JPH06123590A - Tacked type heat exchanger - Google Patents

Tacked type heat exchanger

Info

Publication number
JPH06123590A
JPH06123590A JP27156792A JP27156792A JPH06123590A JP H06123590 A JPH06123590 A JP H06123590A JP 27156792 A JP27156792 A JP 27156792A JP 27156792 A JP27156792 A JP 27156792A JP H06123590 A JPH06123590 A JP H06123590A
Authority
JP
Japan
Prior art keywords
groove
flat tube
heat exchanger
corrugated fins
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27156792A
Other languages
Japanese (ja)
Inventor
Masateru Hayashi
昌照 林
Kazuo Ishii
一男 石井
Hidenao Kawai
秀直 川合
Yasuhiko Hirao
康彦 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27156792A priority Critical patent/JPH06123590A/en
Priority to TW82106743A priority patent/TW235337B/en
Priority to KR1019930016344A priority patent/KR940004305A/en
Priority to AU44813/93A priority patent/AU668403B2/en
Priority to DE69316121T priority patent/DE69316121T2/en
Priority to EP95119487A priority patent/EP0709640B1/en
Priority to DE59310250T priority patent/DE59310250T2/en
Priority to US08/113,054 priority patent/US5443116A/en
Priority to EP93113574A priority patent/EP0588117B1/en
Priority to CN931170745A priority patent/CN1065043C/en
Publication of JPH06123590A publication Critical patent/JPH06123590A/en
Priority to AU28441/95A priority patent/AU676116B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To guide flowing-down of condensate sufficiently and to enable prevention of scattering of dewdrops by a method wherein a groove forming a recessed part deep enough to be in contact with the inner surface of the other formed plate is formed in either one of formed plates in a pair. CONSTITUTION:In a chamber 48 of a plate 42, a projecting wall 67 which extends along a partitioning wall 47 in parallel thereto and making the outer surface side of the plate 42 be a groove 71 as a recessed part is formed. The width H of the groove 71 is made larger than the width (h) of the groove 71 on the upstream side. Besides, a corrugated fin 65 is divided into corrugated fins 65a, 65b, 65c and 65d in accordance with the positions of grooves formed by the groove 71 and the projecting wall 47, forming a dividing part 96. drain discharge groove 97 is formed by the grooves formed by the groove 71 and the projecting wall 47 and by the dividing part 96. According to this constitution, the groove having the same depth substantially as the thickness of a flat tube is ensured, flowing-down of condensate can be guided thereby without fail, outflow on the corrugated fin 65 side can be prevented and scattering of dewdrops can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調機用の積層型熱交
換器に関する。
FIELD OF THE INVENTION The present invention relates to a laminated heat exchanger for an air conditioner.

【0002】[0002]

【従来の技術】図5,図6に基づいて従来の積層型熱交
換器を説明する。図5には従来の積層型熱交換器の側
面、図6には右側部の拡大断面を示してある。
2. Description of the Related Art A conventional laminated heat exchanger will be described with reference to FIGS. FIG. 5 shows a side surface of the conventional laminated heat exchanger, and FIG. 6 shows an enlarged cross section of the right side portion.

【0003】図5,図6において、1は偏平チューブで
あり偏平チューブ1はプレス成形された2枚のプレート
2が突合わされて形成されている。偏平チューブ1の一
端部(図中上端部)には出入口タンク部3が形成されて
いる。
5 and 6, reference numeral 1 denotes a flat tube, and the flat tube 1 is formed by abutting two press-formed plates 2. An inlet / outlet tank portion 3 is formed at one end portion (upper end portion in the drawing) of the flat tube 1.

【0004】偏平チューブ1とコルゲートフィン4が交
互に積層され、出入口タンク部3が連結されて積層型熱
交換器(エバポレータ)5が構成されている。
The flat tubes 1 and the corrugated fins 4 are alternately laminated, and the inlet / outlet tank portion 3 is connected to form a laminated heat exchanger (evaporator) 5.

【0005】両端に位置する偏平チューブ1aの外方側
はエンドプレート6となり、出入口タンク部3における
エンドプレート6には流通孔7が設けられている。一方
の流通孔7は流体としての冷媒の導入配管8に連結さ
れ、他方の流通孔7は冷媒の排出配管9に連結されてい
る。
The outer sides of the flat tubes 1a located at both ends serve as end plates 6, and the end plates 6 in the inlet / outlet tank section 3 are provided with flow holes 7. One of the circulation holes 7 is connected to a refrigerant introduction pipe 8 as a fluid, and the other circulation hole 7 is connected to a refrigerant discharge pipe 9.

【0006】導入配管8及び排出配管9はサイドプレー
ト10で固定され、サイドプレート10とエンドプレー
ト6の間にはコルゲートフィン4が設けられている。
The introduction pipe 8 and the discharge pipe 9 are fixed by a side plate 10, and a corrugated fin 4 is provided between the side plate 10 and the end plate 6.

【0007】出入口タンク部3は、偏平チューブ1の板
幅方向に入口部11と出口部12とに仕切られ、エバポ
レータ5を構成した際隣接する出入口タンク部3は入口
部11同士及び出口部12同士が連通孔13によって連
通されている。
The inlet / outlet tank portion 3 is partitioned into an inlet portion 11 and an outlet portion 12 in the plate width direction of the flat tube 1, and when the evaporator 5 is constructed, the adjacent inlet / outlet tank portions 3 are in the inlet portions 11 and the outlet portion 12. The communication holes 13 communicate with each other.

【0008】図7,図8に基づいて偏平チューブ1を説
明する。図7には偏平チューブ1を構成するプレート2
の正面、図8には図7中のVIII−VIII線矢視を示してあ
る。
The flat tube 1 will be described with reference to FIGS. FIG. 7 shows a plate 2 that constitutes the flat tube 1.
7 and FIG. 8 shows the line VIII-VIII in FIG.

【0009】プレート2の上端部には出入口タンク部3
を形成するための膨出部14が設けられ、プレート2の
内空部は中央部の上下方向に延びる仕切壁15によって
2つの室16,17に仕切られている。仕切壁15は下
端部が欠如され、プレート2の下端は冷媒をUターンさ
せるUターン部18となっている。2枚のプレート2を
突き合わせることで、仕切壁15によって、出入口タン
ク部3が入口部11と出口部12とに仕切られると共
に、入口部11に連続する室16と出口部12に連続す
る室17とに仕切られる。更に、室16と室17とはU
ターン部18で連通され、室16,17及びUターン部
18で流体通路が形成されている。
An inlet / outlet tank section 3 is provided at the upper end of the plate 2.
A bulging portion 14 for forming a space is provided, and the inner space of the plate 2 is partitioned into two chambers 16 and 17 by a partition wall 15 that extends vertically in the central portion. The partition wall 15 lacks the lower end portion, and the lower end of the plate 2 is a U-turn portion 18 that makes a U-turn of the refrigerant. By abutting the two plates 2, the partition wall 15 partitions the inlet / outlet tank part 3 into an inlet part 11 and an outlet part 12, and a chamber continuous with the inlet part 11 and a chamber continuous with the outlet part 12. Divided into 17. Further, the chamber 16 and the chamber 17 are U
The turn portion 18 communicates with each other, and the chambers 16 and 17 and the U-turn portion 18 form a fluid passage.

【0010】室16,17には多数のリブ19が突設さ
れ、室16,17内が迷路状に細分化されている。Uタ
ーン部18には案内リブ20が突設され、冷媒は案内リ
ブ20によって室16から室17への流れ(Uターン)
が案内される。
A large number of ribs 19 project from the chambers 16 and 17, and the insides of the chambers 16 and 17 are subdivided into a labyrinth. A guide rib 20 is provided on the U-turn portion 18 so that the refrigerant flows from the chamber 16 to the chamber 17 by the guide rib 20 (U-turn).
Will be guided.

【0011】図9に基づいて上述したエバポレータ5に
おける冷媒の流れを説明する。図9には冷媒の流れ状況
を示してある。
The flow of the refrigerant in the above-described evaporator 5 will be described with reference to FIG. FIG. 9 shows the flow state of the refrigerant.

【0012】エバポレータ5は3つの群21,22,2
3に大別され、導入配管8及び排出配管9が接続される
群21,23における入口部11及び出口部12の配置
が同一となり、群22における入口部11及び出口部1
2の配置が逆になっている。群21と群22の間及び群
22と群23の間で対向する出入口タンク部3は、群2
1の出口部12と群22の入口部11が連通し、群22
の出口部12と群23の入口部11が連通している。そ
して、群21の入口部11はエンドプレート6の流通孔
7により導入配管8につながれ、群23の出口部12は
エンドプレート6の流通孔7により排出配管9につなが
れている。
The evaporator 5 comprises three groups 21, 22, 2
The groups 21 and 23 to which the introduction pipe 8 and the discharge pipe 9 are connected have the same arrangement of the inlet portion 11 and the outlet portion 12, and the inlet portion 11 and the outlet portion 1 in the group 22 are the same.
The arrangement of 2 is reversed. The inlet / outlet tank portions 3 facing each other between the groups 21 and 22 and between the groups 22 and 23 are
The outlet 12 of 1 and the inlet 11 of the group 22 communicate with each other,
The outlet 12 of the group and the inlet 11 of the group 23 communicate with each other. The inlet portion 11 of the group 21 is connected to the introduction pipe 8 by the flow hole 7 of the end plate 6, and the outlet portion 12 of the group 23 is connected to the discharge pipe 9 by the flow hole 7 of the end plate 6.

【0013】導入配管8からエバポレータ5に導入され
た冷媒31は、群21の入口部11から室16を通って
Uターン部18に送られ、Uターン部18でUターンさ
れて室17を通って出口部12に送られる。群21の出
口部12に送られた冷媒31は、群22の入口部11に
送られて群21と同様な流れで群23に送られ、群23
の流体通路(室16,17,Uターン部18)を通って
排出配管9から排出される。
The refrigerant 31 introduced into the evaporator 5 from the introduction pipe 8 is sent from the inlet portion 11 of the group 21 through the chamber 16 to the U-turn portion 18, is U-turned in the U-turn portion 18 and passes through the chamber 17. Sent to the outlet section 12. The refrigerant 31 sent to the outlet 12 of the group 21 is sent to the inlet 11 of the group 22 and sent to the group 23 in the same flow as the group 21,
Is discharged from the discharge pipe 9 through the fluid passage (chambers 16, 17, U-turn portion 18).

【0014】この間、コルゲートフィン4の間に空気3
2が送られ、冷媒31の蒸発潜熱を利用して空気32が
冷却される。
During this time, air 3 is caught between the corrugated fins 4.
2 is sent and the air 32 is cooled using the latent heat of vaporization of the refrigerant 31.

【0015】コルゲートフィン4の偏平部により空気通
路が上下に仕切られている。図10に基づいてコルゲー
トフィン4を説明する。図10には図5中のX−X線矢
視を示してある。
An air passage is vertically divided by the flat portion of the corrugated fin 4. The corrugated fin 4 will be described with reference to FIG. FIG. 10 shows an X-X line arrow in FIG.

【0016】コルゲートフィン4の偏平部4aには、空
気の流れ方向(図中上下方向)に沿って切起しルーバ7
5が成形され、切起しルーバ75により上下に仕切られ
た各空気通路間における取入空気の交換がなされてい
る。
The flat portion 4a of the corrugated fin 4 is cut and raised along the air flow direction (vertical direction in the figure) to form a louver 7.
5 is molded, and intake air is exchanged between the air passages that are vertically partitioned by the cut and raised louvers 75.

【0017】[0017]

【発明が解決しようとする課題】この積の積層型熱交換
器では、熱交換能力の向上と共に凝縮水量が増加してい
る。従来のエバポレータ5では、仕切壁15によって形
成される溝が偏平チューブ1の外表面に存在し、この溝
によって凝縮水の流下の案内を行なっている。しかし、
この溝だけでは流下する凝縮水の水量をさばききれず、
凝縮水がコルゲートフィン4側に流れ出し、空気流によ
って水滴が後方へ吹き飛ばされる、いわゆる露飛びが生
じる不具合があった。また、プレート2のそれぞれに仕
切壁15が存在し、溝の深さが偏平チューブ1の厚さの
半分になり、凝縮水の流下の案内が十分に行なえなかっ
た。
In the laminated heat exchanger of this product, the amount of condensed water increases as the heat exchange capacity improves. In the conventional evaporator 5, a groove formed by the partition wall 15 exists on the outer surface of the flat tube 1, and the groove guides the flow of the condensed water. But,
This groove alone cannot determine the amount of condensed water flowing down,
There is a problem that condensed water flows out toward the corrugated fin 4 side, and water drops are blown back by the air flow, so-called dew splashing occurs. Moreover, since the partition wall 15 was present in each of the plates 2 and the depth of the groove was half the thickness of the flat tube 1, the flow of condensed water could not be sufficiently guided.

【0018】[0018]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、一端に流体の出入口タンク部が設け
られると共に流体通路を形成するコア部の外表面に上下
方向に沿う溝が少なくとも1以上設けられた一対の成形
プレートを突き合わせて偏平チューブとし、該偏平チュ
ーブとコルゲートフィンとを交互に積層し、前記溝によ
って前記偏平チューブの外表面と前記コルゲートフィン
との間にドレン排出溝を形成してなる積層型熱交換器に
おいて、前記一対の成形プレートのいずれか一方に他方
の成形プレートの内面に当接する深さの凹部を成形する
ことにより前記溝を形成したことを特徴とする。
In order to solve the above-mentioned problems, the structure of the present invention is such that a fluid inlet / outlet tank portion is provided at one end and a groove extending vertically is formed on the outer surface of the core portion forming the fluid passage. A flat tube is formed by abutting at least one pair of molding plates provided with each other, and the flat tubes and the corrugated fins are alternately laminated. The drain discharge groove is provided between the outer surface of the flat tube and the corrugated fin by the groove. In the laminated heat exchanger in which the groove is formed, the groove is formed by forming a recess having a depth that abuts an inner surface of the other molding plate in one of the pair of molding plates. .

【0019】また、上記課題を解決するための本発明の
構成は、一端に流体の出入口タンク部が設けられると共
に流体通路を形成するコア部の外表面に上下方向に沿う
溝が少なくとも1以上設けられた一対の成形プレートを
突き合わせて偏平チューブとし、該偏平チューブとコル
ゲートフィンとを交互に積層し、前記溝によって前記偏
平チューブの外表面と前記コルゲートフィンとの間にド
レン排出溝を形成してなる積層型熱交換器において、前
記溝の位置に合わせて前記コルゲートフィンを分割し、
該コルゲートフィンの分割部と前記溝とでドレン排出溝
を形成したことを特徴とする。
Further, according to the structure of the present invention for solving the above-mentioned problems, at least one groove is provided along the vertical direction on the outer surface of the core portion that forms the fluid passage, with the fluid inlet / outlet tank portion provided at one end. The pair of formed plates are abutted to each other to form a flat tube, the flat tubes and the corrugated fins are alternately laminated, and the groove forms a drain discharge groove between the outer surface of the flat tube and the corrugated fin. In the laminated heat exchanger consisting of, the corrugated fin is divided according to the position of the groove,
A drain discharge groove is formed by the divided portion of the corrugated fin and the groove.

【0020】また、上記課題を解決するための本発明の
構成は、一端に流体の出入口タンク部が設けられると共
に流体通路を形成するコア部の外表面に上下方向に沿う
溝が少なくとも1以上設けられた一対の成形プレートを
突き合わせて偏平チューブとし、該偏平チューブとコル
ゲートフィンとを交互に積層し、前記溝によって前記偏
平チューブの外表面と前記コルゲートフィンとの間ドレ
ン排出溝を形成してなる積層型熱交換器において、前記
溝を前記偏平チューブの幅方向に複数設け、それぞれの
溝の幅を空気流の上流側から下流側へ順次広くしたこと
を特徴とする。
Further, in the structure of the present invention for solving the above-mentioned problems, a fluid inlet / outlet tank portion is provided at one end, and at least one groove extending in the vertical direction is provided on the outer surface of the core portion forming the fluid passage. A pair of formed plates are butted against each other to form a flat tube, the flat tubes and corrugated fins are alternately laminated, and the groove forms a drain discharge groove between the outer surface of the flat tube and the corrugated fin. In the laminated heat exchanger, a plurality of the grooves are provided in the width direction of the flat tube, and the width of each groove is gradually increased from the upstream side to the downstream side of the air flow.

【0021】[0021]

【作用】ドレン排出溝は、一対の成形プレートのいずれ
か一方に他方のプレートの内面に当接する深さの凹部に
よって形成されているため、偏平チューブの厚さと略同
じ深さが確保される。
The drain discharge groove is formed in one of the pair of molding plates by a recess having a depth in contact with the inner surface of the other plate, so that the drain discharge groove has a depth substantially equal to the thickness of the flat tube.

【0022】また、コルゲートフィンを分割し、分割部
と溝とでドレン排出溝を形成したので、凝縮水の流下が
コルゲートフィンにより妨げられることがない。
Further, since the corrugated fin is divided and the drain and the groove are formed by the divided portion and the groove, the flow of the condensed water is not obstructed by the corrugated fin.

【0023】また、偏平チューブの幅方向に設けられた
それぞれの溝の幅を、空気流の上流側から下流側へ順次
広くしたので、凝縮水量が増加する。空気流の下流側に
おいても凝縮水の流下を確実に案内する。
Further, since the width of each groove provided in the width direction of the flat tube is gradually increased from the upstream side to the downstream side of the air flow, the amount of condensed water increases. Even in the downstream side of the air flow, the flow of condensed water is surely guided.

【0024】[0024]

【実施例】図1には本発明の一実施例に係る積層型熱交
換器の側面、図2には偏平チューブの分解斜視、図3に
は偏平チューブを構成するプレートの接合面を表わす正
面、図4には図3中の矢印IV部の詳細状態を示してあ
る。
1 is a side view of a laminated heat exchanger according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of a flat tube, and FIG. 3 is a front view showing a joint surface of plates constituting the flat tube. 4 shows a detailed state of an arrow IV portion in FIG.

【0025】図2に示すように、偏平チューブ41はプ
レス成形された2枚のプレート42が突合わされて形成
されている。偏平チューブ41の一端部(図中上端部)
には出入口タンク部43が形成されている。
As shown in FIG. 2, the flat tube 41 is formed by abutting two press-formed plates 42. One end of the flat tube 41 (upper end in the figure)
An entrance / exit tank portion 43 is formed in the.

【0026】図1に示すように、偏平チューブ41とコ
ルゲートフィン65が交互に積層され、出入口タンク部
43が連結されて積層型熱交換器(エバポレータ)66
が構成される。図中69aは流体としての冷媒の導入配
管、69bは冷媒の排出配管である。
As shown in FIG. 1, the flat tubes 41 and the corrugated fins 65 are alternately laminated, and the inlet / outlet tank portion 43 is connected to the laminated heat exchanger (evaporator) 66.
Is configured. In the figure, reference numeral 69a is a refrigerant introduction pipe as a fluid, and 69b is a refrigerant discharge pipe.

【0027】出入口タンク部43は、偏平チューブ41
の板幅方向に入口部44と出口部45とに仕切られ、エ
バポレータ66を構成した際、隣接する出入口タンク部
43は入口部44同士及び出口部45同士が連通孔46
によって連通されている。
The inlet / outlet tank portion 43 is a flat tube 41.
When the evaporator 66 is configured by being partitioned into the inlet portion 44 and the outlet portion 45 in the plate width direction of the, the inlet / outlet tank portions 43 of the adjacent inlet / outlet tank portions 43 and the outlet portions 45 are in communication holes 46.
Is communicated by.

【0028】図2、図3に示すように、プレート42の
内空部は中央部の上下方向に延びる仕切壁47によって
2つの室48,49に仕切られている。仕切壁47は下
端部が欠如され、プレート42の下端は流体としての冷
媒をUターンさせるUターン部50となっている。2枚
のプレート42を突き合わせることで、仕切壁47によ
って、出入口タンク部43が入口部44と出口部45と
に仕切られると共に、入口部44に連続する室48と出
口部45に連続する室49とに仕切られる。更に、室4
8と室49とはUターン部50で連通され、室48,4
9及びUターン部50で流体通路51が形成されてい
る。
As shown in FIGS. 2 and 3, the inner space of the plate 42 is divided into two chambers 48 and 49 by a partition wall 47 extending in the vertical direction at the center. The partition wall 47 lacks the lower end portion, and the lower end of the plate 42 serves as a U-turn portion 50 that makes a U-turn of the refrigerant as a fluid. By abutting the two plates 42, the partition wall 47 partitions the inlet / outlet tank portion 43 into an inlet portion 44 and an outlet portion 45, and a chamber continuous with the inlet portion 44 and a chamber continuous with the outlet portion 45. Divided into 49. Furthermore, room 4
8 and the chamber 49 communicate with each other through the U-turn portion 50, and the chambers 48, 4
A fluid passage 51 is formed by the 9 and the U-turn portion 50.

【0029】流体通路51の室48,49の部分(直線
部分)には波形インナフィン52,53が挿入されてい
る。図4に示すように、波形インナフィン52,53に
は、室48,49の長さ方向(上下方向)に沿う流路5
4,55が複数分離して区画形成されるように、長さ方
向に沿った波形52a,53aが複数形成されている。
Corrugated inner fins 52 and 53 are inserted in the chambers 48 and 49 (straight line portions) of the fluid passage 51. As shown in FIG. 4, in the corrugated inner fins 52 and 53, the flow path 5 along the length direction (vertical direction) of the chambers 48 and 49 is provided.
A plurality of corrugations 52a and 53a are formed along the length direction so that a plurality of sections 4 and 55 are partitioned and formed.

【0030】流体通路51のUターン部50の部分に
は、冷媒のUターンを案内するためのU字状流路56が
複数分離して区画形成されている。U字状流路56はプ
レート42の突合わせ面にプレス成形された複数のU字
状ビード57によって形成され、U字状流路56はプレ
ート42の形状に沿ったU字形となっている。
In the U-turn portion 50 of the fluid passage 51, a plurality of U-shaped flow paths 56 for guiding the U-turn of the refrigerant are divided and formed. The U-shaped channel 56 is formed by a plurality of U-shaped beads 57 press-molded on the abutting surface of the plate 42, and the U-shaped channel 56 has a U-shape that follows the shape of the plate 42.

【0031】室48,49間で冷媒が流れる場合、偏平
チューブ41の幅方向外側の流路54,55を流れる冷
媒は、Uターン部50の外側のU字状流路56を流れ
る。また、偏平チューブ41の幅方向内側の流路54,
55を流れる冷媒は、Uターン部50の内側のU字状流
路56を流れる。つまり、偏平チューブ41内の冷媒
は、内側から内側、外側から外側を通って流体通路51
を流れる。
When the refrigerant flows between the chambers 48 and 49, the refrigerant flowing through the flow passages 54 and 55 on the outer side in the width direction of the flat tube 41 flows through the U-shaped flow passage 56 outside the U-turn portion 50. In addition, the flow path 54 on the inner side in the width direction of the flat tube 41,
The refrigerant flowing through 55 flows through the U-shaped flow path 56 inside the U-turn portion 50. That is, the refrigerant in the flat tube 41 passes through the fluid passage 51 from the inside to the inside and from the outside to the outside.
Flowing through.

【0032】図2乃至図4に示すように、プレート42
の室48には、仕切壁47に沿って平行に延びプレート
42の外表面側が凹部としての溝71となる突壁67が
成形されている。突壁67の高さ(溝71の深さ)は、
一対のプレート42を接合した際突壁67が室49の内
面に当接する高さとなっている。
As shown in FIGS. 2-4, the plate 42
The chamber 48 is formed with a projecting wall 67 that extends in parallel with the partition wall 47 and serves as a groove 71 as a recess on the outer surface side of the plate 42. The height of the protruding wall 67 (depth of the groove 71) is
The height of the protruding wall 67 is such that the protruding wall 67 abuts the inner surface of the chamber 49 when the pair of plates 42 are joined.

【0033】また、図4に示すように、空気流の下流側
(図中下方)における溝71の幅Hは、上流側(図中上
方)における溝71の幅hよりも広くなっている。つま
り、偏平チューブ41は幅の異なる突壁67が成形され
た2種類のプレート42を突き合わせることで形成され
ている。
Further, as shown in FIG. 4, the width H of the groove 71 on the downstream side (downward in the figure) of the air flow is wider than the width h of the groove 71 on the upstream side (upper side in the figure). That is, the flat tube 41 is formed by abutting two types of plates 42 formed with protruding walls 67 having different widths.

【0034】また、図4に示すように、コルゲートフィ
ン65の偏平部には空気の流れ方向に沿って切起しルー
バ95が形成され、切起しルーバ95により上下に仕切
られた各空気通路間における取入空気の交換がなされて
いる。コルゲートフィン65は、溝71及び突壁47で
形成される溝の位置に合わせてコルゲートフィン65
a,65b,65c,65dに分割され、分割部96が
形成されている。溝71及び突壁47で形成される溝と
分割部96とでドレン排出溝97が形成されている。
Further, as shown in FIG. 4, louvers 95 which are cut and raised along the air flow direction are formed in the flat portions of the corrugated fins 65, and the respective air passages which are vertically divided by the cut and raised louvers 95 are provided. The intake air is exchanged during the period. The corrugated fins 65 are aligned with the positions of the grooves formed by the grooves 71 and the protruding walls 47.
Dividing into a, 65b, 65c, and 65d, a dividing portion 96 is formed. A drain discharge groove 97 is formed by the groove formed by the groove 71 and the protruding wall 47 and the dividing portion 96.

【0035】上述したエバポレータ66では、偏平チュ
ーブ41の入口部44から流入した流体としての冷媒
は、波形インナフィン52で区画された流路54を通っ
てUターン部50に導かれ、U字状ビード57で区画さ
れたU字状流路56でUターンされ、波形インナフィン
53で区画された流路55を通って出口部45まで流れ
る。この偏平チューブ41とコルゲートフィン65とを
交互に積層したエバポレータ66全体における冷媒及び
空気の流れの一例は、図9で示した状況と同一である。
In the evaporator 66 described above, the refrigerant as a fluid flowing from the inlet portion 44 of the flat tube 41 is guided to the U-turn portion 50 through the flow passage 54 defined by the corrugated inner fins 52, and the U-shaped bead is formed. A U-shaped flow path 56 defined by 57 makes a U-turn, and flows through the flow path 55 defined by the corrugated inner fins 53 to the outlet portion 45. An example of the flow of the refrigerant and the air in the entire evaporator 66 in which the flat tubes 41 and the corrugated fins 65 are alternately laminated is the same as the situation shown in FIG. 9.

【0036】偏平チューブ41内を流れる冷媒は、区画
された流路54,55及びU字状流路56を流れるの
で、流体通路51の内側から内側、外側から外側を冷媒
が流れ、Uターン部50での遠心力に伴なう気液二相流
冷媒の分離がU字状流路56内だけとなり、二相流冷媒
の気液それぞれの分配量の分布が小さくなる。また、U
ターン部50のU字状流路56はプレート42の形状に
沿ったU字形となっているので、冷媒の流れに澱みが生
じることがなくなる。
Since the refrigerant flowing in the flat tube 41 flows through the divided flow paths 54 and 55 and the U-shaped flow path 56, the refrigerant flows from the inside to the inside of the fluid passage 51 and from the outside to the outside, and the U-turn portion. The separation of the gas-liquid two-phase flow refrigerant due to the centrifugal force at 50 occurs only in the U-shaped flow path 56, and the distribution of the distribution amount of each gas-liquid of the two-phase flow refrigerant becomes small. Also, U
Since the U-shaped flow path 56 of the turn portion 50 has a U-shape that follows the shape of the plate 42, stagnation does not occur in the flow of the refrigerant.

【0037】このため、冷媒の気液分配量の分布が小さ
くなって偏りによる熱効率の低下が生じにくくなると共
に、冷媒の流れに澱みが生じて熱交換量が不均一になる
ことがなくなる。
For this reason, the distribution of the gas-liquid distribution amount of the refrigerant becomes small, the thermal efficiency is less likely to decrease due to the deviation, and the heat exchange amount does not become nonuniform due to the stagnation of the refrigerant flow.

【0038】偏平チューブ41内を冷媒が流れる間、コ
ルゲートフィン65の間に空気が送られ、冷媒の蒸発潜
熱を利用して空気が冷却される。
While the refrigerant flows in the flat tubes 41, air is sent between the corrugated fins 65 and the air is cooled by utilizing latent heat of vaporization of the refrigerant.

【0039】上述したエバポレータ66では、偏平チュ
ーブ41の溝71は、他方のプレート42の室49の内
面に当接する深さで一方のプレート42の室48に成形
されているので、ドレン排出溝97は偏平チューブ41
の厚さと略同じ深さが確保される。
In the evaporator 66 described above, since the groove 71 of the flat tube 41 is formed in the chamber 48 of the one plate 42 at a depth that abuts the inner surface of the chamber 49 of the other plate 42, the drain discharge groove 97 is formed. Is a flat tube 41
The depth is almost the same as the thickness of.

【0040】また、上述したエバポレータ66では偏平
チューブ41の溝71は、空気流の下流側における溝7
1の幅Hが空気流の上流側における溝71の幅hよりも
広くなっているので、空気流の下流側で凝縮水が増加し
てもドレン排出溝97から凝縮水が流れ出すことがな
い。
In the evaporator 66 described above, the groove 71 of the flat tube 41 is the groove 7 on the downstream side of the air flow.
Since the width H of 1 is wider than the width h of the groove 71 on the upstream side of the air flow, even if the condensed water increases on the downstream side of the air flow, the condensed water does not flow out from the drain discharge groove 97.

【0041】また、上述したエバポレータ66では偏平
チューブ41の溝71及び突壁47で形成される溝の位
置に合わせてコルゲートフィン65を分割し、溝71及
び突壁47で形成される溝と分割部96とでドレン排出
溝97を形成したので、溝に案内される凝縮水の流下が
コルゲートフィン65に妨げられることがない。
In the evaporator 66 described above, the corrugated fins 65 are divided according to the positions of the grooves 71 of the flat tube 41 and the grooves formed by the protruding walls 47, and the corrugated fins 65 are divided by the grooves formed by the grooves 71 and the protruding walls 47. Since the drain discharge groove 97 is formed with the portion 96, the flow of the condensed water guided by the groove is not obstructed by the corrugated fins 65.

【0042】[0042]

【発明の効果】本発明の積層型熱交換器は、偏平チュー
ブを構成する一対の成形プレートのいずれか一方に他方
の成形プレートの内面に当接する深さの凹部を成形する
ことにより、凝縮水の流下を案内する溝を形成したの
で、偏平チューブの厚さと略同じ深さの溝が確保され、
凝縮水の流下を確実に案内することができる。
In the laminated heat exchanger of the present invention, the condensate is formed by forming a recess having a depth that abuts the inner surface of the other molding plate on one of the pair of molding plates forming the flat tube. Since a groove that guides the flow of the flat tube is formed, a groove with a depth approximately the same as the thickness of the flat tube is secured,
It is possible to reliably guide the flow of condensed water.

【0043】また本発明の積層型熱交換器は、偏平チュ
ーブの外表面に上下方向に沿う溝を設け、この溝の位置
に合わせてコルゲートフィンを分割し、コルゲートフィ
ンの分割部と溝とでドレン排出溝を形成したので、溝に
案内される凝縮水の流下がコルゲートフィンに妨げられ
ることがない。
In the laminated heat exchanger of the present invention, grooves are provided on the outer surface of the flat tube in the vertical direction, and the corrugated fins are divided in accordance with the positions of the grooves. Since the drain discharge groove is formed, the flow of the condensed water guided by the groove is not obstructed by the corrugated fins.

【0044】また本発明の積層型熱交換器は、偏平チュ
ーブの外表面に上下方向に沿う溝を複数設け、それぞれ
の溝の幅を空気流の上流側から下流側へ順次広くしたの
で、空気流の下流側で凝縮水が増加しても溝に案内され
て流下する凝縮水が溝の外に流れ出すことがない。
In the laminated heat exchanger of the present invention, a plurality of grooves extending in the vertical direction are provided on the outer surface of the flat tube, and the width of each groove is gradually increased from the upstream side to the downstream side of the air flow. Even if the condensed water increases on the downstream side of the flow, the condensed water guided by the groove and flowing down does not flow out of the groove.

【0045】この結果、本発明の積層型熱交換器による
と、凝縮水の流下が確実になってコルゲートフィン側に
流れ出すことがなくなり、露飛びを防止することができ
る。
As a result, according to the laminated heat exchanger of the present invention, the condensate can be reliably flowed down so that it does not flow out to the corrugated fin side, and dew splash can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る積層型熱交換器の側面
図。
FIG. 1 is a side view of a laminated heat exchanger according to an embodiment of the present invention.

【図2】偏平チューブの分解斜視図。FIG. 2 is an exploded perspective view of a flat tube.

【図3】偏平チューブのプレートの接合面を表わす正面
図。
FIG. 3 is a front view showing a joint surface of flat plates.

【図4】図1中の矢印IV−IV線矢視図。FIG. 4 is a view on arrow IV-IV in FIG.

【図5】従来の積層型熱交換器の側面図。FIG. 5 is a side view of a conventional laminated heat exchanger.

【図6】図5中の右側部の拡大断面図。6 is an enlarged cross-sectional view of the right side portion in FIG.

【図7】偏平チューブを構成するプレートの正面図。FIG. 7 is a front view of a plate forming a flat tube.

【図8】図7中のVIII-VIII 線矢視図。8 is a view taken along the line VIII-VIII in FIG.

【図9】冷媒の流れ状況説明図。FIG. 9 is an explanatory diagram of a flow state of the refrigerant.

【図10】図5中のX−X線矢視図。10 is a view taken along the line XX in FIG.

【符号の説明】[Explanation of symbols]

41 偏平チューブ 42 プレート 43 出入口タンク部 44 入口部 45 出口部 47 仕切壁 48,49 室 50 Uターン部 52,53 波形インナフィン 54,55 流路 56 U字状流路 65 コルゲートフィン 66 エバポレータ 67 突壁 71 溝 96 分割部 97 ドレン排出溝 41 flat tube 42 plate 43 inlet / outlet tank part 44 inlet part 45 outlet part 47 partition wall 48, 49 chamber 50 U-turn part 52, 53 corrugated inner fins 54, 55 channel 56 U-shaped channel 65 corrugated fin 66 evaporator 67 projecting wall 71 groove 96 division part 97 drain discharge groove

フロントページの続き (72)発明者 川合 秀直 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業株式会社名古屋研究所内 (72)発明者 平尾 康彦 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業株式会社名古屋研究所内Front page continued (72) Inventor Hidenao Kawai No. 1 Takamichi, Iwazuka-machi, Nakamura-ku, Nagoya, Aichi Prefecture, Nagoya Research Institute, Mitsubishi Heavy Industries, Ltd. (72) Inventor Yasuhiko Hirao, Iwatsuka-machi, Nakamura-ku, Nagoya, Aichi 1 Address Mitsubishi Heavy Industries, Ltd. Nagoya Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一端に流体の出入口タンク部が設けられ
ると共に流体通路を形成するコア部の外表面に上下方向
に沿う溝が少なくとも1以上設けられた一対の成形プレ
ートを突き合わせて偏平チューブとし、該偏平チューブ
とコルゲートフィンとを交互に積層し、前記溝によって
前記偏平チューブの外表面と前記コルゲートフィンとの
間にドレン排出溝を形成してなる積層型熱交換器におい
て、前記一対の成形プレートのいずれか一方に他方の成
形プレートの内面に当接する深さの凹部を成形すること
により前記溝を形成したことを特徴とする積層型熱交換
器。
1. A flat tube formed by abutting a pair of molding plates, each of which is provided with a fluid inlet / outlet tank portion at one end thereof and at least one groove along the vertical direction is provided on an outer surface of a core portion forming a fluid passage, In the laminated heat exchanger, wherein the flat tubes and the corrugated fins are alternately laminated, and a drain discharge groove is formed between the outer surface of the flat tube and the corrugated fins by the groove, the pair of molding plates. 2. The laminated heat exchanger, wherein the groove is formed by forming a recess having a depth that abuts the inner surface of the other forming plate on one of the two.
【請求項2】 一端に流体の出入口タンク部が設けられ
ると共に流体通路を形成するコア部の外表面に上下方向
に沿う溝が少なくとも1以上設けられた一対の成形プレ
ートを突き合わせて偏平チューブとし、該偏平チューブ
とコルゲートフィンとを交互に積層し、前記溝によって
前記偏平チューブの外表面と前記コルゲートフィンとの
間にドレン排出溝を形成してなる積層型熱交換器におい
て、前記溝の位置に合わせて前記コルゲートフィンを分
割し、該コルゲートフィンの分割部と前記溝とでドレン
排出溝を形成したことを特徴とする積層型熱交換器。
2. A flat tube is formed by abutting a pair of molding plates, each of which has a fluid inlet / outlet tank portion at one end thereof and at least one groove extending in the vertical direction on an outer surface of a core portion forming a fluid passage. In the laminated heat exchanger, wherein the flat tubes and the corrugated fins are alternately laminated, and a drain discharge groove is formed between the outer surface of the flat tube and the corrugated fins by the groove, at the position of the groove. A laminated heat exchanger characterized in that the corrugated fins are divided together, and a drain discharge groove is formed by the divided portion of the corrugated fins and the groove.
【請求項3】 一端に流体の出入口タンク部が設けられ
ると共に流体通路を形成するコア部の外表面に上下方向
に沿う溝が少なくとも1以上設けられた一対の成形プレ
ートを突き合わせて偏平チューブとし、該偏平チューブ
とコルゲートフィンとを交互に積層し、前記溝によって
前記偏平チューブの外表面と前記コルゲートフィンとの
間ドレン排出溝を形成してなる積層型熱交換器におい
て、前記溝を前記偏平チューブの幅方向に複数設け、そ
れぞれの溝の幅を空気流の上流側から下流側へ順次広く
したことを特徴とする積層型熱交換器。
3. A flat tube formed by abutting a pair of molding plates, each of which is provided with a fluid inlet / outlet tank portion at one end thereof and at least one groove along the vertical direction is provided on an outer surface of a core portion forming a fluid passage, In the laminated heat exchanger, wherein the flat tubes and the corrugated fins are alternately laminated, and a drain discharge groove is formed between the outer surface of the flat tube and the corrugated fins by the grooves. A plurality of the heat exchangers are provided in the width direction of the stack, and the width of each groove is gradually widened from the upstream side to the downstream side of the air flow.
JP27156792A 1992-06-19 1992-10-09 Tacked type heat exchanger Withdrawn JPH06123590A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP27156792A JPH06123590A (en) 1992-10-09 1992-10-09 Tacked type heat exchanger
TW82106743A TW235337B (en) 1992-06-19 1993-08-20 Lamination type heat exchanger (1)
KR1019930016344A KR940004305A (en) 1992-08-31 1993-08-23 Stacked Heat Exchanger
AU44813/93A AU668403B2 (en) 1992-08-31 1993-08-24 Stacked heat exchanger
EP95119487A EP0709640B1 (en) 1992-08-31 1993-08-25 Stacked heat exchanger
DE69316121T DE69316121T2 (en) 1992-08-31 1993-08-25 Plate heat exchanger
DE59310250T DE59310250T2 (en) 1992-08-31 1993-08-25 Plate heat exchanger
US08/113,054 US5443116A (en) 1992-08-31 1993-08-25 Stacked heat exchanger
EP93113574A EP0588117B1 (en) 1992-08-31 1993-08-25 Stacked heat exchanger
CN931170745A CN1065043C (en) 1992-08-31 1993-08-30 Layered heat exchanger
AU28441/95A AU676116B2 (en) 1992-08-31 1995-08-08 Stacked heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27156792A JPH06123590A (en) 1992-10-09 1992-10-09 Tacked type heat exchanger

Publications (1)

Publication Number Publication Date
JPH06123590A true JPH06123590A (en) 1994-05-06

Family

ID=17501884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27156792A Withdrawn JPH06123590A (en) 1992-06-19 1992-10-09 Tacked type heat exchanger

Country Status (1)

Country Link
JP (1) JPH06123590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033030B2 (en) 2009-08-26 2015-05-19 Munters Corporation Apparatus and method for equalizing hot fluid exit plane plate temperatures in heat exchangers
KR20190024121A (en) * 2017-08-31 2019-03-08 주식회사 동화엔텍 A plate type heat exchanger having a drain space portion for removing impurities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033030B2 (en) 2009-08-26 2015-05-19 Munters Corporation Apparatus and method for equalizing hot fluid exit plane plate temperatures in heat exchangers
KR20190024121A (en) * 2017-08-31 2019-03-08 주식회사 동화엔텍 A plate type heat exchanger having a drain space portion for removing impurities

Similar Documents

Publication Publication Date Title
EP0709640B1 (en) Stacked heat exchanger
US7222501B2 (en) Evaporator
JPH0674677A (en) Manufacture of lamination type heat exchanger
JP4810203B2 (en) Heat exchanger
EP0590306B1 (en) Stacked heat exchanger
JP2006132920A (en) Heat exchanger
CN100432579C (en) Evaporator
JP2004524499A (en) Heat exchanger
JP2003519355A (en) Evaporator
JPH0933187A (en) Laminated heat exchanger
JP2002147990A (en) Heat exchanger
JP2984480B2 (en) Stacked heat exchanger
JP3281648B2 (en) Stacked heat exchanger
JPH06123590A (en) Tacked type heat exchanger
JPH0468297A (en) Heat exchanger
JP2984481B2 (en) Stacked heat exchanger
JP2930486B2 (en) Stacked heat exchanger
JPH0674602A (en) Laminated heat exchanger
JPH0674679A (en) Lamination type heat exchanger
JP3327584B2 (en) Stacked heat exchanger
JPH06123582A (en) Stacked type heat exchanger
JPH09273830A (en) Evaporator
JP3073331B2 (en) Stacked heat exchanger
JP3095540B2 (en) Stacked heat exchanger
JP3297092B2 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104