JPH06123141A - Fireproofing panel - Google Patents

Fireproofing panel

Info

Publication number
JPH06123141A
JPH06123141A JP13619093A JP13619093A JPH06123141A JP H06123141 A JPH06123141 A JP H06123141A JP 13619093 A JP13619093 A JP 13619093A JP 13619093 A JP13619093 A JP 13619093A JP H06123141 A JPH06123141 A JP H06123141A
Authority
JP
Japan
Prior art keywords
fibrous mat
panel
mat
fire
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13619093A
Other languages
Japanese (ja)
Inventor
Mitsuhiko Yazaki
光彦 矢崎
Minoru Hokari
實 穂苅
Kenji Akine
憲次 秋子
Shigeru Kuwae
茂 桑江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP13619093A priority Critical patent/JPH06123141A/en
Publication of JPH06123141A publication Critical patent/JPH06123141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

PURPOSE:To provide a lightweight fireproofing panel excellent in fire resistance. CONSTITUTION:A fireproofing panel is formed by bonding and integrating metallic plates 7, 7 to both sides of a fibrous mat having a coefficient of linear contraction of less than 5% when heated at 1000 deg.C for eight hours, formed by compression molding of rockwool fibers. The fibrous mat is composed mainly of natural rock containing 35-wt.% or more SiO2 and 20-wt.% or less CaO, which is compression molded at a density of 80 to 250kg/m<2> with a binding material blended therein in the range 0.5 to 3wt.%. Also, the rockwool fibers are compressed in the direction parallel to a stack face while being compressed from the vertical direction on a belt conveyor, and are usable as a long strip 6 cut out therefrom with its longitudinal direction extending perpendicular or parallel to the direction of movement of the belt conveyor. In this case, a surface C abutting the surface of the initial fibrous mat is laid at right angles to the surface of each metallic plate 7 and the long strip 6 is sandwiched between the metallic plates 7, 7. Therefore, the fibrous mat serves as a heat insulation layer and even when the panel is exposed to flame radiation in a fire, etc., the temperature rise of the back of the panel is restrained so that early action to extinguish the fire or to evacuate, etc., is safely carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外壁や床板,天井,壁
材等の屋内建築用資材として使用される軽量性,耐火性
に優れたパネルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a panel having excellent lightness and fire resistance, which is used as a material for indoor construction such as an outer wall, a floor board, a ceiling and a wall material.

【0002】[0002]

【従来の技術】建築用資材として、木材やコンクリート
等に代えてチップを圧縮成形した合成木材,繊維質原料
をバインダー等で固化・成形したもの等、各種の素材が
使用され始めている。なかでも、ロックウール,ガラス
ウール,アルミナ珪酸質繊維(セラミックスファイバ
ー)等の無機質繊維は、軽量で且つ不燃性であることか
ら、有望な建築用資材として期待されている。たとえ
ば、ロックウール,ガラスウール等の無機質繊維を一対
のカバーシートの間に挟み込んだサンドイッチ状の絶縁
パネルが特公昭52−25644号公報で紹介されてい
る。この絶縁パネルにおけるカバーシートには、金属シ
ート,プラスターボード,ベニヤ板,壁紙等が使用され
ている。また、カバーシートに対する無機質繊維の接合
を図るため、カバーシートの表面に直交するように無機
質繊維を配向させ、無機質繊維の端末をカバーシートに
結着している。
2. Description of the Related Art As building materials, various materials such as synthetic wood obtained by compression-molding chips in place of wood and concrete, and solidifying and molding fibrous raw materials with a binder have begun to be used. Above all, inorganic fibers such as rock wool, glass wool, and alumina siliceous fibers (ceramic fibers) are lightweight and nonflammable, and are therefore expected as promising building materials. For example, Japanese Patent Publication No. 52-25644 discloses a sandwich-shaped insulating panel in which inorganic fibers such as rock wool and glass wool are sandwiched between a pair of cover sheets. A metal sheet, plaster board, plywood, wallpaper, etc. are used for the cover sheet in this insulating panel. Further, in order to bond the inorganic fibers to the cover sheet, the inorganic fibers are oriented so as to be orthogonal to the surface of the cover sheet, and the ends of the inorganic fibers are bound to the cover sheet.

【0003】[0003]

【発明が解決しようとする課題】ロックウールは、ガラ
スウールと比較すると高い耐熱性を呈する無機質繊維で
あるが、火災時等に高温の火炎輻射を直接受けると熱収
縮し、有効な耐火断熱厚さを保持できない。アルミナ珪
酸質繊維(セラミックスファイバー)は、ロックウール
よりも高い耐熱性をもち、高温の火炎輻射を受けても熱
収縮しない。しかし、高価であることから、経済合理性
を満足しない。ベニヤ板等の木質や壁紙等の可燃物を使
用したカバーシートは、火炎にさらされると焼失してし
まう。プラスターボード等の無機含水材料をカバーシー
トとして使用するとき、急激な脱水作用により亀裂を生
じたり、繊維質マットから脱落することがある。その結
果、高温の火炎輻射を遮断することができない。本発明
は、このような問題を解消すべく案出されたものであ
り、特定されたロックウールマットを圧縮成形した繊維
質マットを芯材とすることにより、融点が高い鉄板等の
金属板で挟持したサンドイッチ構造をもち、軽量で優れ
た耐火性を示す安価な建築用パネルを提供することを目
的とする。
Rock wool is an inorganic fiber that exhibits higher heat resistance than glass wool, but when it is directly exposed to high-temperature flame radiation during a fire or the like, it shrinks heat and has an effective fire insulation thickness. I can't hold it. Alumina silicate fiber (ceramic fiber) has higher heat resistance than rock wool, and does not shrink when exposed to high-temperature flame radiation. However, it is expensive and does not satisfy economic rationality. Cover sheets made of wood such as veneer boards or combustible materials such as wallpaper are burned out when exposed to flames. When an inorganic water-containing material such as plaster board is used as a cover sheet, it may be cracked or fall off from the fibrous mat due to a rapid dehydration action. As a result, high-temperature flame radiation cannot be blocked. The present invention has been devised to solve such a problem, and by using a fibrous mat obtained by compression molding the specified rock wool mat as a core material, a metal plate such as an iron plate having a high melting point can be used. It is an object of the present invention to provide an inexpensive construction panel which has a sandwich structure sandwiched and which is lightweight and exhibits excellent fire resistance.

【0004】[0004]

【課題を解決するための手段】本発明の耐火パネルは、
その目的を達成するため、ロックウール繊維を圧縮成形
した加熱線収縮率5%未満の繊維質マットと、該繊維質
マットの両面に接着一体化された金属板とを備えてい
る。繊維質マットは、ロックウール繊維の薄層を複数枚
積層したもの、或いはロックウール繊維ブロックを集積
したものを、1000℃,8時間の加熱線収縮率が5%
未満となるように圧縮成形したものが好ましい。ロック
ウール繊維の薄層マットとしては、たとえばSiO2
35重量%以上及びCaO:20重量%以下を含有する
天然岩石を主原料とし、繊維化時に0.5〜3重量%の
バインダーが塗布されたロックウールを長手方向に直交
する方向にうねらせて製造したものが使用される。
The refractory panel of the present invention comprises:
In order to achieve the object, it is provided with a fibrous mat obtained by compression-molding rockwool fibers and having a heating linear shrinkage ratio of less than 5%, and a metal plate bonded and integrated on both sides of the fibrous mat. The fibrous mat is obtained by laminating a plurality of thin layers of rockwool fiber or by accumulating rockwool fiber blocks, and has a heating linear shrinkage rate of 5% at 1000 ° C. for 8 hours.
It is preferable that the material is compression-molded so that the amount becomes less than 1. As a thin layer mat of rock wool fiber, for example, SiO 2 :
Using natural rock containing 35% by weight or more and CaO: 20% by weight or less as a main raw material, rock wool coated with 0.5 to 3% by weight of a binder at the time of fiber formation is undulated in a direction orthogonal to the longitudinal direction. What is manufactured is used.

【0005】繊維質マットとしては、ロックウールの薄
層又はブロックの積層面に平行な方向に圧縮し、ロック
ウール繊維の進行方向又は進行方向に直交する方向が長
手方向となるように短冊状に切断したものが好ましい。
たとえば、図1(a)に示す設備構成で加圧ローラ1,
2の間にロックウール繊維積層体3を挟み込み、上下方
向から加圧しながら押し縮め、繊維質マット4を得る。
繊維質マット4は、カッター5で適宜サイズの短冊片6
に切断される。この製造工程では、繊維質マット4の進
行方向にロックウール繊維が押し縮められる。そのた
め、図1(b)に矢印で示す繊維の押し縮め方向Dに直
交する切断線L1 に沿って切り出された短冊片6aは、
図1(c)に示すように、長手方向の切断面に繊維が相
互に平行で直線状に配向した面Aが形成され、うねりを
もって繊維が配向した面Bが端面となる。なお、面C
は、元の繊維質マット4の表面に当る。製造される繊維
質マット4が広い幅をもつときには、切断線L1 に沿っ
て切り出された短冊片6aを更に長手方向に切断して、
所定長さの短冊片とすることも可能である。
The fibrous mat is compressed into a thin layer of rock wool or in a direction parallel to the laminated surface of the block, and formed into a strip shape so that the longitudinal direction is the traveling direction of the rock wool fiber or the direction orthogonal to the traveling direction. The cut one is preferable.
For example, in the equipment configuration shown in FIG.
The rock wool fiber laminate 3 is sandwiched between the two and compressed while being pressed from above and below to obtain the fibrous mat 4.
The fibrous mat 4 is cut with a cutter 5 into strips 6 of an appropriate size.
To be disconnected. In this manufacturing process, the rock wool fibers are compressed in the traveling direction of the fibrous mat 4. Therefore, the strip piece 6a cut out along the cutting line L 1 orthogonal to the fiber compression direction D shown by the arrow in FIG.
As shown in FIG. 1 (c), a plane A in which the fibers are parallel to each other and linearly oriented is formed on the cut surface in the longitudinal direction, and a plane B in which the fibers are oriented with undulations is the end face. In addition, surface C
Hits the surface of the original fibrous mat 4. When the manufactured fibrous mat 4 has a wide width, the strip piece 6a cut out along the cutting line L 1 is further cut in the longitudinal direction,
It is also possible to make a strip of a predetermined length.

【0006】繊維質マット4を所定幅のブロックに切断
し、押し縮め方向Dに平行する切断線L2 に沿って短冊
片を切り出すこともできる。この場合に得られる短冊片
6bでは、図1(d)に示すように、状態で繊維が相互
に平行で直線状に配向した面Aが端面にくる。長手方向
の側面は、うねりをもって繊維が配向した面Bとなる。
また、ブロックに切断することなく、繊維質マット4を
幅方向に関して複数のリボン状にスリットした後、所定
長さの短冊片に切断することも可能である。短冊状の繊
維質マットは、図2に示すように繊維質マット4の表面
に当る面Cを金属板7の表面に直交させて一対の金属板
7,7の間に挟み込まれる。図2(a)の配列では、面
Aが金属板7に対する接着面となり、面Bがパネルの厚
みを決める。図2(b)の配列では、面Bが接着面とな
り、面Aがパネルの厚みを決める。
It is also possible to cut the fibrous mat 4 into blocks of a predetermined width, and cut out strips along a cutting line L 2 parallel to the pressing and shrinking direction D. In the strip piece 6b obtained in this case, as shown in FIG. 1 (d), the end surface is a surface A in which the fibers are parallel to each other and linearly oriented. The side surface in the longitudinal direction is a surface B in which the fibers are oriented with undulations.
It is also possible to slit the fibrous mat 4 into a plurality of ribbons in the width direction without cutting it into blocks, and then cut it into strips of a predetermined length. As shown in FIG. 2, the strip-shaped fibrous mat is sandwiched between the pair of metal plates 7 and 7 with the surface C that contacts the surface of the fibrous mat 4 being orthogonal to the surface of the metal plate 7. In the arrangement of FIG. 2A, the surface A serves as an adhesive surface to the metal plate 7, and the surface B determines the thickness of the panel. In the arrangement of FIG. 2B, the surface B serves as an adhesive surface and the surface A determines the thickness of the panel.

【0007】何れの配列形態であっても、繊維質マット
4の積層面に当る面Cを金属板7の表面に直交させて短
冊片6a又は6bを金属板7,7の間に挟み込み、接着
することにより、金属板7,7の表面に垂直な方向、す
なわちパネルの厚み方向に配向した繊維が多くなる。そ
の結果、十分な強度をもった耐火パネルが得られる。こ
れに対し、繊維質マット4の積層面に当る面Cを金属板
7,7に対する接着面として短冊片6a又は6bを挟み
込むと、金属板7,7の表面と平行な方向に配向した繊
維の占める割合が多くなり、十分なパネル強度が得られ
ない。本発明者等は、ロックウールから作られた繊維質
マットを芯材とするパネルの耐火性につき、種々の観点
から調査・研究した。その結果、SiO2 含有量及びC
aO含有量が規定されたロックウール製の繊維質マット
を芯材とする耐火パネルにおいては、火災時等で高温の
火炎輻射、特に輝炎が芯材に侵入することを鉄板等の高
融点金属板で阻止し、且つSiO2 含有量,CaO含有
量,樹脂量及び加熱線収縮率を特定範囲に規制するとき
ロックウール繊維の健全性も維持されることを見い出し
た。得られた耐火パネルは、30分〜3時間の火炎輻射
に耐えることができ、消火,避難等の初期活動を安全に
行うことができる建材として使用される。
In any arrangement, the strip C 6a or 6b is sandwiched between the metal plates 7 and 7 by adhering the surface C, which is the laminated surface of the fibrous mat 4, to the surface of the metal plate 7. By doing so, the number of fibers oriented in the direction perpendicular to the surfaces of the metal plates 7, 7, that is, in the thickness direction of the panel increases. As a result, a fireproof panel having sufficient strength can be obtained. On the other hand, when the strip pieces 6a or 6b are sandwiched with the surface C, which is the laminated surface of the fibrous mat 4, as an adhesive surface to the metal plates 7 and 7, the fibers oriented in a direction parallel to the surfaces of the metal plates 7 and 7 are formed. The ratio occupies too much, and sufficient panel strength cannot be obtained. The present inventors have investigated and studied the fire resistance of a panel having a fibrous mat made of rock wool as a core material from various viewpoints. As a result, the SiO 2 content and C
In a fire resistant panel using a rock wool fibrous mat whose core material aO content is specified as a core material, a high melting point metal such as an iron plate is used to prevent high temperature flame radiation, especially bright flame, from entering the core material during a fire. It was found that the soundness of the rockwool fiber is maintained when it is blocked by a plate and the SiO 2 content, the CaO content, the resin content and the linear heating shrinkage are regulated within a specific range. The obtained fireproof panel can withstand flame radiation for 30 minutes to 3 hours, and is used as a building material capable of safely performing initial activities such as fire extinguishing and evacuation.

【0008】繊維質マットの原料としては、玄武岩,輝
緑岩,カンラン岩等の天然岩石が単独で又は混合して使
用される。天然岩石等は、たとえばキュポラ,電気炉等
で溶融した後、遠心力等によって繊維化される。繊維化
時にバインダーを塗布し、0.5〜3重量%のバインダ
ーをロックウール繊維に付着させる。たとえば、バイン
ダー付着方法として、繊維化されたロックウールが浮遊
状態にあるうちに、別途設けられたバインダー供給口か
らバインダーを噴霧する方法が採用される。塗布された
バインダーは、ロックウール繊維相互の交叉点等を結束
し、繊維質マットの耐圧縮性を向上させる。
As a raw material for the fibrous mat, natural rocks such as basalt, diabase, olivine are used alone or in a mixture. Natural rock or the like is melted in, for example, a cupola, an electric furnace, or the like, and then made into fibers by centrifugal force or the like. A binder is applied at the time of fiberizing, and 0.5 to 3% by weight of the binder is attached to the rockwool fiber. For example, as a method of attaching the binder, a method of spraying the binder from a separately provided binder supply port while the fiberized rock wool is in a floating state is adopted. The applied binder binds the intersections of rock wool fibers to each other and improves the compression resistance of the fibrous mat.

【0009】天然岩石は、得られる繊維質マットに所定
の耐火性,強度,耐久性等を付与するため、SiO2
有量が35重量%以上でCaO含有量が20重量%以下
であることが必要である。SiO2 含有量が35重量%
未満又はCaO含有量が20重量%を超える繊維質マッ
トでは、溶融時に融液の粘稠性が不足し、ショット等の
非繊維化物が多量に生成し、良好なロックウール繊維が
得られない。ロックウール繊維結合用のバインダーとし
ては、エポキシ樹脂,フェノール樹脂,ウレタン樹脂,
メラミン樹脂等の各種高分子有機接着剤が使用される。
なかでも、比較的耐熱性が良好で価格的にも安定してい
るフェノール樹脂を主体とするバインダーが好ましい。
Natural rocks have a SiO 2 content of 35% by weight or more and a CaO content of 20% by weight or less in order to impart predetermined fire resistance, strength, durability and the like to the obtained fibrous mat. is necessary. SiO 2 content is 35% by weight
In the case of a fibrous mat having a CaO content of less than 20% or a CaO content of more than 20% by weight, the viscosity of the melt is insufficient at the time of melting, a large amount of non-fibrous material such as shot is produced, and good rockwool fibers cannot be obtained. Epoxy resin, phenol resin, urethane resin, binders for binding rock wool fibers
Various polymer organic adhesives such as melamine resin are used.
Above all, a binder mainly composed of a phenol resin, which has relatively good heat resistance and is stable in price, is preferable.

【0010】バインダーの配合量は、繊維質マットの耐
火性,強度,耐熱収縮性等を考慮して0.5〜3重量%
の範囲で定められる。バインダーの配合量が0.5重量
%未満であると、圧縮成形した繊維質マットの強度,耐
圧縮性等が低下する。逆に、3重量%を超えるバインダ
ーの配合量では、火災時にバインダーの燃焼に起因して
パネルの耐火性が損なわれる虞れがある。バインダーを
付着させたロックウールの薄層は、たとえばベルトコン
ベヤ上で搬送されている状態で、長手方向に直交する方
向にうならせながら積層される。積層したロックウール
薄層を上下方向から圧縮しながら、積層面に平行な方向
に押し縮めるとき、ロックウール繊維が相互に各層の内
部及び層間で絡み合い、三次元的にランダム状に配向し
た繊維質マットが得られる。
The blending amount of the binder is 0.5 to 3% by weight in consideration of the fire resistance, strength, heat shrinkage resistance and the like of the fibrous mat.
It is defined in the range of. If the blending amount of the binder is less than 0.5% by weight, the strength, compression resistance and the like of the compression molded fibrous mat are deteriorated. On the other hand, if the content of the binder exceeds 3% by weight, the fire resistance of the panel may be impaired due to the combustion of the binder during a fire. The thin layers of rockwool to which the binder is adhered are stacked, for example, while being conveyed on a belt conveyor, while being rolled in a direction orthogonal to the longitudinal direction. When compressing the laminated rockwool thin layers from above and below while compressing them in the direction parallel to the laminated surface, the rockwool fibers are entwined with each other inside and between the layers, and are three-dimensionally randomly oriented fiber material. A mat is obtained.

【0011】繊維質マットは、断熱性,防音性,軽量
性,強度,耐圧縮性等を勘案し、圧縮成形によって密度
80〜250kg/m3 とすることが好ましい。圧縮成
形後の密度が80kg/m3 未満であると、繊維質マッ
トの強度及び耐圧縮性が低下する。逆に、250kg/
3 を超える密度では、多量のロックウール繊維が必要
になることは勿論、繊維質マットの長所である軽量性が
損なわれる。繊維質マットの加熱線収縮率は、ロックウ
ールの成分,繊維構造,バインダー配合量,圧縮成形後
の密度等によって調整される。繊維質マットが火炎にさ
らされたときの熱収縮を抑制し耐火断熱厚さを確保する
ため、5%以下の加熱線収縮率に調整することが必要で
あり、加熱線収縮率3%以下が好ましい。加熱線収縮率
が5%を超えるとき、加熱された繊維質マットの熱膨張
が大きく、所望の耐火断熱厚さを保持できないため耐火
時間が短くなる。なお、本願明細書でいう加熱線収縮率
は、1000℃に8時間加熱されたときの繊維質マット
の線収縮率を表し、JIS R3311に準拠して測定
される。
The density of the fibrous mat is preferably 80 to 250 kg / m 3 by compression molding in consideration of heat insulation, soundproofing, lightness, strength, compression resistance and the like. If the density after compression molding is less than 80 kg / m 3 , the strength and compression resistance of the fibrous mat will be reduced. Conversely, 250 kg /
When the density is more than m 3 , not only a large amount of rockwool fiber is required, but also the lightness, which is an advantage of the fibrous mat, is impaired. The heating linear shrinkage of the fibrous mat is adjusted by the component of rock wool, the fiber structure, the amount of the binder compounded, the density after compression molding, and the like. In order to suppress the heat shrinkage when the fibrous mat is exposed to the flame and secure the fireproof heat insulating thickness, it is necessary to adjust the heating wire shrinkage ratio to 5% or less, and the heating wire shrinkage ratio to 3% or less. preferable. When the heating linear shrinkage ratio exceeds 5%, the thermal expansion of the heated fibrous mat is large, and the desired fireproof heat insulating thickness cannot be maintained, so that the fireproof time becomes short. The heating linear shrinkage referred to in the present specification represents the linear shrinkage of the fibrous mat when heated to 1000 ° C. for 8 hours, and is measured according to JIS R3311.

【0012】繊維質マットの表面に接着一体化される金
属板は、火災時等の火炎輻射温度である900〜110
0℃の高温でも溶融せず、火炎輻射を遮ることが可能な
高融点金属の板状体である限り、材質に制約を受けるも
のではない。具体的には、安価な鉄板,Znめっき鋼
板,化粧鋼板,ステンレス鋼板等が使用される。繊維質
マットと金属板とを一体化させる接着剤としては、酢酸
ビニル樹脂,エチレン酢酸ビニル樹脂,アクリル樹脂,
スチレンブタジエン等のゴム系接着剤,エポキシ樹脂,
フェノール樹脂,ウレタン樹脂,メラミン樹脂等の各種
高分子有機接着剤、或いはケイ酸ソーダ等の無機接着剤
を使用することができる。高分子有機接着剤を使用する
とき、パネルの耐火性,強度等を考慮して50〜500
g/m2 の範囲に接着剤の塗布量を定めることが好まし
い。塗布量が50g/m2未満であると、パネル強度が
低下する。逆に、500g/m2 を超える塗布量では、
火災時に接着剤の燃焼に起因して有毒ガスが発生した
り、パネルの耐火性が損なわれる虞れがある。
The metal plate adhered and integrated with the surface of the fibrous mat has a flame radiation temperature of 900 to 110 which is a flame radiation temperature at the time of fire or the like.
There is no restriction on the material as long as it is a plate-shaped body of a refractory metal that does not melt even at a high temperature of 0 ° C. and can block flame radiation. Specifically, inexpensive iron plates, Zn-plated steel plates, decorative steel plates, stainless steel plates, etc. are used. Adhesives for integrating the fibrous mat and the metal plate include vinyl acetate resin, ethylene vinyl acetate resin, acrylic resin,
Rubber adhesive such as styrene butadiene, epoxy resin,
Various polymer organic adhesives such as phenol resin, urethane resin and melamine resin, or inorganic adhesives such as sodium silicate can be used. When using a high molecular organic adhesive, consider the fire resistance and strength of the panel and so on.
It is preferable to set the coating amount of the adhesive within the range of g / m 2 . If the coating amount is less than 50 g / m 2 , the panel strength will decrease. On the contrary, when the coating amount exceeds 500 g / m 2 ,
When a fire occurs, toxic gas may be generated due to the burning of the adhesive, or the fire resistance of the panel may be impaired.

【0013】耐火パネルの芯材として使用されるロック
ウール繊維を圧縮成形した繊維質マットは、火災時等に
900〜1100℃の火炎輻射を直接受けると、繊維質
マットの内部に火炎が侵入して熱収縮する。そのため、
耐火断熱厚さが短時間で順次減少し、経済合理的な厚さ
では裏面の温度上昇を抑止できない。しかし、鉄板等の
高融点金属板を火炎輻射遮蔽層として繊維質マットの表
面に一体化させると、繊維質マット内部への火炎侵入が
防止され、繊維質マットは、長時間にわたって耐火断熱
層としての機能を保持する。また、ロックウールの化学
成分,繊維質マットの密度や厚さ,金属板の材質や厚さ
等を調整することによって、初期消火や避難活動に有効
な耐火時間を確保することができる。
A fibrous mat obtained by compression-molding rock wool fibers used as a core material of a fire-resistant panel is directly exposed to flame radiation of 900 to 1100 ° C. during a fire or the like, and the flame penetrates into the fibrous mat. Heat shrinks. for that reason,
The fireproof insulation thickness gradually decreases in a short time, and the temperature increase on the back side cannot be suppressed with an economically rational thickness. However, if a high-melting metal plate such as an iron plate is integrated with the surface of the fibrous mat as a flame radiation shielding layer, flame intrusion into the fibrous mat is prevented, and the fibrous mat serves as a fireproof heat insulating layer for a long time. Retain the function of. In addition, by adjusting the chemical composition of rock wool, the density and thickness of the fibrous mat, the material and thickness of the metal plate, etc., it is possible to secure a fireproof time effective for initial fire extinguishing and evacuation activities.

【0014】[0014]

【実施例】 実施例1:輝緑岩(SiO2 含有量:47.6重量%,
CaO含有量:12.3重量%,FeO+Fe23
10.2重量%)を主材とした原料をキュポラで溶融
し、遠心力を利用してロックウール繊維を製綿すると同
時に、バインダーとしてフェノール樹脂を付着させた。
ロックウール繊維を薄層状に製綿機からコンベヤ上に連
続的に送り出しながら、複数層に折り畳んだ。図1に示
すように加圧ローラ1,2によって積層体3を上下方向
に加圧しながら積層面に平行な方向に押し縮め、250
℃に保持した。高温保持によってフェノール樹脂の接着
性が発現し、厚さ100mmに圧縮成形された繊維質マ
ット4が得られた。このとき、バインダーの配合量は
2.4重量%であり、繊維質マット4の密度は108k
g/mm2 であった。
Examples Example 1: Diorite (SiO 2 content: 47.6% by weight,
CaO content: 12.3% by weight, FeO + Fe 2 O 3 :
A raw material containing 10.2% by weight) as a main material was melted in a cupola, and the rock wool fiber was made into cotton by using centrifugal force, and at the same time, a phenol resin was attached as a binder.
The rockwool fibers were continuously fed from the cotton-making machine in a thin layer onto the conveyor and folded into multiple layers. As shown in FIG. 1, while pressing the laminated body 3 in the vertical direction by the pressure rollers 1 and 2, the laminated body 3 is compressed and contracted in a direction parallel to the laminating plane,
Hold at ℃. Adhesion of the phenol resin was developed by holding at high temperature, and a fibrous mat 4 compression-molded to a thickness of 100 mm was obtained. At this time, the compounding amount of the binder was 2.4% by weight, and the density of the fibrous mat 4 was 108 k.
It was g / mm 2 .

【0015】実施例2:カンラン岩(SiO2 含有量:
40.0重量%,CaO含有量:7.6重量%,FeO
+Fe23 :12.7重量%)を主材とした原料か
ら、実施例1と同様に繊維質マットを圧縮成形した。得
られた繊維質マットは、厚さ100mm,バインダー配
合量1.3重量%及び密度126kg/mm2 であっ
た。 比較例1:高炉スラグ(SiO2 含有量:41.3重量
%,CaO含有量:33.3重量%,FeO+Fe2
3 :0.7重量%)を主材とした原料から、実施例1と
同様に繊維質マットを圧縮成形した。得られた繊維質マ
ットは、厚さ100mm,バインダー配合量1.5重量
%及び密度118kg/mm2 であった。実施例1,2
及び比較例1で得られた繊維質マットについて、化学組
成を表1に、JIS R3311に準拠した加熱線収縮
率の測定結果を表2に示す。表2から、輝緑岩,カンラ
ン岩等の天然岩石から得られるロックウール繊維で作ら
れた繊維質マットは、高炉スラグを主材とするものに比
較して優れた耐熱性を呈することが判る。
Example 2: Peridotite (SiO 2 content:
40.0% by weight, CaO content: 7.6% by weight, FeO
A fibrous mat was compression-molded in the same manner as in Example 1 from a raw material containing + Fe 2 O 3 (12.7% by weight) as a main material. The obtained fibrous mat had a thickness of 100 mm, a binder content of 1.3% by weight, and a density of 126 kg / mm 2 . Comparative Example 1: Blast furnace slag (SiO 2 content: 41.3% by weight, CaO content: 33.3% by weight, FeO + Fe 2 O
(3 : 0.7% by weight) as a main material, a fibrous mat was compression molded in the same manner as in Example 1. The obtained fibrous mat had a thickness of 100 mm, a binder content of 1.5% by weight, and a density of 118 kg / mm 2 . Examples 1 and 2
The chemical composition of the fibrous mat obtained in Comparative Example 1 is shown in Table 1, and the measurement result of the heating linear shrinkage rate according to JIS R3311 is shown in Table 2. It can be seen from Table 2 that the fibrous mat made of rockwool fiber obtained from natural rocks such as diabase and peridotite exhibits excellent heat resistance as compared with those made mainly of blast furnace slag. .

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】実施例3:実施例1で得られた繊維質マッ
トを、49mm幅の短冊片6に切断した。短冊片6の面
Cを金属板7,7に直交させて、図3(b)に示すよう
に2枚の金属板7,7の間に挟み込んだ。各短冊片6
は、図3(a)に示すように、隣接する短冊片6との接
触端面を互い違いに配置した。金属板7,7には、板厚
0.6mmの2枚の着色Znめっき鋼板からなるカラー
鉄板を使用した。短冊片6が接する側の金属板7,7の
表面に変成ウレタン樹脂接着剤を300g/m2 の割合
で塗布し、80℃のホットプレスに2分間保持すること
により変成ウレタン樹脂の接着性を発現させた。
Example 3 The fibrous mat obtained in Example 1 was cut into strips 6 having a width of 49 mm. The surface C of the strip piece 6 was made orthogonal to the metal plates 7 and 7 and sandwiched between the two metal plates 7 and 7 as shown in FIG. 3B. Each strip 6
As shown in FIG. 3A, the contact end faces with the adjacent strips 6 were arranged alternately. As the metal plates 7 and 7, a color iron plate made of two colored Zn-plated steel plates having a plate thickness of 0.6 mm was used. The modified urethane resin adhesive is applied at a rate of 300 g / m 2 on the surfaces of the metal plates 7 and 7 on the side where the strips 6 come in contact with each other, and the adhesive property of the modified urethane resin is maintained by holding the hot press at 80 ° C. for 2 minutes. Was expressed.

【0019】得られた耐火パネルは、50mmの厚さも
ち、優れた強度を呈した。また、個々の短冊片6は、塗
布した変成ウレタン樹脂で金属板7,7に強固に接着さ
れていた。幅1100mm,長さ1500mm及び厚さ
50mmの耐火パネル4枚をの田の字形に組み立て、壁
耐火1時間の試験体を作成した。そして、JIS A1
304に準拠した耐火試験を行い、一面側を標準温度曲
線に従って昇温させたときの裏面温度を測定した。
The fire-resistant panel obtained had a thickness of 50 mm and exhibited excellent strength. The individual strips 6 were firmly adhered to the metal plates 7, 7 with the applied modified urethane resin. Four fire-resistant panels each having a width of 1100 mm, a length of 1500 mm and a thickness of 50 mm were assembled in a square shape to prepare a test piece for wall fire resistance for 1 hour. And JIS A1
A fire resistance test based on 304 was performed, and the back surface temperature was measured when one surface side was heated according to the standard temperature curve.

【0020】試験結果を示す図4から明らかなように、
何れの測定時点でも裏面温度が260℃を超えることは
なかった。また、100℃を超える温度に達する時間
も、最も早い胴縁鋼材部で20分程度であり、その他の
部分では30分を超えていた。このように裏面の最高到
達温度が低く、且つ昇温も緩慢に行われることから、避
難行動や初期消火等が安全に行われる建材として使用さ
れることが判る。試験後の耐火パネルを観察したとこ
ろ、加熱面側の鉄板に熱変形がみられた。しかし、裏面
にある繊維質マットには、僅かな厚み減少がみられたも
のの、特に大きな熱損傷が検出されなかった。
As is clear from FIG. 4 showing the test results,
The back surface temperature did not exceed 260 ° C. at any measurement time point. Further, the time required to reach the temperature exceeding 100 ° C. was about 20 minutes at the earliest furring strip steel material portion, and exceeded 30 minutes at the other portions. In this way, since the maximum temperature reached on the back surface is low and the temperature rise is performed slowly, it can be seen that it is used as a building material in which evacuation behavior, initial fire extinguishing, etc. are safely performed. When the fireproof panel after the test was observed, thermal deformation was observed on the iron plate on the heating surface side. However, although the fibrous mat on the back surface showed a slight decrease in thickness, no particularly large heat damage was detected.

【0021】実施例4:実施例2の繊維質マットを99
mm幅の短冊片に切断し、面Cを垂直にして配列し、板
厚0.5mmの2枚の着色Znめっき鋼板からなるカラ
ー鉄板の間に挟み込み、実施例3と同様に板厚100m
mの耐火パネルを得た。幅1100mm,長さ2800
mm及び厚さ100mmの耐火パネル3枚を縦張りし
て、壁2時間耐火試験体を作成し、JIS A1304
に準拠した耐火試験に供した。試験結果を示す図5から
明らかなように、昇温曲線は、実施例4の耐火パネルよ
りも更に緩やかである。最高到達温度が200℃前後と
低く、100℃に到達する時間も加熱開始後50分以上
と長くなっていた。また、繊維質マット及び裏面側鉄板
共に、加熱による損傷は何らみられなかった。
Example 4: 99 of the fibrous mat of Example 2
It is cut into strips each having a width of mm, arranged so that the surface C is vertical, and sandwiched between the colored iron plates made of two colored Zn-plated steel plates having a plate thickness of 0.5 mm, and having a plate thickness of 100 m as in Example 3.
m fireproof panel was obtained. Width 1100 mm, length 2800
mm and 100 mm thick fireproof panels are vertically stretched to create a fireproof test piece for 2 hours on a wall, according to JIS A1304.
It was subjected to a fire resistance test in accordance with. As is clear from FIG. 5 showing the test result, the temperature rising curve is more gentle than that of the fireproof panel of Example 4. The maximum temperature reached was as low as about 200 ° C, and the time to reach 100 ° C was as long as 50 minutes or more after the start of heating. Further, neither the fibrous mat nor the iron plate on the back side was damaged by heating.

【0022】比較例2:比較例1の繊維質マットを49
mm幅の短冊片に切断し、実施例3と同様な方法で厚さ
50mmの耐火パネルを作成した。図6は、この耐火パ
ネルを壁1時間耐火の加熱試験に供したときの実験結果
である。この場合、耐火パネルの裏面温度は、加熱開始
後40分で胴縁鋼材部が260℃の上限温度を超え、加
熱終了時には最高約340℃まで上昇した。また、加熱
試験後に耐火パネルを観察したところ、繊維質マットが
焼結現象によって著しく焼損しており、厚さも加熱前の
半分以下になった。図6を図4及び図5と比較すると、
無機質繊維の材質による相違が顕著に現れており、無機
質繊維に含まれる成分含有量の規制によって耐火パネル
裏面温度の上昇が大幅に抑えられていることが判る。
Comparative Example 2: The fibrous mat of Comparative Example 1 was 49
A 50 mm-thick fireproof panel was prepared in the same manner as in Example 3 by cutting it into strips each having a width of mm. FIG. 6 is an experimental result when this fire-resistant panel was subjected to a heating test for fire resistance of a wall for 1 hour. In this case, the backside temperature of the refractory panel exceeded the upper limit temperature of 260 ° C in the furring strip steel member 40 minutes after the start of heating, and rose to a maximum of about 340 ° C at the end of heating. When the fireproof panel was observed after the heating test, the fibrous mat was significantly burned due to the sintering phenomenon, and the thickness was less than half that before heating. Comparing FIG. 6 with FIG. 4 and FIG.
The difference due to the material of the inorganic fiber is noticeable, and it can be seen that the rise in the temperature of the back surface of the fireproof panel is significantly suppressed by the regulation of the content of the component contained in the inorganic fiber.

【0023】繊維質マットから切り出された複数枚の短
冊片を、繊維質マットの表面に当る面Cが金属板の表面
と直交するように金属板の間に挟み込み、長手方向に関
し繊維質マットが複数積層された耐火パネルとすること
ができる。この場合、各短冊片における繊維の配向方向
が互いに異なるように組み合わせるとき、曲げ強度,耐
撓み性等の異方性を解消することができる。たとえば、
図3に示す平面配列で短冊片6を組み合わせると、耐火
パネルの厚み方向[図3(b)の上下方向]に関する圧
縮強度は大きく、短冊状マットの長手方向[図3(a)
の上下方向]に関するたわみに対する抵抗が大きくな
る。しかし、幅方向[図3(a)の左右方向]に関し撓
み易くなる。他方、繊維質マットから切り出された短冊
片を図7(a)〜(c)に示すように縦横に組み合わせ
ると、耐火パネルの長手方向及び幅方向に関する曲げ強
度,耐撓み性等の機械的特性が等方性をもつものにな
る。
A plurality of strips cut out from the fibrous mat are sandwiched between the metal plates such that the surface C that contacts the surface of the fibrous mat is orthogonal to the surface of the metal plate, and a plurality of fibrous mats are laminated in the longitudinal direction. Fireproof panel. In this case, when the strips are combined so that the orientation directions of the fibers are different from each other, it is possible to eliminate anisotropy such as bending strength and bending resistance. For example,
When the strip pieces 6 are combined in the plane arrangement shown in FIG. 3, the compressive strength in the thickness direction of the fireproof panel [the vertical direction of FIG. 3 (b)] is large, and the longitudinal direction of the strip mat [FIG. 3 (a)].
Resistance in the vertical direction]. However, it becomes easy to bend in the width direction [left and right direction in FIG. 3A]. On the other hand, when strips cut out from the fibrous mat are combined vertically and horizontally as shown in FIGS. 7 (a) to 7 (c), mechanical properties such as bending strength and bending resistance in the longitudinal direction and width direction of the fireproof panel are combined. Becomes isotropic.

【0024】[0024]

【発明の効果】以上に説明したように、本発明の耐火パ
ネルは、高耐熱化したロックウール繊維を圧縮成形した
繊維質マットを鉄板等の高融点金属板の間に挟み込んだ
サンドイッチ構造をもっている。火災時等で高温の火炎
輻射にさらされたとき、金属板は火炎の遮蔽層として働
き、繊維質マットは長時間にわたって耐火断熱層として
の機能を保持する。そのため、火炎発生時にあっては、
裏面の昇温速度が小さく且つ最高到達温度も低いため、
消火,避難等の初期活動を安全に行うことができる。
As described above, the fire-resistant panel of the present invention has a sandwich structure in which a fibrous mat obtained by compression-molding rockwool fibers having high heat resistance is sandwiched between high-melting metal plates such as iron plates. When exposed to high temperature flame radiation such as in a fire, the metal plate acts as a flame shielding layer, and the fibrous mat retains the function as a fire insulation layer for a long time. Therefore, when a flame occurs,
Since the backside temperature rising rate is low and the maximum temperature reached is low,
Initial activities such as fire extinguishing and evacuation can be safely performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 繊維質マットを圧縮成形している状態
(a),繊維質マットから切り出される短冊片(b),
繊維の押し縮め方向に長手方向を直交させて切り出した
短冊片(c)及び繊維の押し縮め方向に長手方向を揃え
て切り出した短冊片(d)
FIG. 1 shows a state in which a fibrous mat is compression-molded (a), strips cut from the fibrous mat (b),
A strip piece (c) cut out with the longitudinal direction orthogonal to the fiber compression direction and a strip piece (d) cut out with the longitudinal direction aligned with the fiber compression direction.

【図2】 金属板に対する短冊片の配列例[Fig. 2] Arrangement example of strips on a metal plate

【図3】 短冊片の配列平面(a)及び耐火パネルの断
面構造(b)
FIG. 3 is an arrangement plane of strips (a) and a sectional structure of a fireproof panel (b).

【図4】 実施例3で使用した耐火パネルの裏面温度測
定結果
FIG. 4 is a result of measuring the back surface temperature of the fire-resistant panel used in Example 3.

【図5】 実施例4で使用した耐火パネルの裏面温度測
定結果
FIG. 5: Results of backside temperature measurement of the fireproof panel used in Example 4

【図6】 比較例2で使用した耐火パネルの裏面温度測
定結果
FIG. 6 Results of measuring the back surface temperature of the fire-resistant panel used in Comparative Example 2.

【図7】 金属板の間に挟まれる短冊状マットの配列状
態を示す数例
[Fig. 7] Several examples showing an arrangement state of strip-shaped mats sandwiched between metal plates.

【符号の説明】[Explanation of symbols]

1,2:加圧ローラ 3:積層体 4:加圧成形後
の繊維質マット 5:カッター 6:短冊片
7:金属板 A:押し縮め方向に直交する面(繊維が相互に平行で直
線状に配向している面) B:押し縮め方向に沿った面(繊維の配向にうねりが生
じている面) C:繊維質マットの表面に当る面 D:押し縮め方向 L1 :押し縮め方向に直交する切断線 L2 :押し縮
め方向と平行な切断線
1, 2: pressure roller 3: laminated body 4: fibrous mat after pressure molding 5: cutter 6: strip
7: Metal plate A: A surface orthogonal to the compression direction (a surface in which the fibers are parallel to each other and oriented in a straight line) B: A surface along the compression direction (a surface in which the orientation of the fibers has waviness) C: Surface contacting the surface of the fibrous mat D: Pressing / shrinking direction L 1 : Cutting line orthogonal to the pressing / shrinking direction L 2 : Cutting line parallel to the pressing / shrinking direction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋子 憲次 千葉県印旛郡白井町七次台3−23−11 (72)発明者 桑江 茂 大阪府堺市金岡町1943 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Akiko 3-23-11 Shichijidai, Shirai-cho, Inba-gun, Chiba (72) Inventor Shigeru Kuwae 1943 Kanaoka-cho, Sakai-shi, Osaka

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ロックウール繊維を圧縮成形してなる1
000℃,8時間での加熱線収縮率が5%未満の繊維質
マットと、該繊維質マットの両面に接着一体化された金
属板とを備えている耐火パネル。
1. A compression molding of rockwool fiber 1
A fire-resistant panel comprising a fibrous mat having a heating linear shrinkage ratio of less than 5% at 000 ° C. for 8 hours, and a metal plate bonded and integrated on both sides of the fibrous mat.
【請求項2】 ロックウール繊維の薄層マットを積層し
てなる1000℃,8時間での加熱線収縮率が5%未満
の繊維質マットと、該繊維質マットの両面に接着一体化
された金属板とを備え、前記薄層マットは、SiO2
35重量%以上及びCaO:20重量%以下を含有する
天然岩石を主原料として得られた繊維に結合材を付着さ
せて圧縮成形したものであり、該繊維質マットの密度が
80〜250kg/m2 で結合材の配合量が0.5〜3
重量%である耐火パネル。
2. A fibrous mat obtained by laminating a thin layer mat of rock wool fibers at a heating linear shrinkage of less than 5% at 1000 ° C. for 8 hours, and bonded and integrated on both sides of the fibrous mat. And a metal plate, and the thin layer mat is made of SiO 2 :
Fibers obtained by using natural rocks containing 35% by weight or more and CaO: 20% by weight or less as a main raw material are compression-molded by attaching a binder to the fibers, and the density of the fibrous mat is 80 to 250 kg / m. In 2 the amount of binder is 0.5-3
Fireproof panel which is wt%.
【請求項3】 ロックウール繊維の薄層マットを積層し
てなる1000℃,8時間での加熱線収縮率が5%未満
の繊維質マットを長手方向及び/又は幅方向に切断して
得られた複数の短冊片と、該短冊片を間に挟み込んで接
着一体化された一対の金属板とを備え、前記短冊片は、
元の繊維質マットの表面にあたる面を金属板の表面に直
交させた状態で前記金属板に接着されている耐火パネ
ル。
3. A fibrous mat obtained by laminating a thin layer mat of rock wool fibers at a heating linear shrinkage of less than 5% at 1000 ° C. for 8 hours, which is obtained by cutting in the longitudinal direction and / or the width direction. A plurality of strips, and a pair of metal plates that are bonded and integrated by sandwiching the strips between the strips,
A refractory panel bonded to a metal plate in a state where a surface corresponding to the surface of the original fibrous mat is orthogonal to the surface of the metal plate.
【請求項4】 ロックウール繊維をベルトコンベア上で
上下方向から圧縮しながら、積層面に平行な方向に押し
縮めて得られた1000℃,8時間での加熱線収縮率が
5%未満の繊維質マットを長手方向及び/又は幅方向に
切断して得られた複数の短冊片と、該短冊片を間に挟み
込んで接着一体化された一対の金属板とを備え、前記短
冊片は、元の繊維質マットの表面にあたる面を金属板の
表面に直交させた状態で前記金属板に接着されている耐
火パネル。
4. A fiber having a heating linear shrinkage ratio of less than 5% at 1000 ° C. for 8 hours, which is obtained by compressing rock wool fibers in a direction parallel to a laminated surface while compressing the rock wool fibers from above and below. A plurality of strips obtained by cutting the quality mat in the longitudinal direction and / or the width direction, and a pair of metal plates bonded and integrated by sandwiching the strips therebetween, The fire-resistant panel adhered to the metal plate in a state where the surface corresponding to the surface of the fibrous mat is orthogonal to the surface of the metal plate.
【請求項5】 請求項3又は4記載の短冊片は、長手方
向が金属板の一辺に平行な配置及び直角な配置とを組み
合わせて一対の金属板の間に挟み込まれている耐火パネ
ル。
5. The fireproof panel according to claim 3 or 4, wherein the strip piece is sandwiched between a pair of metal plates in a combination of an arrangement in which a longitudinal direction is parallel to one side of a metal plate and an arrangement in which the lengthwise direction is perpendicular to one side.
JP13619093A 1992-08-31 1993-06-07 Fireproofing panel Pending JPH06123141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13619093A JPH06123141A (en) 1992-08-31 1993-06-07 Fireproofing panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-255576 1992-08-31
JP25557692 1992-08-31
JP13619093A JPH06123141A (en) 1992-08-31 1993-06-07 Fireproofing panel

Publications (1)

Publication Number Publication Date
JPH06123141A true JPH06123141A (en) 1994-05-06

Family

ID=26469831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13619093A Pending JPH06123141A (en) 1992-08-31 1993-06-07 Fireproofing panel

Country Status (1)

Country Link
JP (1) JPH06123141A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406999B1 (en) * 2000-12-13 2003-11-28 강동원 Method for the making of construction panel
KR100407001B1 (en) * 2001-02-09 2003-11-28 강동원 Construction panal and it's manufacture method
WO2004081309A1 (en) * 2003-03-10 2004-09-23 Young Jong Lee Noise-absorbable and adiabatic panel
JP2004316059A (en) * 2003-04-11 2004-11-11 Sk Chemicals Co Ltd Method for producing polyester flame-retardant core material for assemblable panel structure
KR100802677B1 (en) * 2006-10-12 2008-02-12 현대자동차주식회사 Vertical type sound-absorbing materials and method for manufacturing the same
JP2009133193A (en) * 2009-02-09 2009-06-18 Sogo Corp Heat insulating fireproof panel
JP2011080326A (en) * 2009-10-09 2011-04-21 Meisei Kogyo Kk Method for manufacturing noncombustible heat-insulating panel
JP2016169550A (en) * 2015-03-13 2016-09-23 アイジー工業株式会社 Metal sandwich panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406999B1 (en) * 2000-12-13 2003-11-28 강동원 Method for the making of construction panel
KR100407001B1 (en) * 2001-02-09 2003-11-28 강동원 Construction panal and it's manufacture method
WO2004081309A1 (en) * 2003-03-10 2004-09-23 Young Jong Lee Noise-absorbable and adiabatic panel
JP2004316059A (en) * 2003-04-11 2004-11-11 Sk Chemicals Co Ltd Method for producing polyester flame-retardant core material for assemblable panel structure
KR100802677B1 (en) * 2006-10-12 2008-02-12 현대자동차주식회사 Vertical type sound-absorbing materials and method for manufacturing the same
JP2009133193A (en) * 2009-02-09 2009-06-18 Sogo Corp Heat insulating fireproof panel
JP2011080326A (en) * 2009-10-09 2011-04-21 Meisei Kogyo Kk Method for manufacturing noncombustible heat-insulating panel
JP2016169550A (en) * 2015-03-13 2016-09-23 アイジー工業株式会社 Metal sandwich panel

Similar Documents

Publication Publication Date Title
AU2004247667B2 (en) Multi-layer fire-barrier systems
EP0044160B1 (en) Fibrous composite materials and the production and use thereof
US20110136937A1 (en) Intumescent material for fire protection
JP4051459B2 (en) Incombustible thermal insulation panel
CN102926471A (en) Modified fireproofing inorganic fiber heat-insulation board
JPH06123141A (en) Fireproofing panel
CN101695954B (en) Method for manufacturing armored fireproofing thermal baffle for ship
KR20170114930A (en) Core materials for building and method for manufacturing the same
JP4105784B2 (en) Sound absorbing plate and manufacturing method thereof
CN102619317A (en) Fireproof vertical filament inorganic fiber composite insulation decorative board
KR20150041273A (en) The sandwich-type insulator structure which have excellent heat insulation properties
CN2247595Y (en) Multifunctional light composite board
KR101973186B1 (en) High strength magnesium oxide composite panel using carbon fiber grid technology and manufacturing method thereof
KR102210648B1 (en) Glass wool panel
JPH0681407A (en) Metallic sandwich panel excellent in sound absorption
JP2008031801A (en) Fire-preventive/fire resisting panel and fire-preventive door
CN210940751U (en) High-strength composite ceramic fiber board
KR102070809B1 (en) Composite Panel for Insulation and Nonflammable Using Waste Fiber Scrap
JP2880933B2 (en) Method for producing inorganic fiber board
JPH0957880A (en) Refractory laminated panel
KR101394658B1 (en) Incombustibility wood wool penel
JPH0249218B2 (en) GARASUSENISEIKYUONDANNETSUBAN
CN202519915U (en) Fireproof vertical thread inorganic fiber composite heat insulation decorative plate
CN215759703U (en) Aluminum honeycomb thermal insulation composite board
CN218116811U (en) Insulation board with fireproof material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020402