JPH06122928A - Method for induction heating of steel sheet and device therefor - Google Patents

Method for induction heating of steel sheet and device therefor

Info

Publication number
JPH06122928A
JPH06122928A JP4296389A JP29638992A JPH06122928A JP H06122928 A JPH06122928 A JP H06122928A JP 4296389 A JP4296389 A JP 4296389A JP 29638992 A JP29638992 A JP 29638992A JP H06122928 A JPH06122928 A JP H06122928A
Authority
JP
Japan
Prior art keywords
induction heating
plate
steel sheet
width direction
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4296389A
Other languages
Japanese (ja)
Inventor
Taichiro Fukuda
多一郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4296389A priority Critical patent/JPH06122928A/en
Publication of JPH06122928A publication Critical patent/JPH06122928A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To provide means by which the heating temp. distribution in a steel sheet can freely be controlled by an induction heating system. CONSTITUTION:At the time of heating a steel sheet by a pair of upper and lower induction heating coils, each of upper and lower induction heating coils is respectively provided movably in the upper and lower directions, sheet width direction and sheet longitudinal direction, and the relative position of the induction heating coils is made variable. So as to give a prescribed temp. distribution to the steel sheet, the upper and lower induction heating coils are shifted in the sheet width direction or sheet longitudinal direction and the lap sections of the coils are changed, by which the steel sheet is heated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、厚板等鋼板の熱間圧
延工程における鋼板の加熱手段に係り、より詳しくは上
下一対の誘導加熱コイルにより鋼板の加熱温度分布を自
在に制御することが可能な鋼板の誘導加熱方法とその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate heating means in a hot rolling process for steel plates such as thick plates. More specifically, it is possible to freely control the heating temperature distribution of the steel plate by a pair of upper and lower induction heating coils. TECHNICAL FIELD The present invention relates to a method and an apparatus for induction heating of a steel sheet.

【0002】[0002]

【従来の技術】鋼板の熱間圧延工程において、誘導加熱
によって鋼板を均一に加熱する方法としては、例えば被
加熱材の幅方向の温度偏差を減少させるため、誘導加熱
炉の炉内の両側に熱発生体と冷却装置を付設した誘導加
熱炉(特開昭48−25238号公報参照)、厚板の幅
方向温度偏差を小さくするため、幅方向に耐火物および
冷却装置を付設した誘導加熱装置(特公昭51−917
6号公報参照)、インダクターに案内板を備え、これに
より漂遊磁界がその付属部分を狭く包囲する空間に閉じ
込められることにより、エッジ過熱を防ぎ幅方向温度均
一化をはかる誘導加熱方法(特公昭52−34564号
公報参照)、誘導加熱コイルを耐火物で覆い、さらに被
加熱物のエッジ部を保温のため耐火材で覆うことによ
り、エッジ部および中央部の温度を均一化する方法(特
公昭52−47179号公報参照)等が知られている。
2. Description of the Related Art A method for uniformly heating a steel sheet by induction heating in a hot rolling process of a steel sheet is, for example, to reduce the temperature deviation in the width direction of a material to be heated. Induction heating furnace provided with a heat generator and a cooling device (see Japanese Patent Laid-Open No. 48-25238), and an induction heating device provided with a refractory and a cooling device in the width direction in order to reduce the temperature deviation in the width direction of the thick plate. (Japanese Patent Publication No. 51-917
(See Japanese Patent Publication No. 6), an inductor is provided with a guide plate, whereby a stray magnetic field is confined in a space that narrowly surrounds an attached portion of the inductor, thereby preventing edge overheating and uniforming the temperature in the width direction (Japanese Patent Publication No. 52-52). No. 34564), a method of equalizing the temperature of the edge portion and the central portion by covering the induction heating coil with a refractory material and further covering the edge portion of the object to be heated with a refractory material for heat retention (Japanese Patent Publication No. (See Japanese Patent Publication No. 47179)) and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の誘導加
熱手段はいずれも加熱体(加熱コイル、熱発生体等)は
定位置で所定の範囲のみ加熱するごとく構成され、かつ
被加熱領域に対し加熱、冷却するといった手段をとった
としても、その温度分布を自在に変えることは困難であ
る。すなわち、従来技術では加熱体に対して最大投入エ
ネルギーを付与するのみであり、加熱体そのもので加熱
プロフィールを変化させることができないため、鋼板等
被加熱材の加熱温度プロフィールを自在にコントロール
することができないという難点がある。
However, in all of the conventional induction heating means, the heating element (heating coil, heat generating element, etc.) is constructed so as to heat only a predetermined range at a fixed position, and the heating target area is heated. Even if measures such as heating and cooling are taken, it is difficult to freely change the temperature distribution. That is, in the conventional technology, only the maximum input energy is applied to the heating element, and the heating profile cannot be changed by the heating element itself, so that the heating temperature profile of the material to be heated such as a steel plate can be freely controlled. There is a difficulty that you cannot do it.

【0004】この発明は、このような実状に鑑みて、上
下一対の誘導加熱コイルの相対位置を可変とすることに
よって、当該加熱コイルそのものにより加熱温度プロフ
ィールを自在に制御できる手段を提案しようとするもの
である。
In view of the above situation, the present invention proposes means for freely controlling the heating temperature profile by the heating coils themselves by making the relative positions of the pair of upper and lower induction heating coils variable. It is a thing.

【0005】[0005]

【課題を解決するための手段】誘導加熱装置により鋼板
を加熱する方法としては、図1(A)(B)に示すごと
く2種のタイプがある。すなわち、図Aは両端部に誘導
加熱コイル3を配した断面凹形の鉄心2を鋼板1を挟む
ように上下に対向配置して誘導加熱する方式であり、図
Bは鋼板1のエッジ部に上下一対の誘導加熱コイル3を
対向配置して誘導加熱する方法であり、いずれのタイプ
も上下加熱コイルの断面は同一である。この発明はこの
ような加熱方式の誘導加熱装置において、上下加熱コイ
ルのラップ断面を可変とすることにより加熱温度プロフ
ィールを制御し、鋼板の温度分布を自在にコントロール
可能としたもので、その要旨は、上下の各誘導加熱コイ
ルをそれぞれ上下方向、板幅方向および板長手方向に可
動に設け、各誘導加熱コイルの板幅方向位置または板長
手方向位置を変化させて当該コイルのラップ断面を変更
することにより鋼板の温度分布を制御する誘導加熱方法
であり、またこの方法を実施するための装置として、鋼
板移送ライン上に該ラインと直交するごとく跨設した支
持ビームに板幅方向に進退自在に懸架され、上下調整機
構、左右調整機構および前後調整機構にて上下方向位
置、板幅方向位置および板長手方向位置を可変となした
上下一対の誘導加熱コイルを備えた誘導加熱装置であ
る。
As a method of heating a steel sheet by an induction heating device, there are two types as shown in FIGS. 1 (A) and 1 (B). That is, FIG. A shows a method in which iron cores 2 each having an induction heating coil 3 arranged at both ends are arranged to face each other so as to sandwich a steel plate 1 for induction heating, and FIG. B shows an edge portion of the steel plate 1. This is a method in which a pair of upper and lower induction heating coils 3 are arranged so as to face each other and induction heating is performed. In both types, the cross sections of the upper and lower heating coils are the same. The present invention, in such a heating type induction heating device, controls the heating temperature profile by making the lap cross section of the upper and lower heating coils variable, and can freely control the temperature distribution of the steel sheet. , The upper and lower induction heating coils are movably provided in the vertical direction, the plate width direction and the plate longitudinal direction, and the plate width direction position or the plate longitudinal direction position of each induction heating coil is changed to change the lap cross section of the coil. This is an induction heating method for controlling the temperature distribution of the steel sheet, and as an apparatus for carrying out this method, a support beam straddled over the steel sheet transfer line so as to be orthogonal to the line is movable in the plate width direction. Vertically suspended, vertical position, plate width direction and plate longitudinal direction position are adjustable by vertical adjustment mechanism, left and right adjustment mechanism and front and rear adjustment mechanism. An induction heating apparatus having an induction heating coil of the pair.

【0006】[0006]

【作用】上下加熱コイルのラップ量の変更による鋼板
(被加熱材)の温度分布制御の原理を以下に説明する。
ここでは、前記図1(B)タイプを例にとり説明する。
図2は上下加熱コイル3の相対位置を変化させた場合の
説明図であり、コイル断面を正方形と仮定すると、斜線
部は上下コイルの磁束が上下非対称となる位置であり、
この部分の磁束密度Фは上下コイルにて対称となって
いる磁束密度Фと鋼板を貫通している斜線部の面積S
と比例し、下記(1)式の関係となる。
The principle of controlling the temperature distribution of the steel sheet (material to be heated) by changing the lap amount of the upper and lower heating coils will be described below.
Here, the type shown in FIG. 1B will be described as an example.
FIG. 2 is an explanatory view when the relative position of the upper and lower heating coils 3 is changed, and assuming that the coil cross section is square, the shaded portion is the position where the magnetic flux of the upper and lower coils is vertically asymmetrical,
The magnetic flux density Φ X of this part is the magnetic flux density Φ O symmetrical with the upper and lower coils and the area S of the shaded part that penetrates the steel plate.
In proportion to, the relationship of the following formula (1) is established.

【0007】 Ф/Ф=f(S) S:鋼板貫通面積 ……(1)式Φ X / Φ O = f (S) S: Steel plate penetration area (1) Formula

【0008】一方、このSはコイルギャップGおよび鋼
板板厚tおよびコイルずらし量xの関数として表すこと
ができ、α=tan−1(x/G)とすると、下記
(2)式で示すことができる。
On the other hand, this S can be expressed as a function of the coil gap G, the steel plate thickness t, and the coil shift amount x. When α = tan −1 (x / G), the following equation (2) is given. You can

【0009】 S={(GーGーG }tanα ……(2)式 G:上コイルと鋼板とのギャップ G:下コイルと鋼板とのギャップS = {(G-G 2 ) 2 -G 1 2 } tan α (2) Formula G 1 : Gap between upper coil and steel plate G 2 : Gap between lower coil and steel plate

【0010】一方、各位置における磁束密度は、前記
(1)式で示したように磁束の鋼板貫通面積と相関があ
ることから、下記(3)式によって表される。
On the other hand, the magnetic flux density at each position is expressed by the following equation (3) because it has a correlation with the steel sheet penetration area of the magnetic flux as shown in the above equation (1).

【0011】 Ф=Ф×F(S)×a ……(3)式 a:電流、電圧によって定まる係数Φ X = Φ O × F (S) × a (3) Formula a: Coefficient determined by current and voltage

【0012】例えば、前記図2の図3のように表し、図
3の各位置の磁束密度分布を求めると、下記(4)〜
(8)式のごとくなる。ここでの前提条件は、誘導加熱
コイル形状:正方形、誘導加熱コイルの巾:W、電流お
よび電圧によって定まる係数:a、誘導加熱位置を表す
変数:Xである。
For example, when expressed as shown in FIG. 3 of FIG. 2 and the magnetic flux density distribution at each position of FIG. 3 is obtained, the following (4) to
It becomes like the formula (8). The preconditions here are an induction heating coil shape: a square, an induction heating coil width: W, a coefficient determined by current and voltage: a, and an induction heating position variable: X.

【0013】 0<X<Gtanα Ф=0 ……(4)式 Gtanα≦X≦xーGtanα Ф=Ф{1/tanα(XーGtanα)ーG}×a×1/t ……(5)式 xーGtanα<X≦W+Gtanα Ф=Ф×a ……(6)式 W+Gtanα<X≦W+xーGtanα Ф=Ф{1/tanα(x+WーX)ーG}×a×1/t ……(7)式 W+xーGtanα<X≦W+x Ф=Ф ……(8)式 ФとXの関係を図で表すと、図4のようになる。0 <X <G 2 tan α Φ X = 0 (4) Formula G 2 tan α ≦ X ≦ x−G 1 tan α Φ X = Φ O {1 / tan α (X−G 2 tan α) −G 1 } × a × 1 / t (5) Formula x−G 1 tanα <X ≦ W + G 2 tanα Φ X = Φ O × a (6) Formula W + G 2 tanα <X ≦ W + x−G 1 tanα Φ X = Ф O {1 / tanα ( x + W over X) over G 1} × a × 1 / t ...... (7) equation W + x over G 1 tanα <X ≦ W + x Ф X = Ф ...... (8) and equation .PHI X FIG. 4 shows the relationship of X in a diagram.

【0014】一方、熱間で普通仕上圧延された鋼板エッ
ジ部の温度分布は、通常図5のようになっている。すな
わち、鋼板エッジ部は温度が急激に低下している。ここ
で、エッジ部の温度を△T℃昇温させたい場合の加熱投
入電力をPとすると、P=CρV△T/△tで示され
る。なお、Vは体積、ρは密度、Cは比熱、△tは時間
である。
On the other hand, the temperature distribution of the edge portion of the steel sheet normally hot-rolled is usually as shown in FIG. That is, the temperature of the steel plate edge portion is rapidly decreased. Here, if the heating input power for raising the temperature of the edge portion by ΔT ° C. is P, then P = CρVΔT / Δt. Note that V is volume, ρ is density, C is specific heat, and Δt is time.

【0015】また、Фと加熱投入電力関数G(P) は比
例し、下記(9)式の関係にある。 Ф=G(P) ……(9)式
Further, .PHI X heating input power function G (P) is proportional, the relation of the following equation (9). Ф X = G (P) ...... (9) formula

【0016】すなわち、前記(3)〜(9)式、および
図3、図4より、上コイルと下コイルのずらす割合を可
変とすることにより鋼板エッジ部に任意の磁束密度Ф
分布を与えることができ、そのことにより任意の温度分
布を与えることができる。
That is, from the above equations (3) to (9) and FIGS. 3 and 4, by varying the shifting ratio of the upper coil and the lower coil, an arbitrary magnetic flux density φ X
It is possible to give a distribution, which gives an arbitrary temperature distribution.

【0017】この発明装置における誘導加熱コイルを上
下方向、板幅方向および板長手方向に進退自在に懸架す
る手段としては、鋼板移送ラインと直交するごとく架設
した支持ビームに例えば回転軸ジョイント等を介して回
動可能に接続した上下2分割構造のコ形支持フレームを
動輪を介して移動可能に懸架し、この支持フレームに上
下一対の誘導加熱コイルをそれぞれ各別に上下調整機構
および左右調整機構を介して取付ける。上下調整機構お
よび左右調整機構としては、例えばねじ回転方式を用い
ることができる。すなわち、上下の誘導加熱コイルを支
持する台板をそれぞれ前記支持フレームに垂直ねじを介
して取付け、垂直ねじを回転させることにより誘導加熱
コイルと鋼板とのギャップを調整できるように設け、ま
た前記各台板に誘導加熱コイルの鉄心を水平ねじを介し
て摺動可能に取付け、水平ねじを回転させることにより
誘導加熱コイルが板幅方向に移動して上下コイルの板幅
方向の相対位置すなわちコイルのラップ断面を調整でき
るように設け、さらにコ形支持ビームの下部材を水平方
向に回動させることにより上下コイルの板長手方向の相
対位置すなわちコイルのラップ断面を調整できるように
設ける。
As a means for suspending the induction heating coil in the apparatus of the present invention so as to be able to advance and retreat in the vertical direction, the plate width direction and the plate longitudinal direction, a support beam installed so as to be orthogonal to the steel plate transfer line, for example, via a rotary shaft joint or the like. A vertically-divided U-shaped support frame rotatably connected to each other is movably suspended through a driving wheel, and a pair of upper and lower induction heating coils are separately mounted on the support frame via a vertical adjustment mechanism and a horizontal adjustment mechanism. To install. As the vertical adjustment mechanism and the horizontal adjustment mechanism, for example, a screw rotation system can be used. That is, the base plates supporting the upper and lower induction heating coils are attached to the support frame via vertical screws, respectively, and the vertical screws are provided so that the gap between the induction heating coils and the steel plate can be adjusted by rotating the vertical screws. The iron core of the induction heating coil is slidably attached to the base plate via the horizontal screw, and by rotating the horizontal screw, the induction heating coil moves in the plate width direction and the relative position of the upper and lower coils in the plate width direction, that is, the coil It is provided so that the lap cross section can be adjusted, and further, by rotating the lower member of the U-shaped support beam in the horizontal direction, the relative position of the upper and lower coils in the plate longitudinal direction, that is, the lap cross section of the coil can be adjusted.

【0018】図6はこの発明方法と従来法(コイルラッ
プ断面の変更なし)との鋼板エッジ部の温度変化と磁束
密度の変化を比較して示したものである。この図から明
らかなごとく、従来法では上下誘導加熱コイルは固定式
であるため、鋼板中央部の温度を目標とするとエッジ部
はオーバーヒートとなる。これに対し、この発明方法に
よれば、上下誘導加熱コイルのラップ断面を変更できる
ので、エッジ部の温度分布を任意に変更できる。また、
磁束密度については、従来法では磁束密度の値のみ可変
であるのに対し、この発明方法では磁束密度の値と分布
パターンの両方を変更できる。
FIG. 6 shows a comparison of the temperature change and the magnetic flux density change at the steel plate edge between the method of the present invention and the conventional method (without changing the coil lap cross section). As is clear from this figure, in the conventional method, since the upper and lower induction heating coils are fixed, if the temperature of the central portion of the steel sheet is targeted, the edge portion will be overheated. On the other hand, according to the method of the present invention, since the lap cross section of the upper and lower induction heating coils can be changed, the temperature distribution of the edge portion can be changed arbitrarily. Also,
Regarding the magnetic flux density, in the conventional method, only the value of the magnetic flux density is variable, whereas in the method of the present invention, both the value of the magnetic flux density and the distribution pattern can be changed.

【0019】[0019]

【実施例】図7はこの発明の一実施例装置を示す概略側
面図であり、5は支持ビーム、6はコ形の支持フレー
ム、7−1は上アーム鉄心、7−2は下アーム鉄心、8
−1は上誘導加熱コイル、8−2は下誘導加熱コイル、
9は上下調整装置、10は左右調整装置、14は前後調
整装置である。
FIG. 7 is a schematic side view showing an apparatus according to an embodiment of the present invention. 5 is a support beam, 6 is a U-shaped support frame, 7-1 is an upper arm core, and 7-2 is a lower arm core. , 8
-1 is an upper induction heating coil, 8-2 is a lower induction heating coil,
Reference numeral 9 is a vertical adjustment device, 10 is a horizontal adjustment device, and 14 is a front-back adjustment device.

【0020】すなわち、上記装置は鋼板移送ラインの両
サイドに該ラインと直交する方向に架設した支持ビーム
5に動輪6−1を介してコ形支持フレーム6を板幅方向
に水平動可能に懸架し、この支持フレーム6に上下一対
の誘導加熱コイル8−1、8−2を取付けている。上記
コ形支持フレーム6は上部材6−2と下部材6−3とを
回転軸ジョイント14−1にて水平に回動可能に接続さ
れている。上下誘導加熱コイルはそれぞれアーム鉄心7
−1、7−2と一体で、支持フレーム6に上下調整装置
9を介して取付けられた台板11−1、11−2に例え
ば凹凸嵌合方式にて板幅方向にスライド可能に装着さ
れ、各アーム鉄心7−1、7−2は連杆12を介して球
面ジョイント13にて関着されている。
That is, in the above apparatus, the U-shaped support frame 6 is suspended horizontally on the support beam 5 installed on both sides of the steel plate transfer line in the direction orthogonal to the line through the moving wheel 6-1 in the plate width direction. Then, a pair of upper and lower induction heating coils 8-1 and 8-2 are attached to the support frame 6. In the U-shaped support frame 6, an upper member 6-2 and a lower member 6-3 are connected by a rotary shaft joint 14-1 so as to be horizontally rotatable. The upper and lower induction heating coils are arm cores 7, respectively.
-1, 7-2 and base plates 11-1 and 11-2, which are attached to the support frame 6 via the vertical adjustment device 9, are slidably mounted in the plate width direction by, for example, a concave-convex fitting method. The arm cores 7-1 and 7-2 are joined together by a spherical joint 13 via a connecting rod 12.

【0021】誘導加熱コイルの上下調整装置9は、支持
フレーム6に垂直に螺着したねじロッド9−1を回転さ
せることによって台板11−1、11−2を上下動させ
る機構となっている。また、誘導加熱コイルの板幅方向
位置を変化させる左右調整装置10は、台板11−1、
11−2の端部に水平に螺着したねじロッド10−1を
回転させることによって上下の各アーム鉄心7−1、7
−2が板幅方向にスライドする機構となっている。さら
に、誘導加熱コイルの板長手方向位置を変化させる前後
調整装置14は、前記回転軸ジョイント14−1と下部
材6−3の回動位置を規制する回転調整ボルト14−2
とからなり、回転軸ジョイント14−1を介して下部材
6−3が水平面上を回動し、回転調整ボルト14−2に
よってその回動位置に固定できる機構となっている。
The induction heating coil vertical adjusting device 9 has a mechanism for vertically moving the base plates 11-1 and 11-2 by rotating a screw rod 9-1 which is vertically screwed to the support frame 6. . In addition, the left-right adjusting device 10 that changes the position of the induction heating coil in the plate width direction includes the base plate 11-1,
By rotating a screw rod 10-1 horizontally screwed to the end of 11-2, the upper and lower arm cores 7-1, 7
-2 is a mechanism that slides in the plate width direction. Further, the front-back adjusting device 14 that changes the position of the induction heating coil in the plate longitudinal direction is a rotation adjusting bolt 14-2 that restricts the rotational positions of the rotary shaft joint 14-1 and the lower member 6-3.
The lower member 6-3 rotates on a horizontal plane via the rotary shaft joint 14-1 and can be fixed at the rotating position by the rotation adjusting bolt 14-2.

【0022】上記装置において、鋼板1を誘導加熱する
に際しては、まず支持フレーム6を移動させて所定の位
置に停止させた状態で、上下調整装置9のねじロッド9
−1を回転させて鋼板1と上下各誘導加熱コイル8−
1、8−2との間隔を調整する。次に、上下の誘導加熱
コイルのラップ断面を調整する場合は、左右調整装置1
0または前後調整装置14を操作する。すなわち、左右
調整装置10によりラップ断面を調整する場合は、ねじ
ロッド10−1を回転させて各アーム鉄心7−1、7−
2を板幅方向にスライドさせる。また、前後調整装置1
4によりラップ断面を調整する場合は、回転調整ボルト
14−2を緩めて下部材6−3を前後方向(板長手方
向)に回動させる。上誘導加熱コイル8−1と下誘導加
熱コイル8−2を板幅方向または板長手方向にずらす割
合は、鋼板1に所定の温度分布が与えられるように、当
該鋼板1自体の温度、肉厚等を考慮して設定する。
In the above apparatus, when the steel plate 1 is induction-heated, the support frame 6 is first moved and stopped at a predetermined position, and the screw rod 9 of the vertical adjusting device 9 is moved.
-1 is rotated to rotate the steel plate 1 and the upper and lower induction heating coils 8-
Adjust the distance between 1 and 8-2. Next, when adjusting the lap cross section of the upper and lower induction heating coils, the left and right adjusting device 1
0 or the front-back adjusting device 14 is operated. That is, when the lap cross section is adjusted by the left / right adjusting device 10, the screw rod 10-1 is rotated to move the arm cores 7-1, 7-.
Slide 2 in the width direction. In addition, the front-back adjustment device 1
When the lap cross section is adjusted by 4, the rotation adjusting bolt 14-2 is loosened and the lower member 6-3 is rotated in the front-rear direction (plate longitudinal direction). The ratio of shifting the upper induction heating coil 8-1 and the lower induction heating coil 8-2 in the plate width direction or the plate longitudinal direction is determined by the temperature and thickness of the steel plate 1 itself so that a predetermined temperature distribution is given to the steel plate 1. Set in consideration of the above.

【0023】なお、誘導加熱コイルの断面形状として
は、丸形、四角形が一般的であるが、多角形、不定形と
することにより、多種多様なコイル断面変更制御も可能
である。
The cross-sectional shape of the induction heating coil is generally round or quadrangular, but by making it polygonal or irregular, a wide variety of coil cross-section change control is possible.

【0024】実施例1 図7に示す誘導加熱装置を実ラインに適用し、エッジと
センター間の温度差△Tと条切キャンバーおよび平坦不
良の抑制効果を調べた。その結果を従来法と比較して表
1、表2に示す。なお、本実施例では、円形断面形状
(直径300mm)の誘導加熱コイルを用いた。
Example 1 The induction heating device shown in FIG. 7 was applied to a real line to examine the effect of suppressing the temperature difference ΔT between the edge and the center, the striped camber, and the flatness defect. The results are shown in Tables 1 and 2 in comparison with the conventional method. In this example, an induction heating coil having a circular cross section (diameter 300 mm) was used.

【0025】表1の結果より明らかなごとく、本発明法
によりエッジとセンター間の温度差△Tを従来法の約1
/3に減少できたことにより最大キャンバー平均値、最
大残留平均共に大幅に低減できた。また、表2の結果よ
り明らかなごとく、本発明法により鋼板の平坦不良も大
幅に改善できた。
As is clear from the results shown in Table 1, the temperature difference ΔT between the edge and the center is about 1 in the conventional method.
The maximum average camber average and maximum residual average can be greatly reduced by the reduction to / 3. Further, as is clear from the results shown in Table 2, the flatness failure of the steel sheet was significantly improved by the method of the present invention.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上説明したごとく、この発明の誘導加
熱方法と装置によれば、誘導加熱コイルの相対位置を変
化させることにより鋼板の加熱温度分布を自在に制御す
ることができるので、鋼板の加熱温度の均一化および目
標温度分布付与が容易に行えるという優れた効果を奏す
る。
As described above, according to the induction heating method and apparatus of the present invention, the heating temperature distribution of the steel sheet can be freely controlled by changing the relative position of the induction heating coil. It has an excellent effect that the heating temperature can be made uniform and the target temperature distribution can be easily provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】誘導加熱装置により鋼板を加熱する方法を例示
したもので、(A)は両端部に誘導加熱コイルを有する
鉄心を対向配置して加熱する方式、(B)は鋼板のエッ
ジ部に誘導加熱コイルを対向配置して加熱する方式であ
る。
FIG. 1 illustrates an example of a method for heating a steel sheet by an induction heating device. (A) is a method of heating by arranging iron cores having induction heating coils at both ends so as to face each other, and (B) is an edge portion of the steel sheet. This is a method in which induction heating coils are arranged to face each other and are heated.

【図2】この発明における上下誘導加熱コイルの相対位
置を変化させた場合の説明図である。
FIG. 2 is an explanatory view when the relative positions of the upper and lower induction heating coils in this invention are changed.

【図3】図2の説明図における磁束密度分布を示す説明
図である。
FIG. 3 is an explanatory diagram showing a magnetic flux density distribution in the explanatory diagram of FIG. 2.

【図4】同上における磁束密度と誘導加熱位置を表す変
数との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a magnetic flux density and a variable indicating an induction heating position in the above.

【図5】熱間で普通仕上圧延された鋼板のエッジ部の温
度分布例を示す図である。
FIG. 5 is a diagram showing an example of temperature distribution at an edge portion of a steel sheet that has been normally hot rolled.

【図6】この発明の実施例における鋼板エッジ部の温度
と磁束密度を示す図である。
FIG. 6 is a diagram showing the temperature and magnetic flux density of the steel plate edge portion in the example of the present invention.

【図7】この発明方法を実施するための装置の一例を示
す概略図である。
FIG. 7 is a schematic view showing an example of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 鋼板 5 支持ビーム 6 支持フレーム 7−1 上アーム鉄心 7−2 下アーム鉄心 8−1 上誘導加熱コイル 8−2 下誘導加熱コイル 9 上下調整装置 10 左右調整装置 14 前後調整装置 DESCRIPTION OF SYMBOLS 1 Steel plate 5 Support beam 6 Support frame 7-1 Upper arm iron core 7-2 Lower arm iron core 8-1 Upper induction heating coil 8-2 Lower induction heating coil 9 Vertical adjustment device 10 Horizontal adjustment device 14 Front-back adjustment device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼板のエッジ部に上下一対の誘導加熱コ
イルを対向配置して誘導加熱する方法において、上下の
各誘導加熱コイルをそれぞれ上下方向、板幅方向および
板長手方向に可動に設け、各誘導加熱コイルの板幅方向
または板長手方向位置を変化させて当該コイルのラップ
断面を変更することにより鋼板の温度分布を制御するこ
とを特徴とする鋼板の誘導加熱方法。
1. A method of performing induction heating by arranging a pair of upper and lower induction heating coils facing each other at an edge portion of a steel plate, wherein each of the upper and lower induction heating coils is movably provided in a vertical direction, a plate width direction and a plate longitudinal direction, An induction heating method for a steel sheet, which comprises controlling the temperature distribution of the steel sheet by changing the plate width direction or the plate longitudinal direction position of each induction heating coil to change the lap cross section of the coil.
【請求項2】 鋼板移送ライン上に該ラインと直交する
ごとく跨設した支持ビームに板幅方向に進退自在に懸架
され、上下調整機構、左右調整機構および前後調整機構
にて上下方向位置、板幅方向位置および板長手方向位置
を可変となした上下一対の誘導加熱コイルを備えたこと
を特徴とする鋼板の誘導加熱装置。
2. A steel plate transfer line is suspended by a support beam extending in the plate width direction so as to extend in the plate width direction so as to be orthogonal to the line, and a vertical position, a vertical position, and a plate are adjusted by a vertical adjustment mechanism, a horizontal adjustment mechanism, and a front-back adjustment mechanism. An induction heating apparatus for a steel sheet, comprising a pair of upper and lower induction heating coils whose position in the width direction and position in the plate longitudinal direction are variable.
JP4296389A 1992-10-08 1992-10-08 Method for induction heating of steel sheet and device therefor Pending JPH06122928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296389A JPH06122928A (en) 1992-10-08 1992-10-08 Method for induction heating of steel sheet and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296389A JPH06122928A (en) 1992-10-08 1992-10-08 Method for induction heating of steel sheet and device therefor

Publications (1)

Publication Number Publication Date
JPH06122928A true JPH06122928A (en) 1994-05-06

Family

ID=17832915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296389A Pending JPH06122928A (en) 1992-10-08 1992-10-08 Method for induction heating of steel sheet and device therefor

Country Status (1)

Country Link
JP (1) JPH06122928A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046727A (en) * 2007-08-20 2009-03-05 Nippon Steel Corp Horizontal continuous induction-heating furnace for steel strip, and horizontal continuous heat-treatment method for steel strip using the same
JP4800391B2 (en) * 2006-10-31 2011-10-26 東芝三菱電機産業システム株式会社 Induction heating device
EP3025799A1 (en) 2014-11-28 2016-06-01 SMS group GmbH Rolling mill, casting roller system and method for generating a metal strip
EP3269464A4 (en) * 2015-03-09 2018-10-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Rolling facility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800391B2 (en) * 2006-10-31 2011-10-26 東芝三菱電機産業システム株式会社 Induction heating device
JP2009046727A (en) * 2007-08-20 2009-03-05 Nippon Steel Corp Horizontal continuous induction-heating furnace for steel strip, and horizontal continuous heat-treatment method for steel strip using the same
EP3025799A1 (en) 2014-11-28 2016-06-01 SMS group GmbH Rolling mill, casting roller system and method for generating a metal strip
WO2016083439A1 (en) 2014-11-28 2016-06-02 Sms Group Gmbh Rolling plant, casting and rolling plant and method for producing a metal strip
EP3025799B1 (en) 2014-11-28 2017-05-24 SMS group GmbH Rolling mill and longitudinal field inductor for use in such a rolling mill
EP3269464A4 (en) * 2015-03-09 2018-10-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Rolling facility

Similar Documents

Publication Publication Date Title
EP1854336B1 (en) Induction heating device for a metal plate
RU2709494C1 (en) Compact homogenization line by continuous annealing
US6498324B2 (en) Induction heating device for rolling roller and method of induction heating
JP6142409B2 (en) Electric heating method
US20100155390A1 (en) Induction Heating Device for a Metal Plate
JPH0690948B2 (en) Induction heating device for reheating end of metal product and inductor used for the device
KR101006608B1 (en) Induction heating apparatus
JPH05116972A (en) Furnace for bending glass plate and process for manufacturing s-shaped window glass
WO2008099974A1 (en) Induction heating device
EP3520565B1 (en) Rotating magnet heat induction
JP4153895B2 (en) Induction heating apparatus and induction heating method for metal strip
JPS6242970B2 (en)
JP4814558B2 (en) Induction heating device for side trimmer
GB2249507A (en) Induction heating of endless belts in a continuous caster
JPH06122928A (en) Method for induction heating of steel sheet and device therefor
US3683154A (en) Temperature control device
CN101120616A (en) Induction heating device and method for metal plate
KR101435056B1 (en) Heating apparatus of material
JPS6220674B2 (en)
JPS6144127A (en) Uniformly heating device for metal material in motion
JP3647648B2 (en) Induction heating device
JP2005281801A (en) Apparatus and method for electrically heating sheet metal
JPS6228002A (en) Method and apparatus for heating web in rolling of wide flange beam
US20230241657A1 (en) Method and installation for inductively heating flat objects
CN110345761A (en) A kind of steel rolling induction heating furnace apparatus and its application