JP2930486B2 - Stacked heat exchanger - Google Patents

Stacked heat exchanger

Info

Publication number
JP2930486B2
JP2930486B2 JP4271563A JP27156392A JP2930486B2 JP 2930486 B2 JP2930486 B2 JP 2930486B2 JP 4271563 A JP4271563 A JP 4271563A JP 27156392 A JP27156392 A JP 27156392A JP 2930486 B2 JP2930486 B2 JP 2930486B2
Authority
JP
Japan
Prior art keywords
flat tube
turn
heat exchanger
fluid
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4271563A
Other languages
Japanese (ja)
Other versions
JPH06123580A (en
Inventor
昌照 林
一男 石井
秀直 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4271563A priority Critical patent/JP2930486B2/en
Priority to TW082106689A priority patent/TW234737B/zh
Priority to KR1019930016272A priority patent/KR0143540B1/en
Priority to AU44815/93A priority patent/AU670302B2/en
Priority to DE69315281T priority patent/DE69315281T2/en
Priority to EP93113576A priority patent/EP0584806B1/en
Priority to US08/112,424 priority patent/US5417280A/en
Priority to CN93116791A priority patent/CN1072352C/en
Publication of JPH06123580A publication Critical patent/JPH06123580A/en
Application granted granted Critical
Publication of JP2930486B2 publication Critical patent/JP2930486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空調機用の積層型熱交
換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchanger for an air conditioner.

【0002】[0002]

【従来の技術】図8,図9に基づいて従来の積層型熱交
換器を説明する。図8には従来の積層型熱交換器の側
面、図9には右側部の拡大断面を示してある。
2. Description of the Related Art A conventional laminated heat exchanger will be described with reference to FIGS. FIG. 8 is a side view of a conventional laminated heat exchanger, and FIG. 9 is an enlarged cross section of the right side.

【0003】図8,図9において、1は偏平チューブで
あり偏平チューブ1はプレス成形された2枚のプレート
2が突合わされて形成されている。偏平チューブ1の一
端部(図中上端部)には出入口タンク部3が形成されて
いる。
8 and 9, reference numeral 1 denotes a flat tube, and the flat tube 1 is formed by abutting two press-formed plates 2. An entrance / exit tank portion 3 is formed at one end (upper end in the figure) of the flat tube 1.

【0004】偏平チューブ1とコルゲートフィン4が交
互に積層され、出入口タンク部3が連結されて積層型熱
交換器(エバポレータ)5が構成されている。
[0004] The flat tubes 1 and corrugated fins 4 are alternately stacked, and the inlet / outlet tank portion 3 is connected to form a stacked heat exchanger (evaporator) 5.

【0005】両端に位置する偏平チューブ1aの外方側
はエンドプレート6となり、出入口タンク部3における
エンドプレート6には流通孔7が設けられている。一方
の流通孔7は流体としての冷媒の導入配管8に連結さ
れ、他方の流通孔7は冷媒の排出配管9に連結されてい
る。
The outer side of the flat tubes 1a located at both ends is an end plate 6, and a flow hole 7 is provided in the end plate 6 of the entrance / exit tank portion 3. One of the flow holes 7 is connected to a pipe 8 for introducing a refrigerant as a fluid, and the other flow hole 7 is connected to a discharge pipe 9 for a refrigerant.

【0006】導入配管8及び排出配管9はサイドプレー
ト10で固定され、サイドプレート10とエンドプレー
ト6の間にはコルゲートフィン4が設けられている。
The introduction pipe 8 and the discharge pipe 9 are fixed by a side plate 10, and a corrugated fin 4 is provided between the side plate 10 and the end plate 6.

【0007】出入口タンク部3は、偏平チューブ1の板
幅方向に入口部11と出口部12とに仕切られ、エバポ
レータ5を構成した際隣接する出入口タンク部3は入口
部11同士及び出口部12同士が連通孔13によって連
通されている。
The inlet / outlet tank section 3 is divided into an inlet section 11 and an outlet section 12 in the plate width direction of the flat tube 1, and when the evaporator 5 is constructed, the adjacent inlet / outlet tank sections 3 are connected to each other. These are communicated with each other by the communication hole 13.

【0008】図10,図11に基づいて偏平チューブ1
を説明する。図10には偏平チューブ1を構成するプレ
ート2の正面、図11には図10中のXI−XI線矢視を示
してある。
[0008] The flat tube 1 will be described with reference to Figs.
Will be described. FIG. 10 is a front view of the plate 2 constituting the flat tube 1, and FIG. 11 is a view taken along line XI-XI in FIG.

【0009】プレート2の上端部には出入口タンク部3
を形成するための膨出部14が設けられ、プレート2の
内空部は中央部の上下方向に延びる仕切壁15によって
2つの室16,17に仕切られている。仕切壁15は下
端部が欠如され、プレート2の下端は冷媒をUターンさ
せるUターン部18となっている。2枚のプレート2を
突き合わせることで、仕切壁15によって、出入口タン
ク部3が入口部11と出口部12とに仕切られると共
に、入口部11に連続する室16と出口部12に連続す
る室17とに仕切られる。更に、室16と室17とはU
ターン部18で連通され、室16,17及びUターン部
18で流体通路が形成されている。
An entrance / exit tank section 3 is provided at the upper end of the plate 2.
Is formed, and the inner space of the plate 2 is partitioned into two chambers 16 and 17 by a partition wall 15 extending vertically in the center. A lower end of the partition wall 15 is absent, and a lower end of the plate 2 is a U-turn portion 18 for making a U-turn of the refrigerant. By abutting the two plates 2, the entrance / exit tank portion 3 is partitioned by the partition wall 15 into an inlet portion 11 and an outlet portion 12, and a chamber 16 continuous with the inlet portion 11 and a chamber continuous with the outlet portion 12. 17 and is divided. Further, the chambers 16 and 17 are U
Fluid passages are formed in the chambers 16 and 17 and the U-turn part 18 so as to communicate with each other at the turn part 18.

【0010】室16,17には多数のリブ19が突設さ
れ、室16,17内が迷路状に細分化されている。Uタ
ーン部18には案内リブ20が突設され、冷媒は案内リ
ブ20によって室16から室17への流れ(Uターン)
が案内される。
A large number of ribs 19 project from the chambers 16 and 17, and the inside of the chambers 16 and 17 is subdivided into a maze. A guide rib 20 protrudes from the U-turn portion 18, and the refrigerant flows from the chamber 16 to the chamber 17 by the guide rib 20 (U-turn).
Will be guided.

【0011】図12に基づいて上述したエバポレータ5
における冷媒の流れを説明する。図12には冷媒の流れ
状況を示してある。
The evaporator 5 described above with reference to FIG.
Will be described. FIG. 12 shows the flow state of the refrigerant.

【0012】エバポレータ5は3つの群21,22,2
3に大別され、導入配管8及び排出配管9が接続される
群21,23における入口部11及び出口部12の配置
が同一となり、群22における入口部11及び出口部1
2の配置が逆になっている。群21と群22の間及び群
22と群23の間で対向する出入口タンク部3は、群2
1の出口部12と群22の入口部11が連通し、群22
の出口部12と群23の入口部11が連通している。そ
して、群21の入口部11はエンドプレート6の流通孔
7により導入配管8につながれ、群23の出口部12は
エンドプレート6の流通孔7により排出配管9につなが
れている。
The evaporator 5 has three groups 21, 22, 2
3 and the arrangement of the inlet 11 and the outlet 12 in the groups 21 and 23 to which the introduction pipe 8 and the discharge pipe 9 are connected are the same, and the inlet 11 and the outlet 1 in the group 22 are the same.
The arrangement of 2 is reversed. The entrance / exit tank unit 3 facing between the groups 21 and 22 and between the groups 22 and 23 is group 2
1 and the inlet 11 of the group 22 communicate with each other.
The outlet 12 of the group 23 and the inlet 11 of the group 23 communicate with each other. The inlet 11 of the group 21 is connected to the introduction pipe 8 by the flow hole 7 of the end plate 6, and the outlet 12 of the group 23 is connected to the discharge pipe 9 by the flow hole 7 of the end plate 6.

【0013】導入配管8からエバポレータ5に導入され
た冷媒31は、群21の入口部11から室16を通って
Uターン部18に送られ、Uターン部18でUターンさ
れて室17を通って出口部12に送られる。群21の出
口部12に送られた冷媒31は、群22の入口部11に
送られて群21と同様な流れで群23に送られ、群23
の流体通路(室16,17,Uターン部18)を通って
排出配管9から排出される。
The refrigerant 31 introduced into the evaporator 5 from the introduction pipe 8 is sent from the inlet 11 of the group 21 to the U-turn part 18 through the chamber 16, is U-turned by the U-turn part 18, and passes through the chamber 17. To the outlet 12. The refrigerant 31 sent to the outlet 12 of the group 21 is sent to the inlet 11 of the group 22 and sent to the group 23 in the same flow as the group 21,
Is discharged from the discharge pipe 9 through the fluid passages (chambers 16, 17 and the U-turn portion 18).

【0014】この間、コルゲートフィン4の間に空気3
2が送られ、冷媒31の蒸発潜熱を利用して空気32が
冷却される。
During this time, the air 3 is placed between the corrugated fins 4.
2 is sent, and the air 32 is cooled using the latent heat of evaporation of the refrigerant 31.

【0015】[0015]

【発明が解決しようとする課題】上述したエバポレータ
5では、偏平チューブ1のプレート2の内側の室16,
17に多数のリブ19を設けて冷媒の伝熱面積を拡大さ
せているが、流路が迷路状になって冷媒がスムーズに流
れない虞があった。また、Uターン部18では案内リブ
20によって冷媒のUターンが案内されているが、Uタ
ーン部18では遠心力により気液二相の冷媒が分離し、
流れ方向に対して気体と液体を均等に分配できず、熱交
換効率が低下する虞があった。
In the evaporator 5 described above, the chambers 16 inside the plate 2 of the flat tube 1 are provided.
Although a large number of ribs 19 are provided on 17 to increase the heat transfer area of the refrigerant, the flow path may become maze-shaped and the refrigerant may not flow smoothly. In the U-turn part 18, the U-turn of the refrigerant is guided by the guide rib 20, but in the U-turn part 18, the gas-liquid two-phase refrigerant is separated by centrifugal force,
The gas and the liquid cannot be evenly distributed in the flow direction, and the heat exchange efficiency may be reduced.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、プレス成形された2枚のプレートを
突合わせて偏平チューブとし、該偏平チューブの一端部
に出入口タンク部を形成すると共に、入口タンク部から
前記2枚のプレート間に流入した流体を前記偏平チュー
ブの他端部でUターンさせて出口タンク部に導く流体通
路を該偏平チューブに形成し、該偏平チューブとコルゲ
ートフィンとを交互に積層してなる積層型熱交換器にお
いて、前記偏平チューブの前記出入口タンク部と前記他
端部の間における前記流体通路の直線部分に長さ方向に
沿う流路を複数分離して区画形成する波形インナフィン
を挿入し、流体をUターンさせる前記流体通路のUター
ン部にU字状流路を複数分離して区画形成し、前記プレ
ートの少なくとも前記Uターン部側における前記直線部
分に前記波形インナフィンの位置決めを行なう突起をプ
レス成形してなることを特徴とする。
In order to solve the above-mentioned problems, the construction of the present invention is to form a flat tube by joining two press-formed plates and form an inlet / outlet tank at one end of the flat tube. And a fluid passage formed in the flat tube so that the fluid flowing between the two plates from the inlet tank portion is U-turned at the other end of the flat tube and led to the outlet tank portion. In a stacked heat exchanger in which fins are alternately stacked, a plurality of flow paths along the length direction are separated from a straight portion of the fluid passage between the inlet / outlet tank portion and the other end portion of the flat tube. Insert a corrugated inner fin to form a partition, and form a U-shaped flow path by separating a plurality of U-shaped flow paths in a U-turn portion of the fluid passage for making a U-turn of the fluid. The protrusions for positioning of the waveform inner fins in the linear portion of the serial U-turn portion side is characterized by being obtained by press molding.

【0017】また、前記波形インナフィンの端部と前記
U字状ビードの端部との間に所定隙間が設定される位置
に前記突起が設けられていることを特徴とする。
Further, the projection is provided at a position where a predetermined gap is set between an end of the corrugated inner fin and an end of the U-shaped bead.

【0018】また、前記所定隙間は0.5mm乃至5mmに
設定されていることを特徴とする。
Further, the predetermined gap is set to 0.5 mm to 5 mm.

【0019】[0019]

【作用】偏平チューブは、波形インナフィンによって直
線部分の流路が複数分離して形成され、流体の流れがス
ムーズになり流路面積が増大される。また、Uターン部
にU字状流路を複数分離して区画形成したので、流体の
流れに澱みが生じることがなくなると共に、遠心力に伴
なう気液二相流冷媒の分離が区画された一つのU字状流
路内だけとなり、気液分配量の分布が小さくなる。波形
インナフィンは突起によりU字状ビードとの間で所定の
隙間を持って位置決めされる。
In the flat tube, a plurality of straight flow paths are formed by the corrugated inner fins, so that the flow of the fluid is smooth and the flow path area is increased. Also, since a plurality of U-shaped flow paths are separated and formed in the U-turn section, stagnation does not occur in the fluid flow, and separation of the gas-liquid two-phase flow refrigerant due to centrifugal force is partitioned. There is only one U-shaped channel, and the distribution of the gas-liquid distribution amount is small. The corrugated inner fin is positioned with a predetermined gap between the corrugated inner fin and the U-shaped bead.

【0020】[0020]

【実施例】図1には本発明の一実施例に係る積層型熱交
換器の側面、図2には偏平チューブの分解斜視、図3に
は偏平チューブを構成するプレートの接合面を表わす正
面、図4には図3中の矢印IV部の詳細状態、図5には図
1中のV−V線矢視を示してある。
FIG. 1 is a side view of a laminated heat exchanger according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of a flat tube, and FIG. 3 is a front view showing a joint surface of plates constituting the flat tube. 4 shows a detailed state of an arrow IV part in FIG. 3, and FIG. 5 shows a view taken along a line VV in FIG.

【0021】図2に示すように、偏平チューブ41はプ
レス成形された2枚のプレート42が突合わされて形成
されている。偏平チューブ41の一端部(図中上端部)
には出入口タンク部43が形成されている。
As shown in FIG. 2, the flat tube 41 is formed by abutting two press-formed plates 42. One end of the flat tube 41 (upper end in the figure)
An entrance / exit tank portion 43 is formed at the entrance.

【0022】図1に示すように、偏平チューブ41とコ
ルゲートフィン65が交互に積層され、出入口タンク部
43が連結されて積層型熱交換器(エバポレータ)66
が構成される。図中69aは流体としての冷媒の導入配
管、69bは冷媒の排出配管である。
As shown in FIG. 1, the flat tubes 41 and corrugated fins 65 are alternately stacked, and the inlet / outlet tank section 43 is connected to form a stacked heat exchanger (evaporator) 66.
Is configured. In the figure, 69a is a piping for introducing a refrigerant as a fluid, and 69b is a piping for discharging the refrigerant.

【0023】出入口タンク部43は、偏平チューブ41
の板幅方向に入口部44と出口部45とに仕切られ、エ
バポレータ66を構成した際、隣接する出入口タンク部
43は入口部44同士及び出口部45同士が連通孔46
によって連通されている。
The entrance / exit tank section 43 includes a flat tube 41.
When the evaporator 66 is configured by being partitioned into an inlet portion 44 and an outlet portion 45 in the width direction of the plate, the adjacent inlet / outlet tank portion 43 has a communication hole 46 between the inlet portions 44 and the outlet portions 45.
Is communicated by

【0024】図2,図3に示すように、プレート42の
内空部は中央部の上下方向に延びる仕切壁47によって
2つの室48,49に仕切られている。仕切壁47は下
端部が欠如され、プレート42の下端は流体としての冷
媒をUターンさせるUターン部50となっている。2枚
のプレート42を突き合わせることで、仕切壁47によ
って、出入口タンク部43が入口部44と出口部45と
に仕切られると共に、入口部44に連続する室48と出
口部45に連続する室49とに仕切られる。更に、室4
8と室49とはUターン部50で連通され、室48,4
9及びUターン部50で流体通路51が形成されてい
る。
As shown in FIGS. 2 and 3, the inner space of the plate 42 is partitioned into two chambers 48 and 49 by a partition wall 47 extending vertically in the center. The lower end of the partition wall 47 is absent, and the lower end of the plate 42 is a U-turn portion 50 for making a U-turn of the refrigerant as a fluid. By abutting the two plates 42, the entrance / exit tank portion 43 is divided into an entrance portion 44 and an exit portion 45 by a partition wall 47, and a chamber 48 continuing to the entrance portion 44 and a chamber continuing to the exit portion 45. It is divided into 49. Furthermore, room 4
8 and the chamber 49 are communicated by a U-turn section 50, and the chambers 48, 4
A fluid passage 51 is formed by the 9 and U-turn portions 50.

【0025】流体通路51の室48,49の部分(直線
部分)には波形インナフィン52,53が挿入されてい
る。図5に示すように、波形インナフィン52,53に
は、室48,49の長さ方向(上下方向)に沿う流路5
4,55が複数分離して区画形成されるように、長さ方
向に沿った波形52a,53aが複数形成されている。
Corrugated inner fins 52 and 53 are inserted into the chambers 48 and 49 (linear portions) of the fluid passage 51. As shown in FIG. 5, the corrugated inner fins 52, 53 are provided with flow paths 5 along the longitudinal direction (up-down direction) of the chambers 48, 49.
A plurality of waveforms 52a and 53a along the length direction are formed so that a plurality of sections 4 and 55 are separately formed.

【0026】流体通路51のUターン部50の部分に
は、冷媒のUターンを案内するためのU字状流路56が
複数分離して区画形成されている。U字状流路56はプ
レート42の突合わせ面にプレス成形された複数のU字
状ビード57によって形成され、U字状流路56はプレ
ート42の形状に沿ったU字形となっている。
In the U-turn section 50 of the fluid passage 51, a plurality of U-shaped flow paths 56 for guiding the U-turn of the refrigerant are separately formed. The U-shaped channel 56 is formed by a plurality of U-shaped beads 57 press-formed on the abutting surface of the plate 42, and the U-shaped channel 56 has a U-shape that conforms to the shape of the plate 42.

【0027】室48,49間で冷媒が流れる場合、偏平
チューブ41の幅方向外側の流路54,55を流れる冷
媒は、Uターン部50の外側のU字状流路56を流れ
る。また、偏平チューブ41の幅方向内側の流路54,
55を流れる冷媒は、Uターン部50の内側のU字状流
路56を流れる。つまり、偏平チューブ41内の冷媒
は、内側から内側、外側から外側を通って流体通路51
を流れる。
When the refrigerant flows between the chambers 48 and 49, the refrigerant flowing through the channels 54 and 55 on the outside in the width direction of the flat tube 41 flows through the U-shaped channel 56 on the outside of the U-turn part 50. Further, the flow path 54 on the inner side in the width direction of the flat tube 41,
The refrigerant flowing through 55 flows through a U-shaped channel 56 inside the U-turn part 50. That is, the refrigerant in the flat tube 41 passes from the inside to the inside and from the outside to the outside, and passes through the fluid passage 51.
Flows through.

【0028】上述した偏平チューブ41では、入口部4
4から流入した流体としての冷媒は、波形インナフィン
52で区画された流路54を通ってUターン部50に導
かれ、U字状ビード57で区画されたU字状流路56で
Uターンされ、波形インナフィン53で区画された流路
55を通って出口部45まで流れる。この偏平チューブ
41とコルゲートフィン65とを交互に積層したエバポ
レータ66全体における冷媒及び空気の流れの一例は、
図12で示した状況と同一である。
In the flat tube 41 described above, the inlet 4
The refrigerant as the fluid flowing from 4 is guided to the U-turn section 50 through the flow path 54 defined by the corrugated inner fin 52, and is U-turned in the U-shaped flow path 56 defined by the U-shaped bead 57. , And flows to the outlet 45 through a flow path 55 defined by the corrugated inner fins 53. An example of the flow of the refrigerant and the air in the entire evaporator 66 in which the flat tubes 41 and the corrugated fins 65 are alternately stacked is:
This is the same as the situation shown in FIG.

【0029】偏平チューブ41内を流れる冷媒は、区画
された流路54,55及びU字状流路56を流れるの
で、流体通路51の内側から内側、外側から外側を冷媒
が流れ、Uターン部50での遠心力に伴なう気液二相流
冷媒の分離がU字状流路56内だけとなり、二相流冷媒
の気液それぞれの分配量の分布が小さくなる。また、U
ターン部50のU字状流路56はプレート42の形状に
沿ったU字形となっているので、冷媒の流れに澱みが生
じることがなくなる。
Since the refrigerant flowing in the flat tube 41 flows through the divided flow paths 54 and 55 and the U-shaped flow path 56, the refrigerant flows from the inside to the outside of the fluid passage 51 and from the outside to the outside, and the U-turn portion. The separation of the gas-liquid two-phase flow refrigerant due to the centrifugal force at 50 is limited only to the U-shaped flow path 56, and the distribution of the gas-liquid distribution of the two-phase flow refrigerant is reduced. Also, U
Since the U-shaped flow path 56 of the turn portion 50 has a U-shape that follows the shape of the plate 42, no stagnation occurs in the flow of the refrigerant.

【0030】このため、冷媒の気液分配量の分布が小さ
くなって偏りによる熱効率の低下が生じにくくなると共
に、冷媒の流れに澱みが生じて熱交換量が不均一になる
ことがなくなる。
Therefore, the distribution of the gas-liquid distribution amount of the refrigerant is reduced, so that the thermal efficiency is hardly reduced due to the bias, and the flow of the refrigerant does not stagnate, and the heat exchange amount does not become uneven.

【0031】図4に示すように、室48,49における
プレート42の接合縁42a及び仕切壁47のUターン
部50側には、突起61がプレス成形されている。突起
61により波形インナフィン52,53の室48,49
内での位置決めが行なわれ、U字状流路56(U字状ビ
ード57)の上端位置に対する波形インナフィン52,
53の下端縁52b,53bの位置が規制される。
As shown in FIG. 4, a projection 61 is press-formed on the joining edge 42a of the plate 42 and the U-turn portion 50 side of the partition wall 47 in the chambers 48 and 49. The chambers 48, 49 of the corrugated inner fins 52, 53 are formed by the projections 61.
Within the U-shaped flow path 56 (U-shaped bead 57).
The position of the lower edge 52b, 53b of the 53 is regulated.

【0032】U字状流路56の上端位置と波形インナフ
ィン52,53の下端縁52b,53bとの隙間Sは
0.5mm乃至5mmに設定されている。
The gap S between the upper end of the U-shaped channel 56 and the lower edges 52b, 53b of the corrugated inner fins 52, 53 is set to 0.5 mm to 5 mm.

【0033】この隙間Sが0.5mm未満の場合、波形イ
ンナフィン52,53で形成された流路54,55のピ
ッチとU字状流路56のピッチが異なるため、U字状流
路56を形成するU字状ビード57と合致する流路5
4,55を通る冷媒が流れにくくなってしまう。
When the gap S is less than 0.5 mm, the pitch of the flow paths 54 and 55 formed by the corrugated inner fins 52 and 53 and the pitch of the U-shaped flow path 56 are different. The flow path 5 that matches the U-shaped bead 57 to be formed
The refrigerant passing through 4, 55 becomes difficult to flow.

【0034】また、隙間Sが5mmを越えると、プレート
42をろう付けして接合した際に、末ろう付け部が大き
くなって耐圧強度が不足してしまう。
On the other hand, if the gap S exceeds 5 mm, when the plate 42 is brazed and joined, the brazing portion at the end becomes large and the pressure resistance is insufficient.

【0035】図6,図7に基づいて位置決め用の突起の
他の実施例を説明する。図6には突起が成形されたUタ
ーン部を表わすプレートの正面、図7には図6中のVII-
VII線矢視を示してある。
Another embodiment of the positioning protrusion will be described with reference to FIGS. FIG. 6 shows a front view of a plate representing a U-turn portion having a projection formed thereon, and FIG.
The view from arrow VII is shown.

【0036】U字状ビード57の上端には突起71がU
字状ビード57に連続してプレス成形されている。突起
71の高さhはU字状ビード57の高さHよりも低く、
突起71の先端に波形インナフィン53(52)の下端
線53b(52b)を当接させた際、U字状流路56の
上端位置との間に前述と同様の隙間Sが形成される。
At the upper end of the U-shaped bead 57, a projection 71 is formed.
It is press-formed continuously with the letter-shaped bead 57. The height h of the projection 71 is lower than the height H of the U-shaped bead 57,
When the lower end line 53b (52b) of the corrugated inner fin 53 (52) is brought into contact with the tip of the projection 71, the same gap S as described above is formed between the projection 71 and the upper end position of the U-shaped flow path 56.

【0037】室48,49(直線部分)におけるプレー
ト42に、突起61もしくは突起71を設けたことで、
室48,49内で波形インナフィン52,53の位置決
めが行なえ、波形インナフィン52,53は偏平チュー
ブ41内の所定位置に装着される。このため、波形イン
ナフィン52,53で形成された流路54,55とU字
状流路56との間の冷媒の流れが遮断されることがな
く、しかもプレート42を接合した際の末ろう付け部が
大きくなることがない。
By providing the projections 61 or 71 on the plate 42 in the chambers 48 and 49 (linear portions),
The corrugated inner fins 52 and 53 can be positioned in the chambers 48 and 49, and the corrugated inner fins 52 and 53 are mounted at predetermined positions in the flat tube 41. Therefore, the flow of the refrigerant between the flow paths 54 and 55 formed by the corrugated inner fins 52 and 53 and the U-shaped flow path 56 is not interrupted, and the brazing is performed when the plates 42 are joined. The part does not become large.

【0038】[0038]

【発明の効果】本発明の積層型熱交換器は、偏平チュー
ブの直線部分の流路を波形インナフィンにより複数分離
して区画形成すると共に、Uターン部にU字状流路を複
数分離して区画形成したので、流体の流れをスムーズに
させて流路面積を増大させることができ、Uターン部で
の流体の流れに澱みが生じない。また、Uターン部での
遠心力に伴なう気液二相流冷媒の分離が区画されたU字
状流路内だけとなり、気液分配量の分布が小さくなる。
この結果、流体の澱みによる熱交換量の不均一がなくな
ると共に流体の偏りによる熱効率低下が生じにくくな
る。
According to the laminated heat exchanger of the present invention, the flow path of the straight portion of the flat tube is divided and formed by a plurality of corrugated inner fins, and the U-shaped flow path is divided into a plurality of U-turn portions. Since the compartments are formed, the flow of the fluid can be made smooth and the area of the flow path can be increased, and the fluid flow in the U-turn portion does not stagnate. Further, the separation of the gas-liquid two-phase flow refrigerant accompanying the centrifugal force in the U-turn portion is only in the partitioned U-shaped flow path, and the distribution of the gas-liquid distribution amount is small.
As a result, the heat exchange amount due to the fluid stagnation is not uneven, and the thermal efficiency is less likely to be reduced due to the bias of the fluid.

【0039】また、プレートのUターン部側における直
線部分に突起を成形し、突起によって波形インナフィン
の位置決めを行なうようにしたため、波形インナフィン
とU字状流路との間に所定の隙間を設定することができ
る。この結果、波形インナフィンで形成される流路とU
字状流路との間で流体の流れが遮断されることがなくな
ると共に、偏平チューブの末ろう付け部が大きくなるこ
とがなくなり、流体の流れをスムーズにして偏平チュー
ブの耐圧強度が確保できる。
Further, since a projection is formed on the linear portion on the U-turn side of the plate and the corrugated inner fin is positioned by the projection, a predetermined gap is set between the corrugated inner fin and the U-shaped flow path. be able to. As a result, the flow path formed by the corrugated inner fin and the U
The flow of the fluid between the flat tube and the U-shaped flow path is not interrupted, and the brazed portion of the flat tube does not become large, so that the flow of the fluid is smooth and the pressure resistance of the flat tube can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る積層型熱交換器の側面
図。
FIG. 1 is a side view of a laminated heat exchanger according to one embodiment of the present invention.

【図2】偏平チューブの分解斜視図。FIG. 2 is an exploded perspective view of the flat tube.

【図3】偏平チューブを構成するプレートの接合面を表
わす正面図。
FIG. 3 is a front view showing a joint surface of a plate constituting the flat tube.

【図4】図3中の矢印IV部の詳細図。FIG. 4 is a detailed view of an arrow IV part in FIG. 3;

【図5】図1中のV−V線矢視図。FIG. 5 is a view taken along line VV in FIG. 1;

【図6】突起が形成されたUターン部を表わすプレート
の正面図。
FIG. 6 is a front view of a plate showing a U-turn portion on which protrusions are formed.

【図7】図6中のVII-VII 線矢視図。FIG. 7 is a view taken along line VII-VII in FIG. 6;

【図8】従来の積層型熱交換器の側面図。FIG. 8 is a side view of a conventional laminated heat exchanger.

【図9】図8中の右側部の拡大断面図。FIG. 9 is an enlarged sectional view of the right side in FIG. 8;

【図10】偏平チューブを構成するプレートの正面図。FIG. 10 is a front view of a plate constituting the flat tube.

【図11】図10中のXI−XI線矢視図。FIG. 11 is a view taken along line XI-XI in FIG. 10;

【図12】冷媒の流れ状況説明図。FIG. 12 is an explanatory diagram of a flow state of a refrigerant.

【符号の説明】[Explanation of symbols]

41 偏平チューブ 42 プレート 43 出入口タンク部 44 入口部 45 出口部 46 連通孔 47 仕切壁 48,49 室 50 Uターン部 51 流体通路 52,53 波形インナフィン 54,55 流路 56 U字状流路 57 U字状ビード 61,71 突部 65 コルゲートフィン 66 エバポレータ 41 Flat tube 42 Plate 43 Inlet / outlet tank part 44 Inlet part 45 Outlet part 46 Communication hole 47 Partition wall 48,49 chamber 50 U-turn part 51 Fluid passage 52,53 Corrugated inner fin 54,55 Flow path 56 U-shaped flow path 57 U Figure-shaped bead 61, 71 Projection 65 Corrugated fin 66 Evaporator

フロントページの続き (72)発明者 川合 秀直 愛知県名古屋市中村区岩塚町字高道1番 地 三菱重工業株式会社 名古屋研究所 内 (58)調査した分野(Int.Cl.6,DB名) F28F 3/00 - 3/06 F28D 1/03 Continued on the front page (72) Inventor Hidenao Kawai 1 Nagoya Laboratory, Iwazuka-cho, Nakamura-ku, Nagoya-shi, Aichi Nagoya Research Laboratory Mitsubishi Heavy Industries, Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) F28F 3/00-3/06 F28D 1/03

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 プレス成形された2枚のプレートを突合
わせて偏平チューブとし、該偏平チューブの一端部に出
入口タンク部を形成すると共に、入口タンク部から前記
2枚のプレート間に流入した流体を前記偏平チューブの
他端部でUターンさせて出口タンク部に導く流体通路を
該偏平チューブに形成し、該偏平チューブとコルゲート
フィンとを交互に積層してなる積層型熱交換器におい
て、前記偏平チューブの前記出入口タンク部と前記他端
部の間における前記流体通路の直線部分に長さ方向に沿
う流路を複数分離して区画形成する波形インナフィンを
挿入し、流体をUターンさせる前記流体通路のUターン
部にU字状流路を複数分離して区画形成し、前記プレー
トの少なくとも前記Uターン部側における前記直線部分
に前記波形インナフィンの位置決めを行なう突起をプレ
ス成形してなることを特徴とする積層型熱交換器。
1. A flat tube formed by abutting two press-formed plates to form an inlet / outlet tank at one end of the flat tube, and a fluid flowing between the two plates from the inlet tank. A fluid passage leading to the outlet tank portion by making a U-turn at the other end portion of the flat tube is formed in the flat tube, and the flat tube and the corrugated fin are alternately stacked, and the stacked heat exchanger, The fluid that U-turns the fluid by inserting a corrugated inner fin that separates and defines a plurality of flow paths along the length direction into a straight line portion of the fluid passage between the entrance / exit tank portion and the other end portion of the flat tube. A plurality of U-shaped flow paths are formed separately in a U-turn portion of the passage, and the corrugated inner surface is formed at least in the linear portion on the U-turn portion side of the plate. A stacked heat exchanger, characterized in that a projection for positioning an element is formed by press molding.
【請求項2】 前記波形インナフィンの端部と前記U字
状ビードの端部との間に所定隙間が設定される位置に前
記突起が設けられていることを特徴とする請求項1に記
載の積層型熱交換器。
2. The projection according to claim 1, wherein the projection is provided at a position where a predetermined gap is set between an end of the corrugated inner fin and an end of the U-shaped bead. Stacked heat exchanger.
【請求項3】 前記所定隙間は0.5mm乃至5mmに設定
されていることを特徴とする請求項2に記載の積層型熱
交換器。
3. The heat exchanger according to claim 2, wherein the predetermined gap is set to 0.5 mm to 5 mm.
JP4271563A 1992-08-27 1992-10-09 Stacked heat exchanger Expired - Lifetime JP2930486B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP4271563A JP2930486B2 (en) 1992-10-09 1992-10-09 Stacked heat exchanger
TW082106689A TW234737B (en) 1992-08-27 1993-08-19
KR1019930016272A KR0143540B1 (en) 1992-08-27 1993-08-21 Stacked heat exchanger and method of manufacturing the same
AU44815/93A AU670302B2 (en) 1992-08-27 1993-08-24 Stacked heat exchanger and method of manufacturing the same
DE69315281T DE69315281T2 (en) 1992-08-27 1993-08-25 Plate heat exchanger and process for its manufacture
EP93113576A EP0584806B1 (en) 1992-08-27 1993-08-25 Stacked heat exchanger and method of manufacturing the same
US08/112,424 US5417280A (en) 1992-08-27 1993-08-25 Stacked heat exchanger and method of manufacturing the same
CN93116791A CN1072352C (en) 1992-08-27 1993-08-26 Layered heat exchanger and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4271563A JP2930486B2 (en) 1992-10-09 1992-10-09 Stacked heat exchanger

Publications (2)

Publication Number Publication Date
JPH06123580A JPH06123580A (en) 1994-05-06
JP2930486B2 true JP2930486B2 (en) 1999-08-03

Family

ID=17501828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4271563A Expired - Lifetime JP2930486B2 (en) 1992-08-27 1992-10-09 Stacked heat exchanger

Country Status (1)

Country Link
JP (1) JP2930486B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006012219B4 (en) * 2006-03-16 2018-04-05 Pierburg Gmbh Heat transfer unit with a closable fluid part inlet
KR100814071B1 (en) * 2007-02-28 2008-03-14 주식회사 코렌스 Egr cooler
JP2019100565A (en) * 2017-11-29 2019-06-24 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same

Also Published As

Publication number Publication date
JPH06123580A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
US5443116A (en) Stacked heat exchanger
US5318114A (en) Multi-layered type heat exchanger
EP0807794B1 (en) Layered heat exchangers
AU670302B2 (en) Stacked heat exchanger and method of manufacturing the same
US7637314B2 (en) Heat exchanger
JP3814917B2 (en) Stacked evaporator
JPH0674677A (en) Manufacture of lamination type heat exchanger
KR100497847B1 (en) Evaporator
JP2984480B2 (en) Stacked heat exchanger
JP2930486B2 (en) Stacked heat exchanger
JP3281648B2 (en) Stacked heat exchanger
JPH0933187A (en) Laminated heat exchanger
JP2984481B2 (en) Stacked heat exchanger
JP3327584B2 (en) Stacked heat exchanger
EP0769669A1 (en) Heat exchanger
JP3073331B2 (en) Stacked heat exchanger
JP3095540B2 (en) Stacked heat exchanger
JPH06123582A (en) Stacked type heat exchanger
JP2000161888A (en) Heat exchanger
JP3316492B2 (en) Stacked heat exchanger
JPH09273830A (en) Evaporator
JP3095547B2 (en) Stacked heat exchanger
JPH0674602A (en) Laminated heat exchanger
JPH0674679A (en) Lamination type heat exchanger
JPH0674686A (en) Lamination type heat exchanger

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14