノジメタン
(TCNQ)を溶解させた10mlのn−メチルピロリ
ドンに溶解した。この溶液をSUS304基板に塗布し
た後、170℃で加熱し、n−メチルピロリドンを除去
した。SUS304基板上には均質なポリアニリン/ポ
リフッ化ビニリデン組成物フィルムが得られた。この組
成物フィルムの電気伝導度を測定したところ2×10-4
S/cmであった。
Example 4 The polyaniline / polyvinylidene fluoride composition film prepared in Example 1 was immersed in a 1M aqueous solution of HClO 4 perchlorate for 12 hours. After washing and drying, the electric conductivity was measured and found to be 1 S / cm. Example 5 The polyaniline / polyvinylidene fluoride composition film produced in Example 2 was immersed in a 1M sulfuric acid aqueous solution for 12 hours. After washing and drying, the electric conductivity was measured and found to be 0.4.
It was S / cm. Example 6 0.45 g of polyaniline and 0.05 g of polyvinylidene fluoride manufactured by Showa Denko were dissolved in 10 ml of n-methylpyrrolidone in which 50 mM tetracyanoquinodimethane (TCNQ) was dissolved. After applying this solution to a SUS304 substrate, it was heated at 170 ° C. to remove n-methylpyrrolidone. A homogeneous polyaniline / polyvinylidene fluoride composition film was obtained on the SUS304 substrate. When the electric conductivity of this composition film was measured, it was 2 × 10 −4.
It was S / cm.

【0017】実施例7 ポリアニリン0.3g、昭和電工製ポリフッ化ビニリデ
ン0.2gを10mlのn−メチルピロリドンに溶解し
た。この溶液をマグネチックスターラーで撹拌している
500mlの水中に投入した。沈殿物を濾過、乾燥を行
い均質なポリアニリン/ポリフッ化ビニリデン組成物粉
末が得られた。この粉体を1M硫酸水溶液中に12時間
浸漬した。洗浄乾燥後、2t/cm2 のプレスにより成
型体を得た。この成型体の電気伝導度は0.3S/cm
であった。
Example 7 0.3 g of polyaniline and 0.2 g of polyvinylidene fluoride manufactured by Showa Denko were dissolved in 10 ml of n-methylpyrrolidone. This solution was put into 500 ml of water which was stirred with a magnetic stirrer. The precipitate was filtered and dried to obtain a homogeneous polyaniline / polyvinylidene fluoride composition powder. This powder was immersed in a 1M sulfuric acid aqueous solution for 12 hours. After washing and drying, a molded product was obtained by pressing at 2 t / cm 2 . The electric conductivity of this molded body is 0.3 S / cm
Met.

【0018】実施例8 MnO2とLiNO3をモル比7:3で混合し400℃で
焼成したMn−Li複合酸化物を1.2g、ポリアニリ
ン0.2g、昭和電工製ポリフッ化ビニリデン0.2g
を50mMテトラシアノキノジメタン(TCNQ)を溶
解させた10mlのn−メチルピロリドンに混合し、マ
グネチックスターラーで撹拌し、SUS304基板に塗
布した後、170℃で加熱し、n−メチルピロリドンを
除去し、二次電池用正極を作製した。負極にLiを用い
電解液に1モルLiClO4/プロピレンカーボネート
溶液を用いて二次電池特性を測定した。なお充放電は2
〜3.7Vの電圧範囲で0.2mA/cm2で行ったと
ころ正極電極重量あたり159mAh/gの放電容量が
得られ、100回以上のサイクル寿命が得られた。 実施例9 実施例8においてMn−Li複合酸化物の代わりにV2
5を用いる以外は実施例8と同様にして二次電池用正
極を作製し、二次電池特性を評価した。161mAh/
gの放電容量が得られ、100回以上のサイクル寿命が
得られた。
Example 8 1.2 g of Mn-Li composite oxide obtained by mixing MnO 2 and LiNO 3 at a molar ratio of 7: 3 and calcined at 400 ° C., 0.2 g of polyaniline, 0.2 g of polyvinylidene fluoride manufactured by Showa Denko.
Was mixed with 10 ml of n-methylpyrrolidone in which 50 mM tetracyanoquinodimethane (TCNQ) was dissolved, stirred with a magnetic stirrer, applied on a SUS304 substrate, and then heated at 170 ° C. to remove n-methylpyrrolidone. Then, a positive electrode for a secondary battery was produced. Secondary battery characteristics were measured using Li as the negative electrode and a 1 mol LiClO 4 / propylene carbonate solution as the electrolytic solution. Charge and discharge is 2
When carried out at 0.2 mA / cm 2 in a voltage range of up to 3.7 V, a discharge capacity of 159 mAh / g per positive electrode weight was obtained, and a cycle life of 100 times or more was obtained. Example 9 In Example 8, V 2 was used instead of the Mn—Li composite oxide.
A positive electrode for a secondary battery was produced in the same manner as in Example 8 except that O 5 was used, and the characteristics of the secondary battery were evaluated. 161mAh /
A discharge capacity of g was obtained, and a cycle life of 100 times or more was obtained.

【0019】実施例10 ポリアニリン0.5g、ポリフッ化ビニリデン0.5g
を10mlのn−メチルピロリドンに溶解した。この溶
液を直径3cmのシャーレに流し込み170℃で加熱
し、n−メチルピロリドンを除去し厚さ300μm、直
径3cmのフィルムを得た。このフィルムを水中に10
日間放置後乾燥を行ったところ、厚さ280μm、直径
2.7cmで変形は少なかった。このフィルムを1N−
HBF4水溶液中に12時間浸漬した。乾燥後のフィル
ムは厚さ305μm、直径3.1cm、導電率7×10
-2S/cmであった。 比較例 ポリアニリン1gを10mlのn−メチルピロリドンに
溶解した。この溶液を直径3cmのシャーレに流し込み
170℃で加熱し、n−メチルピロリドンを除去し厚さ
300μm、直径3cmのフィルムを得た。このフイル
ムを水中に10日間放置後乾燥を行ったところ厚さ12
0μm、直径1.4cmで変形は非常に大きかった。
Example 10 0.5 g of polyaniline and 0.5 g of polyvinylidene fluoride
Was dissolved in 10 ml of n-methylpyrrolidone. This solution was poured into a petri dish having a diameter of 3 cm and heated at 170 ° C. to remove n-methylpyrrolidone to obtain a film having a thickness of 300 μm and a diameter of 3 cm. 10 this film in water
When it was dried after being left for one day, the thickness was 280 μm and the diameter was 2.7 cm, and the deformation was small. This film is 1N-
It was immersed in an HBF 4 aqueous solution for 12 hours. The dried film has a thickness of 305 μm, a diameter of 3.1 cm, and a conductivity of 7 × 10.
It was -2 S / cm. Comparative Example 1 g of polyaniline was dissolved in 10 ml of n-methylpyrrolidone. This solution was poured into a petri dish having a diameter of 3 cm and heated at 170 ° C. to remove n-methylpyrrolidone to obtain a film having a thickness of 300 μm and a diameter of 3 cm. This film was left in water for 10 days and then dried to obtain a thickness of 12
The deformation was very large at 0 μm and a diameter of 1.4 cm.

【0020】[0020]

【効果】本発明により、ポリフッ化ビニリデンを含有す
る新規な導電性組成物を提供することができた。この組
成物は、導電性でありながら結着性を有することから電
極形成用結着剤として有用であり、とくにポリアニリン
と併用した組成物を結着剤として使用した場合には、ポ
リアニリンの特性を生かしつつ、ポリアニリンの強度と
接着性を改善することができた。また、本発明組成物を
用いて作った正極を使用した電池は、電流密度が高く、
サイクル寿命が長いという特色を発揮した。
[Effect] According to the present invention, a novel conductive composition containing polyvinylidene fluoride can be provided. This composition is useful as an electrode-forming binder because it is electrically conductive but has a binding property. In particular, when a composition used in combination with polyaniline is used as a binder, the properties of polyaniline are improved. It was possible to improve the strength and adhesion of polyaniline while making the best use of it. Further, the battery using the positive electrode made using the composition of the present invention has a high current density,
It has the characteristic of long cycle life.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C09J 9/02 JAQ 7415−4J H01M 4/02 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C09J 9/02 JAQ 7415-4J H01M 4/02 C

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 可溶性導電性高分子及びポリフッ化ビニ
リデンからなる導電性組成物。
1. A conductive composition comprising a soluble conductive polymer and polyvinylidene fluoride.
【請求項2】 前記可溶性導電性高分子がポリアニリン
である請求項1記載の導電性組成物。
2. The conductive composition according to claim 1, wherein the soluble conductive polymer is polyaniline.
【請求項3】 前記ポリアニリンが有機アクセプターと
錯体を形成している請求項2記載の導電性組成物。
3. The conductive composition according to claim 2, wherein the polyaniline forms a complex with an organic acceptor.
【請求項4】 前記組成物がフィルム状である請求項
1、2または3記載の導電性組成物。
4. The conductive composition according to claim 1, 2 or 3, wherein the composition is in the form of a film.
【請求項5】 可溶性導電性高分子及びポリフッ化ビニ
リデン双方を可溶な溶媒に均一に溶解した後、溶媒を除
去することを特徴とする導電性組成物の製造方法。
5. A method for producing a conductive composition, which comprises uniformly dissolving both a soluble conductive polymer and polyvinylidene fluoride in a soluble solvent and then removing the solvent.
【請求項6】 請求項1、2または3項記載の組成物よ
りなる電極形成用結着剤。
6. A binder for forming an electrode, which comprises the composition according to claim 1, 2, or 3.
【請求項7】 請求項6記載の結着剤を使用して成形し
た電極を正極として使用したことを特徴とする電池。
7. A battery using the electrode formed by using the binder according to claim 6 as a positive electrode.
JP4296396A 1992-10-08 1992-10-08 Conductive composition containing polyvinylidene fluoride and battery using the composition Pending JPH06124708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296396A JPH06124708A (en) 1992-10-08 1992-10-08 Conductive composition containing polyvinylidene fluoride and battery using the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296396A JPH06124708A (en) 1992-10-08 1992-10-08 Conductive composition containing polyvinylidene fluoride and battery using the composition

Publications (1)

Publication Number Publication Date
JPH06124708A true JPH06124708A (en) 1994-05-06

Family

ID=17833006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296396A Pending JPH06124708A (en) 1992-10-08 1992-10-08 Conductive composition containing polyvinylidene fluoride and battery using the composition

Country Status (1)

Country Link
JP (1) JPH06124708A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758671A3 (en) * 1995-08-10 1997-02-26 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex
US6248474B1 (en) * 1997-11-04 2001-06-19 Nec Corporation Composite electrode for secondary battery and production method thereof
WO2004064079A1 (en) * 2003-01-06 2004-07-29 E. I. Du Pont De Nemours And Company Electrically conductive polymer films
WO2004091017A1 (en) * 2003-04-07 2004-10-21 Lg Chem Ltd. The constitution of the dispersant in the preparation of the electrode active material slurry and the use of the dispersant
KR100463179B1 (en) * 2001-09-26 2004-12-23 삼성에스디아이 주식회사 Preparation method for materials for electrodes of lithium secondary battery and lithium secondary battery
JP2014194951A (en) * 2009-04-02 2014-10-09 Plextronics Inc Binder for lithium ion secondary battery positive electrode, and positive electrode material
JP2016003312A (en) * 2014-06-18 2016-01-12 日立マクセル株式会社 Transparent conductive coating composition, transparent conductive sheet and method of manufacturing the same, and method of forming transparent conductive pattern
KR20190115059A (en) * 2017-02-13 2019-10-10 나노텍 인스트러먼츠, 인코포레이티드 Aluminum secondary battery having high capacity and high energy cathode and manufacturing method
JP2020510301A (en) * 2017-03-20 2020-04-02 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Polyvalent metal ion battery with recompressed graphite worm cathode and method of manufacture
JP2020510300A (en) * 2017-03-22 2020-04-02 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Polyvalent metal ion battery having protected graphite carbon cathode layer and method of manufacture
JP2020515015A (en) * 2017-03-20 2020-05-21 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Multivalent metal ion battery and manufacturing method
CN116239906A (en) * 2022-12-15 2023-06-09 北京石油化工学院 Preparation method and application of magnesium alloy bipolar plate conductive anti-corrosion coating

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716550A (en) * 1995-08-10 1998-02-10 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex and solvent mixture
US5910385A (en) * 1995-08-10 1999-06-08 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex
EP0758671A3 (en) * 1995-08-10 1997-02-26 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex
US6248474B1 (en) * 1997-11-04 2001-06-19 Nec Corporation Composite electrode for secondary battery and production method thereof
KR100463179B1 (en) * 2001-09-26 2004-12-23 삼성에스디아이 주식회사 Preparation method for materials for electrodes of lithium secondary battery and lithium secondary battery
US7192536B2 (en) 2003-01-06 2007-03-20 E. I. Du Pont De Nemours And Company Electrically conductive polymer films and process for making same
US6932921B2 (en) 2003-01-06 2005-08-23 E. I. Du Pont De Nemours And Company Electrically conductive polymer films
WO2004064079A1 (en) * 2003-01-06 2004-07-29 E. I. Du Pont De Nemours And Company Electrically conductive polymer films
WO2004091017A1 (en) * 2003-04-07 2004-10-21 Lg Chem Ltd. The constitution of the dispersant in the preparation of the electrode active material slurry and the use of the dispersant
CN100409470C (en) * 2003-04-07 2008-08-06 株式会社Lg化学 The constitution of the dispersant in the preparation of the electrode active material slurry and the use of the dispersant
US7862929B2 (en) 2003-04-07 2011-01-04 Lg Chem, Ltd. Constitution of the dispersant in the preparation of the electrode active material slurry and the use of the dispersant
JP2014194951A (en) * 2009-04-02 2014-10-09 Plextronics Inc Binder for lithium ion secondary battery positive electrode, and positive electrode material
JP2016003312A (en) * 2014-06-18 2016-01-12 日立マクセル株式会社 Transparent conductive coating composition, transparent conductive sheet and method of manufacturing the same, and method of forming transparent conductive pattern
KR20190115059A (en) * 2017-02-13 2019-10-10 나노텍 인스트러먼츠, 인코포레이티드 Aluminum secondary battery having high capacity and high energy cathode and manufacturing method
JP2020507898A (en) * 2017-02-13 2020-03-12 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Aluminum secondary battery having high capacity and high energy cathode and manufacturing method
JP2020510301A (en) * 2017-03-20 2020-04-02 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Polyvalent metal ion battery with recompressed graphite worm cathode and method of manufacture
JP2020515015A (en) * 2017-03-20 2020-05-21 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Multivalent metal ion battery and manufacturing method
JP2020510300A (en) * 2017-03-22 2020-04-02 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. Polyvalent metal ion battery having protected graphite carbon cathode layer and method of manufacture
CN116239906A (en) * 2022-12-15 2023-06-09 北京石油化工学院 Preparation method and application of magnesium alloy bipolar plate conductive anti-corrosion coating

Similar Documents

Publication Publication Date Title
US5011751A (en) Electrochemical device
JPH11510308A (en) Polymer electrolyte for rechargeable batteries
JPH06124708A (en) Conductive composition containing polyvinylidene fluoride and battery using the composition
JPH1197011A (en) Nonaqueous lithium secondary battery
US5037713A (en) Secondary battery
JP7084587B2 (en) Polymers, electrode active materials and secondary batteries
KR100389713B1 (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
JPH08185851A (en) Electrode for battery and secondary battery using this electrode
EP0164974B1 (en) Polymer having isothianaphthene structure and electrochromic display
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPH07302586A (en) Battery electrode and its manufacture
JP3079291B2 (en) Electrochemically active electrode and electrochemical cell using the same
JP2826850B2 (en) Method for producing polyaniline
JPH08295713A (en) Solid polymer electrolyte, battery and solid electric double layer capacitor containing same, their production and material for solid polymer electrolyte
JP2542221B2 (en) Battery using polyaniline composite electrode
JPH07134987A (en) Positive electrode member for secondary battery and secondary battery using the member
JP2669672B2 (en) Joint
JPH04245166A (en) Secondary battery
JP3161906B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
KR100302191B1 (en) Metal-Polymer Composite Electrode Material and Its Use
JP3019362B2 (en) Rechargeable battery
JPH03167763A (en) Nonaqueous secondary battery
JP2826849B2 (en) Method for producing polyaniline
JPH03269018A (en) Production of polyanilines

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Effective date: 20040517

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees