JPH06117740A - Ice making device - Google Patents

Ice making device

Info

Publication number
JPH06117740A
JPH06117740A JP26370292A JP26370292A JPH06117740A JP H06117740 A JPH06117740 A JP H06117740A JP 26370292 A JP26370292 A JP 26370292A JP 26370292 A JP26370292 A JP 26370292A JP H06117740 A JPH06117740 A JP H06117740A
Authority
JP
Japan
Prior art keywords
inner cylinder
wall
ice making
cylinder
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26370292A
Other languages
Japanese (ja)
Inventor
Masuo Oku
増夫 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26370292A priority Critical patent/JPH06117740A/en
Publication of JPH06117740A publication Critical patent/JPH06117740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To provide an ice making device which is capable of cooling an inner cylinder equally and efficiently, thereby enhancing its ice making capacity. CONSTITUTION:An inner cylinder 26 is inserted into an outer cylinder 27 concentrically, thereby forming a ring-shaped evaporation space 28 between the both cylinders where refrigerant is supplied into this evaporation space 28 so as to cool the inner wall of the inner cylinder 26 while an ice layer formed by supplying ice making water to the inner wall is separated with an auger 1 inserted into the inner cylinder 26, thereby producing flake-shaped ice. There are formed a plurality of spiral fine 29 and 31 which project to the evaporation space 28 from the inner cylinder 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フレーク状の氷片を連
続的に製造する所謂オーガ式の製氷装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called auger type ice making device for continuously producing flaky ice pieces.

【0002】[0002]

【従来の技術】従来この種オーガ式の製氷装置は、例え
ば実開昭54−42068号公報(F25C1/14)
の図1に示されるように、平滑な円筒状内壁を形成する
内筒の外周に冷凍装置の蒸発器を構成する冷媒パイプを
螺旋状に密着巻付し、これら両部材をハンダ付けにより
接合して製造していた。係る従来の構造を図7を用いて
詳述する。図7に示す従来の製氷装置100は内壁を平
滑な円筒状内面とされたステンレス製内筒34内に同心
的に回転刃としてのオーガ1を挿入し、前記内筒34の
外壁に図示しない冷凍装置の蒸発器を構成する冷媒パイ
プ102を螺旋状に密着巻付して構成されている。ま
た、これら内筒34と冷媒パイプ102との隙間には両
者の結合と熱伝達性能の向上を目的としてハンダが注入
される。
2. Description of the Related Art Conventionally, an auger type ice making device of this type is disclosed in, for example, Japanese Utility Model Laid-Open No. 54-42068 (F25C1 / 14).
As shown in FIG. 1, a refrigerant pipe constituting an evaporator of a refrigerating device is spirally closely wound around the outer periphery of an inner cylinder forming a smooth cylindrical inner wall, and these two members are joined by soldering. Was manufactured. Such a conventional structure will be described in detail with reference to FIG. In a conventional ice making device 100 shown in FIG. 7, an auger 1 as a rotary blade is concentrically inserted into a stainless steel inner cylinder 34 having an inner wall having a smooth cylindrical inner surface, and an unillustrated refrigeration is provided on the outer wall of the inner cylinder 34. A refrigerant pipe 102 that constitutes an evaporator of the apparatus is closely wound in a spiral shape. Further, solder is injected into the gap between the inner cylinder 34 and the refrigerant pipe 102 for the purpose of coupling the two together and improving the heat transfer performance.

【0003】内筒34の外側にはカバー2が設けられる
と共に、カバー2上端には水封ゴム3が取り付けられ、
内筒34とカバー2間の空間には断熱材4が充填され
る。オーガ1の下端は下部ボルト5によって内筒34と
共にハウジング6に取り付けられた下部軸受7内に挿入
され、スプライン継手8によって図示しない駆動モータ
の減速機構9に連結支持されている。内筒34の上端に
は上部ボルト11によって押圧頭12が取り付けられて
おり、オーガ1の上端はこの押圧頭12内の上部軸受1
3内に挿入支持されている。
The cover 2 is provided on the outer side of the inner cylinder 34, and the water seal rubber 3 is attached to the upper end of the cover 2.
The space between the inner cylinder 34 and the cover 2 is filled with the heat insulating material 4. The lower end of the auger 1 is inserted into a lower bearing 7 attached to a housing 6 together with an inner cylinder 34 by a lower bolt 5, and is connected and supported by a spline joint 8 to a reduction mechanism 9 of a drive motor (not shown). The pressing head 12 is attached to the upper end of the inner cylinder 34 by the upper bolt 11, and the upper end of the auger 1 has the upper bearing 1 in the pressing head 12.
3 is inserted and supported in the inside.

【0004】内筒34下部には製氷用水を供給するため
の給水口14と、不要な製氷用水を排出するための排水
口15が取り付けられており、オーガ1下端部と給水口
14及び排水口15とはメカニカルシール16によって
水封されている。製氷装置100の製氷動作中、給水口
14からは内筒34とオーガ1間に製氷用水が供給さ
れ、内筒34の内壁に所定レベルで満たされる。また、
冷媒パイプ102の下端入口はカバー2の下端部に設け
られた冷媒入口17に接続され、冷媒パイプ102の上
端出口はカバー2の上端部に設けられた冷媒出口18に
接続されている。また、冷媒入口17には冷凍装置の膨
張弁19が接続される。尚、21、22は冷媒入口17
及び冷媒出口18を断熱するための断熱材である。
A water supply port 14 for supplying ice making water and a drain port 15 for discharging unnecessary ice making water are attached to the lower part of the inner cylinder 34, and the lower end portion of the auger 1 and the water supply port 14 and the drain port are attached. 15 is water-sealed by a mechanical seal 16. During the ice making operation of the ice making device 100, the ice making water is supplied from the water supply port 14 between the inner cylinder 34 and the auger 1, and the inner wall of the inner cylinder 34 is filled to a predetermined level. Also,
A lower end inlet of the refrigerant pipe 102 is connected to a refrigerant inlet 17 provided at a lower end portion of the cover 2, and an upper end outlet of the refrigerant pipe 102 is connected to a refrigerant outlet 18 provided at an upper end portion of the cover 2. An expansion valve 19 of the refrigeration system is connected to the refrigerant inlet 17. In addition, 21 and 22 are refrigerant inlets 17
And a heat insulating material for insulating the refrigerant outlet 18.

【0005】次に、動作を説明する。製氷装置100が
製氷運転を開始すると、冷媒パイプ102には膨張弁1
9から減圧冷媒が供給され、その内部で蒸発することに
より内筒34は氷点下に冷却され、内筒34の内壁には
氷層が成長する。オーガ1外面にはスクリュー状の刃2
0が形成されており、オーガ1は減速機構9を介して図
示しない駆動モータにより下から見て時計回りに回転さ
れる。係る回転により、内筒34内壁に所定厚み以上に
成長した氷層は、オーガ1の刃20によって剥ぎとられ
て内筒34上部に移送され、押圧頭12により圧縮され
てフレーク状の薄氷片となり、図示しない貯氷部にスト
ックされる。
Next, the operation will be described. When the ice making device 100 starts the ice making operation, the expansion valve 1 is attached to the refrigerant pipe 102.
The reduced pressure refrigerant is supplied from 9 and is evaporated inside to cool the inner cylinder 34 below the freezing point, and an ice layer grows on the inner wall of the inner cylinder 34. Screw-shaped blade 2 on the outer surface of auger 1
0 is formed, and the auger 1 is rotated clockwise by a drive motor (not shown) via the speed reduction mechanism 9 when viewed from below. Due to such rotation, the ice layer grown on the inner wall of the inner cylinder 34 to a predetermined thickness or more is peeled off by the blade 20 of the auger 1 and transferred to the upper part of the inner cylinder 34, and compressed by the pressing head 12 to form flaky thin ice pieces. It will be stocked in an ice storage unit (not shown).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記構
造のように内筒34の外壁に冷媒パイプ102を螺旋状
に密着巻付する場合には、内筒34と冷媒パイプ102
との間の空間103を全てハンダによって埋めてしまう
必要があるが、係るハンダの充填は外部から見えず、ま
た、ハンダ付け作業も多くの手間と熟練を要するもので
あった。しかしながら、係る冷媒パイプ102の固着が
完全に成されないと、内筒34と冷媒パイプ102との
間に空間103が形成されてしまう。
However, in the case where the refrigerant pipe 102 is spirally closely wound around the outer wall of the inner cylinder 34 as in the above structure, the inner cylinder 34 and the refrigerant pipe 102 are wound.
It is necessary to completely fill the space 103 between and with the solder, but the filling of the solder cannot be seen from the outside, and the soldering work requires a lot of labor and skill. However, if the refrigerant pipe 102 is not completely fixed, the space 103 is formed between the inner cylinder 34 and the refrigerant pipe 102.

【0007】そのため、冷媒バイプ102が接している
部分では内筒34内壁は良好に冷却されるが、それ以外
の空間103の部分では冷却効果は内筒34の壁面を伝
達して来たものとなるために悪化し、熱交換効率は低下
する。特に、製氷開始から内筒34内壁には先ず冷媒パ
イプ102が接している部分のみに螺旋状に氷が成長し
始め、他の部分にはその後氷が出来て行く状態となり、
係る熱交換効率の低下と熱伝達のバラツキにより、製氷
能力が著しく低下する問題があった。
Therefore, the inner wall of the inner cylinder 34 is satisfactorily cooled in the portion in contact with the refrigerant vapor 102, but the cooling effect is transmitted to the wall surface of the inner cylinder 34 in the other space 103. Therefore, the heat exchange efficiency decreases. In particular, from the start of ice making, first on the inner wall of the inner cylinder 34, ice starts to grow spirally only in the portion in contact with the refrigerant pipe 102, and then in the other portion, the ice is formed.
Due to the decrease in heat exchange efficiency and the variation in heat transfer, there is a problem that the ice making capacity is significantly decreased.

【0008】係る問題を解決するために、例えば実公平
3−8926号公報(F25C1/14)号公報に示さ
れるように冷媒パイプの代わりに内筒周囲に外筒を設け
て両筒間に冷媒の蒸発空間を構成するものが考案されて
おり、係る構造によれば組立上の煩雑さは解消されるも
のの、如何に外筒の上下端で冷媒を分散させたとして
も、冷媒はやはり上下の出入口間を直進して上昇してし
まうため、蒸発冷媒と内筒との熱交換効率は著しく低下
する。
In order to solve such a problem, for example, as disclosed in Japanese Utility Model Publication No. 3-8926 (F25C1 / 14), an outer cylinder is provided around the inner cylinder instead of the refrigerant pipe, and a refrigerant is provided between both cylinders. However, no matter how the refrigerant is dispersed at the upper and lower ends of the outer cylinder, the refrigerant is still above and below. Since it goes straight up between the entrance and exit and rises, the heat exchange efficiency between the evaporating refrigerant and the inner cylinder is significantly reduced.

【0009】更に、係る熱交換性を向上させるために従
来例えば図8に示すような構造が開発されている。尚、
図8において図7と同一符号のものは同一とする。この
場合同様に冷媒パイプ102は削除され、その代わりに
ステンレス製の外筒48が準備される。内筒34はこの
外筒48内に間隔を存して同心的に挿入され、外筒48
は上下端において内筒34外壁に固着されている。外筒
48は内筒34方向に螺旋状に陥没されて螺旋状の凹陥
部49が形成され、凹陥部49は内筒34外壁に当接す
ることにより内外両筒34、48間に下から上に渡る螺
旋状の蒸発空間108が構成されている。
Further, in order to improve the heat exchange property, a structure as shown in FIG. 8 has been conventionally developed. still,
In FIG. 8, the same symbols as in FIG. 7 are the same. In this case, similarly, the refrigerant pipe 102 is deleted, and a stainless steel outer cylinder 48 is prepared instead. The inner cylinder 34 is concentrically inserted into the outer cylinder 48 with a space therebetween.
Are fixed to the outer wall of the inner cylinder 34 at the upper and lower ends. The outer cylinder 48 is spirally recessed in the direction of the inner cylinder 34 to form a spiral recessed portion 49, and the recessed portion 49 contacts the outer wall of the inner cylinder 34 so that the space between the inner and outer cylinders 34, 48 rises from bottom to top. A crossing spiral evaporation space 108 is formed.

【0010】前記蒸発空間108は下端において冷媒入
口17に連通接続されると共に、上端において冷媒出口
18に連通接続され、それによって膨張弁19からの減
圧冷媒は蒸発空間108に供給されて螺旋状に上昇する
ようになるので、前述の如き冷媒の上下方向の直進によ
る熱交換性の低下は解消されるものの、蒸発空間108
に面している部分の内筒34の内壁は強く冷却され、凹
陥部49が接している部分の内筒34の内壁は内筒34
の壁を介しての冷却となるために、やはり内筒34への
熱伝達効率は低く、且つ、熱伝達のバラツキが生じて製
氷能力が低下する問題があった。
The evaporating space 108 is connected at its lower end to the refrigerant inlet 17 and at the upper end to the refrigerant outlet 18, so that the decompressed refrigerant from the expansion valve 19 is supplied to the evaporating space 108 to form a spiral shape. Since the temperature rises, the deterioration of the heat exchange property due to the straight movement of the refrigerant in the vertical direction as described above is eliminated, but the evaporation space 108
The inner wall of the inner cylinder 34 in the portion facing the inner wall is strongly cooled, and the inner wall of the inner cylinder 34 in the portion in contact with the recess 49 is the inner cylinder 34.
Since the cooling is performed via the wall of No. 1, the heat transfer efficiency to the inner cylinder 34 is also low, and there is a problem in that the heat transfer varies and the ice making capacity decreases.

【0011】本発明は係る従来の技術的課題を解決する
ために成されたものであり、内筒を均一、且つ、効率的
に冷却して製氷能力を向上させることができる製氷装置
を提供することを目的とするものである。
The present invention has been made to solve the above-mentioned conventional technical problems, and provides an ice making device capable of uniformly and efficiently cooling the inner cylinder to improve the ice making capacity. That is the purpose.

【0012】[0012]

【課題を解決するための手段】請求項1の発明の製氷装
置は、外筒内に内筒を同心的に内挿して両筒間に環状の
蒸発空間を構成し、この蒸発空間内に冷媒を供給して内
筒の内壁を冷却すると共に、この内壁に製氷用水を供給
して形成した氷層を、内筒内に挿入した回転刃により剥
離してフレーク状の氷を製造するものであって、内筒よ
り蒸発空間側に突出する複数の熱伝導フィンを構成した
ことを特徴とする。
According to the present invention, there is provided an ice making device in which an inner cylinder is concentrically inserted in an outer cylinder to form an annular evaporation space between the cylinders, and a refrigerant is contained in the evaporation space. Is supplied to cool the inner wall of the inner cylinder, and the ice layer formed by supplying ice-making water to the inner wall is peeled off by a rotary blade inserted into the inner cylinder to produce flaky ice. In addition, a plurality of heat conducting fins protruding from the inner cylinder toward the evaporation space are configured.

【0013】また、請求項2の発明の製氷装置は、上記
において内筒の外壁に一体成形された複数条の螺旋状フ
ィンによって熱伝導フィンを構成すると共に、螺旋状フ
ィンの少なくとも一条を外筒内壁まで到達させたことを
特徴とする。更に、請求項3の発明の製氷装置は、請求
項1において内筒の外壁に環状のフィン部材を固着して
熱伝導フィンを構成し、上下方向所定間隔でフィン部材
の先端を外筒内壁に到達させると共に、外筒内壁に到達
するフィン部材の一部には切欠を設け、且つ、上下に位
置する切欠が水平方向に相互にずれるように配置したこ
とを特徴とする。
According to a second aspect of the present invention, in the above-described ice making device, the heat conducting fin is constituted by a plurality of spiral fins integrally formed on the outer wall of the inner cylinder, and at least one of the spiral fins is formed in the outer cylinder. Characterized by reaching the inner wall. Further, in the ice making device of the invention of claim 3, in claim 1, an annular fin member is fixed to the outer wall of the inner cylinder to form a heat conducting fin, and the tips of the fin members are fixed to the inner wall of the outer cylinder at predetermined intervals in the vertical direction. A notch is provided in a part of the fin member that reaches the inner wall of the outer cylinder while reaching, and the notches located above and below are arranged so as to be displaced from each other in the horizontal direction.

【0014】更にまた、請求項4の発明の製氷装置は、
請求項1において内筒の外壁に一体成形された複数条の
フィンによって熱伝導フィンを構成すると共に、外筒の
一部を螺旋状に凹陥させてフィン先端に当接させたこと
を特徴とする。
Furthermore, the ice making device according to the invention of claim 4 is
The heat conducting fin is constituted by a plurality of fins integrally formed on the outer wall of the inner cylinder according to claim 1, and a part of the outer cylinder is recessed in a spiral shape to abut on the fin tip. .

【0015】[0015]

【作用】請求項1の発明の製氷装置によれば、内筒より
蒸発空間側に突出する複数の熱伝導フィンが存在するた
めに、蒸発空間にて蒸発する冷媒と内筒との熱交換面積
が増大する。それによって内筒の内壁は強力に冷却さ
れ、内壁では迅速に氷層が形成されるようになるので、
製氷装置の製氷能力が向上する。
According to the ice making apparatus of the present invention, since there are a plurality of heat conducting fins projecting from the inner cylinder toward the evaporation space, the heat exchange area between the refrigerant evaporated in the evaporation space and the inner cylinder. Will increase. As a result, the inner wall of the inner cylinder is cooled strongly and an ice layer is quickly formed on the inner wall.
The ice making capacity of the ice making device is improved.

【0016】また、請求項2の発明の製氷装置によれ
ば、上記において熱伝導フィンを内筒の外壁に一体成形
された複数条の螺旋状フィンによって構成しているの
で、部品点数を増加させること無く、内筒の熱交換面積
を増大させることができる。特に、少なくとも一条の螺
旋状フィンを外筒内壁まで到達させたことにより、蒸発
空間内を上下に連続した螺旋状の通路に画成することが
でき、そこを通過する冷媒の蒸発によって内筒全体を均
一に冷却することができるようになる。
According to the ice making apparatus of the second aspect of the present invention, the heat conducting fins are constituted by a plurality of spiral fins integrally formed on the outer wall of the inner cylinder, so that the number of parts is increased. Without increasing the heat exchange area of the inner cylinder. In particular, since at least one spiral fin reaches the inner wall of the outer cylinder, the evaporation space can be defined as a continuous spiral passage, and the entire inner cylinder is evaporated by the evaporation of the refrigerant passing therethrough. Can be cooled uniformly.

【0017】更に、請求項3の発明の製氷装置によれ
ば、請求項1において熱伝導フィンを内筒の外壁に固着
した環状のフィン部材によって構成しているので、既存
の内筒を使用して内筒の熱交換面積の増大を図ることが
できる。特に、上下方向所定間隔でフィン部材の先端を
外筒内壁に到達させると共に、外筒内壁に到達するフィ
ン部材の一部には切欠を設け、上下に位置する切欠が水
平方向に相互にずれるように配置したので、蒸発空間内
を上下に連続したジグザグの通路に画成することがで
き、そこを通過する冷媒の蒸発によって内筒全体を均一
に冷却することができるようになる。
Further, according to the ice making device of the invention of claim 3, since the heat conducting fin is constituted by the annular fin member fixed to the outer wall of the inner cylinder in claim 1, the existing inner cylinder is used. As a result, the heat exchange area of the inner cylinder can be increased. In particular, the tips of the fin members are made to reach the inner wall of the outer cylinder at predetermined intervals in the vertical direction, and notches are provided in a part of the fin members that reach the inner wall of the outer cylinder so that the notches located above and below are displaced from each other in the horizontal direction. Since it is arranged in the above, the inside of the evaporation space can be defined as a vertically continuous zigzag passage, and the entire inner cylinder can be uniformly cooled by the evaporation of the refrigerant passing therethrough.

【0018】更にまた、請求項4の発明の製氷装置によ
れば、請求項1において熱伝導フィンを内筒の外壁に一
体成形された複数条のフィンによって構成しているの
で、部品点数を増加させること無く、内筒の熱交換面積
を増大させることができる。特に、外筒の一部を螺旋状
に凹陥させてフィン先端に当接させたので、蒸発空間内
を上下に連続した螺旋状の通路に区画することができる
と共に、フィンと凹陥部分の角度のずれによって外筒の
凹陥部分が当接するフィン相互間にも冷媒が流入できる
ので、内筒全体を均一に冷却することができるようにな
る。
Further, according to the ice making device of the invention of claim 4, since the heat conducting fin is constituted by a plurality of fins integrally formed on the outer wall of the inner cylinder in claim 1, the number of parts is increased. Without doing so, the heat exchange area of the inner cylinder can be increased. In particular, since a part of the outer cylinder is recessed in a spiral shape and brought into contact with the tips of the fins, the evaporation space can be partitioned into a vertically continuous spiral path, and the angle between the fins and the recessed portion can be reduced. Refrigerant can also flow between the fins with which the concave portions of the outer cylinder abut due to the displacement, so that the entire inner cylinder can be cooled uniformly.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づき詳述す
る。図1は本発明の製氷装置25の縦断側面図、図2は
内筒26の斜視図を示している。尚、各図において図7
及び図8中と同一符号のものは同一であり、オーガ1の
回転による基本的な製氷動作は図7及び図8の場合と同
一である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a vertical sectional side view of an ice making device 25 of the present invention, and FIG. 2 is a perspective view of an inner cylinder 26. In each figure,
8 are the same as those in FIG. 8, and the basic ice making operation by the rotation of the auger 1 is the same as in the cases of FIGS. 7 and 8.

【0020】図1の製氷装置25において、内壁を平滑
な円筒状内面とされたステンレス製の内筒26は円筒状
のやはりステンレス製の外筒27内に間隔を存して同心
的に挿入されており、外筒27の上下端部は内筒26外
壁に固着されている。そして、断熱材4はこの外筒27
とカバー2間に充填されると共に、冷媒入口17及び冷
媒出口18は外筒27の下端及び上端にそれぞれ接続さ
れて内外両筒26、27間の間隔に連通され、この間隔
が冷媒の蒸発空間28とされる。
In the ice making device 25 of FIG. 1, a stainless steel inner cylinder 26 having an inner wall having a smooth cylindrical inner surface is concentrically inserted into a cylindrical stainless steel outer cylinder 27 with a space. The upper and lower ends of the outer cylinder 27 are fixed to the outer wall of the inner cylinder 26. The heat insulating material 4 is the outer cylinder 27.
The refrigerant inlet 17 and the refrigerant outlet 18 are connected to the lower end and the upper end of the outer cylinder 27, respectively, and communicate with the space between the inner and outer cylinders 26, 27. 28.

【0021】一方、内筒26の外壁には図2に示すよう
に、ステンレスの旋盤加工、若しくは塑性加工によって
熱伝導フィンとしての複数条の低螺旋状フィン29、及
び一条の高螺旋状フィン31が内筒26と一体に形成さ
れている。低螺旋状フィン29は内筒26の外壁より前
記蒸発空間28の略中間部まで突出しており、高螺旋状
フィン31の先端は外筒27の内壁まで到達している。
この高螺旋状フィン31によって、蒸発空間28内は上
下に連続した螺旋状の通路に画成され、低螺旋状フィン
29は該通路内で通路の進行方向に沿って蒸発空間28
側に突出する形となる。
On the other hand, as shown in FIG. 2, on the outer wall of the inner cylinder 26, a plurality of low spiral fins 29 and a single high spiral fin 31 as heat conducting fins are formed by lathe processing or plastic processing of stainless steel. Is formed integrally with the inner cylinder 26. The low spiral fins 29 project from the outer wall of the inner cylinder 26 to a substantially middle portion of the evaporation space 28, and the tips of the high spiral fins 31 reach the inner wall of the outer cylinder 27.
The high spiral fins 31 define a vertical spiral passage in the evaporation space 28, and the low spiral fins 29 define the low spiral fins 29 in the evaporation space 28 along the traveling direction of the passage.
The shape projects to the side.

【0022】係る構成で製氷装置25が製氷運転を開始
すると、冷媒入口17より画成された蒸発空間28の最
下端部に膨張弁19からの減圧冷媒が供給され、図2中
矢印で示す如く蒸発空間28を螺旋状に上昇しながら蒸
発し、内筒26を冷却して最上端の冷媒出口18から出
て行く。このとき、低螺旋状フィン29は冷媒の進行方
向に沿って形成されているので、冷媒の流通の邪魔にな
らず、逆に整流作用を奏する。内筒26は係る冷却によ
って氷点下となるので、内筒26の内壁には氷層が成長
し、この氷層を前述同様にオーガ1外面の刃20によっ
て剥ぎとり、内筒26上部に移送して押圧頭12により
圧縮することによりフレーク状の薄氷片を生成する。
When the ice making device 25 starts the ice making operation with such a configuration, the depressurized refrigerant is supplied from the expansion valve 19 to the lowermost end of the evaporation space 28 defined by the refrigerant inlet 17, and as shown by the arrow in FIG. The evaporation space 28 spirally rises and evaporates, cools the inner cylinder 26, and exits from the uppermost refrigerant outlet 18. At this time, since the low spiral fins 29 are formed along the traveling direction of the refrigerant, they do not interfere with the circulation of the refrigerant and, on the contrary, have a rectifying action. Since the inner cylinder 26 becomes below freezing due to such cooling, an ice layer grows on the inner wall of the inner cylinder 26, and this ice layer is peeled off by the blade 20 on the outer surface of the auger 1 and transferred to the upper part of the inner cylinder 26 as described above. By pressing with the pressing head 12, thin flaky ice pieces are generated.

【0023】このとき、内筒26からは複数条の高低螺
旋状フィン31、29が蒸発空間28側に突出形成され
ているので、内筒26と蒸発冷媒との熱交換面積は増大
している。そのため、内筒26は蒸発冷媒より極めて効
率的に冷却され、それによって内筒26の内壁は強力に
冷却されるので、内壁では迅速に氷層が形成されるよう
になる。また、冷媒は高螺旋状フィン31によって螺旋
状に画成された蒸発空間28内を上昇して行くので、蒸
発冷媒は内筒26外壁の略全域に行き渡るようになり、
それによって内筒26は略均一に冷却され、内筒26内
壁には略均一に氷層が生成されるようになる。以上によ
って製氷装置25の製氷能力は著しく向上する。特に、
高低螺旋状フィン31、29は内筒26に一体に成形さ
れているので部品点数の増加も生じない。
At this time, since a plurality of high and low spiral fins 31, 29 are formed so as to project from the inner cylinder 26 toward the evaporation space 28, the heat exchange area between the inner cylinder 26 and the evaporated refrigerant is increased. . Therefore, the inner cylinder 26 is cooled more efficiently than the evaporating refrigerant, and the inner wall of the inner cylinder 26 is strongly cooled thereby, so that an ice layer is quickly formed on the inner wall. Further, since the refrigerant rises in the evaporation space 28 defined by the high spiral fin 31 in a spiral shape, the evaporated refrigerant is spread over substantially the entire outer wall of the inner cylinder 26,
As a result, the inner cylinder 26 is cooled substantially uniformly, and an ice layer is substantially uniformly generated on the inner wall of the inner cylinder 26. As a result, the ice making capacity of the ice making device 25 is significantly improved. In particular,
Since the high and low spiral fins 31 and 29 are formed integrally with the inner cylinder 26, the number of parts does not increase.

【0024】次に、図3は製氷装置25の他の構造を示
す上部縦断側面図を示し、図4はその場合の内筒34の
斜視図を示す。尚、各図において図1及び図2、乃至図
7及び図8と同一符号のものは同一とする。この場合の
内筒34は内壁を平滑な円筒状内面とされたステンレス
製のもので、前記図7に示した従来の内筒と同一のもの
であるが、内筒34は図1の場合と同様に外筒27内に
間隔を存して同心的に挿入され、外筒27の上下端部は
内筒34外壁に固着される。そして、断熱材4はこの外
筒27とカバー2間に充填されると共に、冷媒入口17
(図3では図示せず)及び冷媒出口18は外筒27の下
端及び上端にそれぞれ接続されて内外両筒34、27間
の間隔に連通され、この間隔が冷媒の蒸発空間28とさ
れる。
Next, FIG. 3 shows an upper vertical side view showing another structure of the ice making device 25, and FIG. 4 shows a perspective view of the inner cylinder 34 in that case. In each drawing, the same reference numerals as those in FIGS. 1 and 2 and FIGS. 7 and 8 are the same. The inner cylinder 34 in this case is made of stainless steel having an inner wall having a smooth cylindrical inner surface, and is the same as the conventional inner cylinder shown in FIG. 7, but the inner cylinder 34 is different from the case of FIG. Similarly, they are coaxially inserted into the outer cylinder 27 with a space therebetween, and the upper and lower ends of the outer cylinder 27 are fixed to the outer wall of the inner cylinder 34. The heat insulating material 4 is filled between the outer cylinder 27 and the cover 2, and the refrigerant inlet 17
(Not shown in FIG. 3) and the refrigerant outlet 18 are respectively connected to the lower end and the upper end of the outer cylinder 27 and communicate with the space between the inner and outer cylinders 34, 27, and this space serves as a refrigerant evaporation space 28.

【0025】一方、内筒34の外壁には図4に示すよう
に、熱伝導フィンとしての銅、若しくはアルミニウム製
の低フィン部材36及び高フィン部材37が複数枚固着
される。両フィン部材36、37はいずれも内筒34の
外壁に密着する内径の環状を呈しており、下方に延在す
る垂直フランジ38、39と、外方に延在する水平フラ
ンジ41、42をそれぞれ有している。そして、図4中
破線矢印で示すように内筒34外壁に上下方向所定間隔
を存して嵌合固着し、各垂直フランジ38、39を内筒
34の外壁に密着させて熱伝導性を高めている。また、
高フィン部材37は低フィン部材36を所定枚数挟んだ
状態で上下方向に所定の間隔を存して配設すると共に、
高フィン部材37の水平フランジ42には切欠44を形
成し、更に上下に位置する切欠44が水平方向に相互に
ずれるよう、内筒34の中心に対して相互に対称の位置
となる如く高フィン部材37を内筒34に取り付けてい
る。尚、実施例では垂直フランジ38、39は下方のフ
ィン部材と離間しているが、更に延長させてフィン部材
に当接させ、フィン部材相互の間隔保持に利用しても良
い。
On the other hand, as shown in FIG. 4, a plurality of low fin members 36 and high fin members 37 made of copper or aluminum as heat conducting fins are fixed to the outer wall of the inner cylinder 34. Both fin members 36 and 37 each have an annular shape with an inner diameter that is in close contact with the outer wall of the inner cylinder 34, and have vertical flanges 38 and 39 extending downward and horizontal flanges 41 and 42 extending outward, respectively. Have Then, as indicated by the broken line arrow in FIG. 4, the outer wall of the inner cylinder 34 is fitted and fixed at a predetermined interval in the vertical direction, and the vertical flanges 38 and 39 are brought into close contact with the outer wall of the inner cylinder 34 to enhance thermal conductivity. ing. Also,
The high fin members 37 are arranged with a predetermined gap in the vertical direction with a predetermined number of the low fin members 36 sandwiched therebetween, and
A notch 44 is formed in the horizontal flange 42 of the high fin member 37. Further, the high fins are positioned so as to be symmetrical to each other with respect to the center of the inner cylinder 34 so that the notches 44 located above and below are horizontally displaced from each other. The member 37 is attached to the inner cylinder 34. Although the vertical flanges 38 and 39 are separated from the lower fin member in the embodiment, they may be further extended and brought into contact with the fin member to be used for maintaining the distance between the fin members.

【0026】このように高低フィン部材37、36を固
着された内筒34を外筒27内に同心的に挿入すると、
図3の如く低フィン部材36の水平フランジ41は内筒
34より蒸発空間28の略中間部まで突出し、高フィン
部材37の水平フランジ42の先端は外筒27内壁に到
達する。この高フィン部材37によって蒸発空間28は
上下方向に区画されるが、切欠44によって上下方向に
ジグザグに連通されるので、蒸発空間28内は上下に連
続したジグザグの通路に画成され、低フィン部材36の
水平フランジ41は該通路内で蒸発空間28側に突出す
る形となる。
When the inner cylinder 34 to which the high and low fin members 37 and 36 are fixed is inserted into the outer cylinder 27 concentrically,
As shown in FIG. 3, the horizontal flange 41 of the low fin member 36 projects from the inner cylinder 34 to a substantially middle portion of the evaporation space 28, and the tip of the horizontal flange 42 of the high fin member 37 reaches the inner wall of the outer cylinder 27. The high fin member 37 divides the evaporation space 28 in the vertical direction, but since the notches 44 communicate with each other in the zigzag direction in the vertical direction, the inside of the evaporation space 28 is defined by the zigzag passages continuous in the vertical direction, and the low fins are formed. The horizontal flange 41 of the member 36 has a shape projecting toward the evaporation space 28 in the passage.

【0027】係る構成で製氷装置25が製氷運転を開始
すると、図4中実線矢印で示す如く冷媒入口17より画
成された蒸発空間28の最下端部に膨張弁19からの減
圧冷媒が供給され、蒸発空間28をジグザグに上昇しな
がら蒸発し、内筒34を冷却して最上端の冷媒出口18
から出て行く。内筒34は係る冷却によって氷点下とな
るので、内筒34の内壁には氷層が成長し、この氷層を
前述同様にオーガ1外面の刃20によって剥ぎとり、内
筒34上部に移送して押圧頭12により圧縮することに
よりフレーク状の薄氷片を生成する。
When the ice making device 25 starts the ice making operation with such a configuration, the decompressed refrigerant from the expansion valve 19 is supplied to the lowermost end of the evaporation space 28 defined by the refrigerant inlet 17 as shown by the solid line arrow in FIG. , The evaporation space 28 is raised in a zigzag manner while evaporating, and the inner cylinder 34 is cooled to cool the uppermost refrigerant outlet 18
Get out of. Since the inner cylinder 34 becomes below freezing due to such cooling, an ice layer grows on the inner wall of the inner cylinder 34, and this ice layer is peeled off by the blade 20 on the outer surface of the auger 1 and transferred to the upper part of the inner cylinder 34 as described above. By pressing with the pressing head 12, thin flaky ice pieces are generated.

【0028】このとき、内筒34外壁には複数枚の高低
フィン部材37、36が固着され、それぞれの水平フラ
ンジ42、41が蒸発空間28側に突出しているので、
内筒34と蒸発冷媒との熱交換面積は増大している。そ
のため、内筒34は蒸発冷媒より極めて効率的に冷却さ
れ、それによって内筒34の内壁は強力に冷却されるの
で、内壁では迅速に氷層が形成されるようになる。ま
た、冷媒は高フィン部材37によってジグザグに画成さ
れた蒸発空間28内を上昇して行くので、蒸発冷媒は内
筒34外壁の略全域に行き渡るようになり、それによっ
て内筒34は略均一に冷却され、内筒34内壁には略均
一に氷層が生成されるようになる。以上によって製氷装
置25の製氷能力は著しく向上する。特に、内筒34と
しては従来同様の既存の内筒を使用することができるの
で、他の機種との部品の共用化等、量産性に富んだもの
となる。
At this time, a plurality of high and low fin members 37, 36 are fixed to the outer wall of the inner cylinder 34, and the respective horizontal flanges 42, 41 project toward the evaporation space 28 side.
The heat exchange area between the inner cylinder 34 and the evaporated refrigerant is increasing. Therefore, the inner cylinder 34 is cooled more efficiently than the evaporated refrigerant, and the inner wall of the inner cylinder 34 is strongly cooled thereby, so that an ice layer is quickly formed on the inner wall. Further, since the refrigerant rises in the evaporation space 28 defined by the high fin member 37 in a zigzag manner, the evaporated refrigerant is spread over substantially the entire outer wall of the inner cylinder 34, whereby the inner cylinder 34 is substantially uniform. As a result, the ice layer is substantially uniformly formed on the inner wall of the inner cylinder 34. As a result, the ice making capacity of the ice making device 25 is significantly improved. Particularly, as the inner cylinder 34, an existing inner cylinder similar to the conventional one can be used, so that the mass productivity is high, such as sharing of parts with other models.

【0029】次に、図5は製氷装置25の更に他の構造
を示す上部縦断側面図を示し、図6はその場合の内筒4
6の斜視図を示す。尚、各図において図1乃至図4、及
び図7、図8と同一符号のものは同一とする。この場合
の内筒46は内壁を平滑な円筒状内面とされたステンレ
ス製のものであるが、その外壁には前記旋盤加工、若し
くは塑性加工により、熱伝導フィンとしての高さの低い
水平なフィン47が上下方向に複数条一体に成形されて
いる。係る内筒46は前記図8の従来の場合と同様の外
筒48内に間隔を存して同心的に挿入され、外筒48の
上下端部は内筒46外壁に固着される。外筒48は前述
同様に内筒46方向に螺旋状に陥没されて螺旋状の凹陥
部49が形成されているが、この場合、凹陥部49は内
筒46外壁のフィン47先端に当接することにより内外
両筒46、48間に下から上に渡る螺旋状の空間を構成
する。
Next, FIG. 5 is a vertical sectional side view of the upper portion showing still another structure of the ice making device 25, and FIG. 6 is the inner cylinder 4 in that case.
6 shows a perspective view of FIG. In each drawing, the same reference numerals as those in FIGS. 1 to 4, 7 and 8 are the same. In this case, the inner cylinder 46 is made of stainless steel having an inner wall having a smooth cylindrical inner surface, and the outer wall thereof is a horizontal fin having a low height as a heat conducting fin by the lathe processing or the plastic processing. A plurality of 47 are integrally formed in the vertical direction. The inner cylinder 46 is concentrically inserted into the outer cylinder 48 similar to the conventional case of FIG. 8 with a space, and the upper and lower ends of the outer cylinder 48 are fixed to the outer wall of the inner cylinder 46. Similarly to the above, the outer cylinder 48 is spirally depressed in the direction of the inner cylinder 46 to form a spiral recessed portion 49. In this case, the recessed portion 49 should be in contact with the tips of the fins 47 on the outer wall of the inner cylinder 46. Thus, a spiral space extending from the bottom to the top is formed between the inner and outer cylinders 46 and 48.

【0030】そして、断熱材4はこの外筒48とカバー
2間に充填されると共に、冷媒入口17(図5では図示
せず)及び冷媒出口18は外筒48の下端及び上端にそ
れぞれ接続され、内外両筒46、48間の螺旋状の間隔
に連通され、この間隔が冷媒の蒸発空間28とされる。
また、内筒46外壁のフィン47はこの螺旋状の蒸発空
間28側に向けて突出する形となる。
The heat insulating material 4 is filled between the outer cylinder 48 and the cover 2, and the refrigerant inlet 17 (not shown in FIG. 5) and the refrigerant outlet 18 are connected to the lower end and the upper end of the outer cylinder 48, respectively. , The spiral space between the inner and outer cylinders 46, 48 communicates with each other, and this space serves as a refrigerant evaporation space 28.
Further, the fins 47 on the outer wall of the inner cylinder 46 have a shape protruding toward the spiral evaporation space 28 side.

【0031】係る構成で製氷装置25が製氷運転を開始
すると、図6中実線矢印で示す如く冷媒入口17より螺
旋状の蒸発空間28の最下端部に膨張弁19からの減圧
冷媒が供給され、蒸発空間28を螺旋状に上昇しながら
蒸発し、内筒46を冷却して最上端の冷媒出口18から
出て行く。内筒46は係る冷却によって氷点下となるの
で、内筒46の内壁には氷層が成長し、この氷層を前述
同様にオーガ1外面の刃20によって剥ぎとり、内筒4
6上部に移送して押圧頭12により圧縮することにより
フレーク状の薄氷片を生成する。
When the ice making device 25 starts the ice making operation with such a configuration, the reduced pressure refrigerant from the expansion valve 19 is supplied from the refrigerant inlet 17 to the lowermost end of the spiral evaporation space 28 as shown by the solid line arrow in FIG. The evaporation space 28 evaporates while rising spirally, cools the inner cylinder 46, and exits from the refrigerant outlet 18 at the uppermost end. Since the inner cylinder 46 becomes below freezing due to such cooling, an ice layer grows on the inner wall of the inner cylinder 46, and this ice layer is peeled off by the blade 20 on the outer surface of the auger 1 in the same manner as described above.
6. The flaky thin ice pieces are generated by transferring to the upper part and compressing by the pressing head 12.

【0032】このとき、内筒46外壁には複数条のフィ
ン47が一体に形成されて蒸発空間28側に突出してい
るので、内筒46と蒸発冷媒との熱交換面積は増大して
いる。そのため、内筒46は蒸発冷媒より極めて効率的
に冷却され、それによって内筒46の内壁は強力に冷却
されるので、内壁では迅速に氷層が形成されるようにな
る。また、冷媒は螺旋状の蒸発空間28内を上昇して行
くと共に、図6中49Aで示す如く、外筒48の凹陥部
49とフィン47との当接部分はフィン47と所定の角
度で交差しており、従って、相隣接するフィン47、4
7と凹陥部49によって囲まれる空間50内にも冷媒は
進入して蒸発する。従って、凹陥部49の当接部分49
Aにおいても内筒46は蒸発冷媒によって冷却されるよ
うになるので、内筒46は略均一に冷却され、内筒46
内壁には略均一に氷層が生成されるようになる。以上に
よって製氷装置25の製氷能力は著しく向上する。
At this time, since a plurality of fins 47 are integrally formed on the outer wall of the inner cylinder 46 and project toward the evaporation space 28, the heat exchange area between the inner cylinder 46 and the evaporated refrigerant is increased. Therefore, the inner cylinder 46 is cooled more efficiently than the evaporative refrigerant, and the inner wall of the inner cylinder 46 is strongly cooled thereby, so that an ice layer is quickly formed on the inner wall. Further, the refrigerant rises in the spiral evaporation space 28, and as shown by 49A in FIG. 6, the contact portion between the concave portion 49 of the outer cylinder 48 and the fin 47 intersects with the fin 47 at a predetermined angle. And therefore the adjacent fins 47, 4
The refrigerant also enters and evaporates in the space 50 surrounded by 7 and the recess 49. Therefore, the contact portion 49 of the concave portion 49
Also in A, the inner cylinder 46 is cooled by the evaporating refrigerant, so that the inner cylinder 46 is cooled substantially uniformly.
An ice layer is almost uniformly generated on the inner wall. As a result, the ice making capacity of the ice making device 25 is significantly improved.

【0033】[0033]

【発明の効果】以上詳述した如く請求項1の発明によれ
ば、内筒より蒸発空間側に突出する複数の熱伝導フィン
によって、蒸発空間にて蒸発する冷媒と内筒との熱交換
面積が増大するので、内筒の内壁を強力に冷却すること
ができるようになり、それによって内筒内壁に迅速に氷
層を形成し、製氷装置の製氷能力を向上させることがで
きるものである。
As described above in detail, according to the invention of claim 1, the heat exchange area between the refrigerant evaporated in the evaporation space and the inner cylinder is made by the plurality of heat conduction fins protruding from the inner cylinder toward the evaporation space. Therefore, the inner wall of the inner cylinder can be cooled strongly, whereby an ice layer can be quickly formed on the inner wall of the inner cylinder, and the ice making capacity of the ice making device can be improved.

【0034】また、請求項2の発明によれば、熱伝導フ
ィンを内筒の外壁に一体成形された複数条の螺旋状フィ
ンによって構成しているので、上記効果に加えて部品点
数を増加させること無く、内筒の熱交換面積を増大させ
る効果を奏する。特に、少なくとも一条の螺旋状フィン
を外筒内壁まで到達させたことにより、蒸発空間内を上
下に連続した螺旋状の通路に画成することができ、そこ
を通過する冷媒の蒸発によって内筒全体を略均一に冷却
し、内筒内壁に均一な氷層を生成して製氷装置の製氷能
力を更に向上させることができるものである。
Further, according to the invention of claim 2, since the heat conducting fin is constituted by a plurality of spiral fins integrally formed on the outer wall of the inner cylinder, the number of parts is increased in addition to the above effect. Without increasing the effect of increasing the heat exchange area of the inner cylinder. In particular, since at least one spiral fin reaches the inner wall of the outer cylinder, the evaporation space can be defined as a continuous spiral passage, and the entire inner cylinder is evaporated by the evaporation of the refrigerant passing therethrough. Can be cooled substantially uniformly, and a uniform ice layer can be formed on the inner wall of the inner cylinder to further improve the ice making capacity of the ice making device.

【0035】更に、請求項3の発明によれば、熱伝導フ
ィンを内筒の外壁に固着した環状のフィン部材によって
構成しているので、請求項1の効果に加えて既存の内筒
を使用して内筒の熱交換面積の増大を図れる効果を奏す
る。特に、上下方向所定間隔でフィン部材の先端を外筒
内壁に到達させると共に、外筒内壁に到達するフィン部
材の一部に切欠を設け、上下に位置する切欠が水平方向
に相互にずれるようにしたので、蒸発空間内を上下に連
続したジグザグの通路に画成することができ、そこを通
過する冷媒の蒸発によって内筒全体を略均一に冷却し、
内筒内壁に均一な氷層を生成して製氷装置の製氷能力を
更に向上させることができるものである。
Further, according to the invention of claim 3, since the heat conducting fin is constituted by the annular fin member fixed to the outer wall of the inner cylinder, the existing inner cylinder is used in addition to the effect of claim 1. As a result, the heat exchange area of the inner cylinder can be increased. In particular, the tips of the fin members are made to reach the inner wall of the outer cylinder at predetermined intervals in the vertical direction, and notches are provided in a part of the fin members that reach the inner wall of the outer cylinder so that the notches located at the top and bottom are displaced from each other in the horizontal direction. Therefore, it is possible to define the zigzag passage that is vertically continuous in the evaporation space, and the entire inner cylinder is cooled substantially uniformly by the evaporation of the refrigerant passing therethrough,
By forming a uniform ice layer on the inner wall of the inner cylinder, the ice making capacity of the ice making device can be further improved.

【0036】更にまた、請求項4の発明によれば、熱伝
導フィンを内筒の外壁に一体成形された複数条のフィン
によって構成しているので、請求項1の効果に加えて部
品点数を増加させること無く、内筒の熱交換面積を増大
させる効果を奏する。特に、外筒の一部を螺旋状に凹陥
させてフィン先端に当接させたので、蒸発空間内を上下
に連続した螺旋状の通路に画成することができると共
に、フィンと凹陥部分の角度のずれによって外筒の凹陥
部分が当接するフィン相互間にも冷媒が流入できるの
で、内筒全体を略均一に冷却し、内筒内壁に均一な氷層
を生成して製氷装置の製氷能力を更に向上させることが
できるものである。
Further, according to the invention of claim 4, since the heat conducting fin is constituted by a plurality of fins integrally formed on the outer wall of the inner cylinder, the number of parts is reduced in addition to the effect of claim 1. It has the effect of increasing the heat exchange area of the inner cylinder without increasing it. In particular, since a part of the outer cylinder is recessed in a spiral shape and brought into contact with the tip of the fin, the evaporation space can be defined as a continuous spiral path in the vertical direction, and the angle between the fin and the recessed portion can be defined. Because the refrigerant can flow between the fins with which the concave portion of the outer cylinder abuts due to the deviation of the inner cylinder, the entire inner cylinder is cooled substantially uniformly, and a uniform ice layer is generated on the inner wall of the inner cylinder to improve the ice making capacity of the ice making device. It can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製氷装置の縦断側面図である。FIG. 1 is a vertical sectional side view of an ice making device of the present invention.

【図2】図1の内筒の斜視図である。FIG. 2 is a perspective view of an inner cylinder of FIG.

【図3】本発明のもう一つの製氷装置の上部縦断側面図
である。
FIG. 3 is a vertical cross-sectional side view of the upper portion of another ice making device of the present invention.

【図4】図3の内筒の斜視図である。FIG. 4 is a perspective view of the inner cylinder of FIG.

【図5】本発明の更にもう一つの製氷装置の上部縦断側
面図である。
FIG. 5 is a vertical sectional side view of the upper portion of still another ice making device of the present invention.

【図6】図5の内筒の斜視図である。FIG. 6 is a perspective view of the inner cylinder of FIG.

【図7】従来の製氷装置の縦断側面図である。FIG. 7 is a vertical sectional side view of a conventional ice making device.

【図8】もう一つの従来の製氷装置の縦断側面図であ
る。
FIG. 8 is a vertical sectional side view of another conventional ice making device.

【符号の説明】[Explanation of symbols]

1 オーガ 25 製氷装置 26 内筒 27 外筒 28 蒸発空間 29 低螺旋状フィン 31 高螺旋状フィン 34 内筒 36 低フィン部材 37 高フィン部材 44 切欠 46 内筒 47 フィン 48 外筒 49 凹陥部 50 空間 1 auger 25 ice making device 26 inner cylinder 27 outer cylinder 28 evaporation space 29 low spiral fin 31 high spiral fin 34 inner cylinder 36 low fin member 37 high fin member 44 notch 46 inner cylinder 47 fin 48 outer cylinder 49 recessed portion 50 space

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外筒内に内筒を同心的に内挿して両筒間
に環状の蒸発空間を構成し、該蒸発空間内に冷媒を供給
して前記内筒の内壁を冷却すると共に、該内壁に製氷用
水を供給して形成した氷層を、前記内筒内に挿入した回
転刃により剥離してフレーク状の氷を製造する製氷装置
において、前記内筒より前記蒸発空間側に突出する複数
の熱伝導フィンを構成したことを特徴とする製氷装置。
1. An inner cylinder is concentrically inserted into an outer cylinder to form an annular evaporation space between the cylinders, and a refrigerant is supplied into the evaporation space to cool the inner wall of the inner cylinder. In an ice making device for producing a flake-like ice by peeling an ice layer formed by supplying water for ice making to the inner wall with a rotary blade inserted in the inner cylinder, the ice layer is projected from the inner cylinder to the evaporation space side. An ice making device comprising a plurality of heat conducting fins.
【請求項2】 内筒の外壁に一体成形された複数条の螺
旋状フィンによって熱伝導フィンを構成すると共に、前
記螺旋状フィンの少なくとも一条を前記外筒内壁まで到
達させたことを特徴とする請求項1の製氷装置。
2. The heat conducting fin is constituted by a plurality of spiral fins integrally formed on the outer wall of the inner cylinder, and at least one of the spiral fins reaches the inner wall of the outer cylinder. The ice making device according to claim 1.
【請求項3】 内筒の外壁に環状のフィン部材を固着し
て熱伝導フィンを構成し、上下方向所定間隔で前記フィ
ン部材の先端を外筒内壁に到達させると共に、外筒内壁
に到達するフィン部材の一部には切欠を設け、且つ、上
下に位置する切欠が水平方向に相互にずれるように配置
したことを特徴とする請求項1の製氷装置。
3. A heat conducting fin is formed by fixing an annular fin member to the outer wall of the inner cylinder, and the tips of the fin members reach the inner wall of the outer cylinder at predetermined intervals in the vertical direction and reach the inner wall of the outer cylinder. 2. The ice making device according to claim 1, wherein a notch is provided in a part of the fin member, and the notches located above and below are arranged so as to be displaced from each other in the horizontal direction.
【請求項4】 内筒の外壁に一体成形された複数条のフ
ィンによって熱伝導フィンを構成すると共に、外筒の一
部を螺旋状に凹陥させて前記フィン先端に当接させたこ
とを特徴とする請求項1の製氷装置。
4. A heat-conducting fin is constituted by a plurality of fins integrally formed on the outer wall of the inner cylinder, and a part of the outer cylinder is spirally recessed to abut against the fin tip. The ice making device according to claim 1.
JP26370292A 1992-10-01 1992-10-01 Ice making device Pending JPH06117740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26370292A JPH06117740A (en) 1992-10-01 1992-10-01 Ice making device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26370292A JPH06117740A (en) 1992-10-01 1992-10-01 Ice making device

Publications (1)

Publication Number Publication Date
JPH06117740A true JPH06117740A (en) 1994-04-28

Family

ID=17393144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26370292A Pending JPH06117740A (en) 1992-10-01 1992-10-01 Ice making device

Country Status (1)

Country Link
JP (1) JPH06117740A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132649A (en) * 2005-10-13 2007-05-31 Izui Tekkosho:Kk Sherbet ice making machine
JP2014074547A (en) * 2012-10-04 2014-04-24 Hoshizaki Electric Co Ltd Ice making mechanism for ice maker
KR101647984B1 (en) * 2015-07-14 2016-08-12 주경원 The ice machine
KR20170105301A (en) * 2016-03-09 2017-09-19 코웨이 주식회사 Ice maker
WO2018048242A1 (en) * 2016-09-08 2018-03-15 코웨이 주식회사 Icemaker
KR20180028361A (en) * 2016-09-08 2018-03-16 코웨이 주식회사 Ice maker
KR20190085869A (en) * 2018-01-11 2019-07-19 저지앙 빙리거 일렉트로 메커니컬 컴퍼니 리미티드 Turbulent swirl liquidity ice machine
KR102029758B1 (en) * 2018-11-19 2019-10-08 윤석규 Evaporating tube structure of auger type ice maker horizontally installed
KR102128070B1 (en) * 2020-02-27 2020-06-29 (주)제이에스이엔지 Evaporator of auger-type ice machine
CN113483505A (en) * 2021-06-09 2021-10-08 章世燕 Evaporator with a heat exchanger

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132649A (en) * 2005-10-13 2007-05-31 Izui Tekkosho:Kk Sherbet ice making machine
JP4638393B2 (en) * 2005-10-13 2011-02-23 株式会社 泉井鐵工所 Sherbet ice making machine
JP2014074547A (en) * 2012-10-04 2014-04-24 Hoshizaki Electric Co Ltd Ice making mechanism for ice maker
KR101647984B1 (en) * 2015-07-14 2016-08-12 주경원 The ice machine
KR20170105301A (en) * 2016-03-09 2017-09-19 코웨이 주식회사 Ice maker
WO2018048242A1 (en) * 2016-09-08 2018-03-15 코웨이 주식회사 Icemaker
KR20180028361A (en) * 2016-09-08 2018-03-16 코웨이 주식회사 Ice maker
KR20190085869A (en) * 2018-01-11 2019-07-19 저지앙 빙리거 일렉트로 메커니컬 컴퍼니 리미티드 Turbulent swirl liquidity ice machine
KR102029758B1 (en) * 2018-11-19 2019-10-08 윤석규 Evaporating tube structure of auger type ice maker horizontally installed
KR102128070B1 (en) * 2020-02-27 2020-06-29 (주)제이에스이엔지 Evaporator of auger-type ice machine
CN113483505A (en) * 2021-06-09 2021-10-08 章世燕 Evaporator with a heat exchanger

Similar Documents

Publication Publication Date Title
JP3742436B2 (en) Ice machine and heat exchanger
JPH06117740A (en) Ice making device
JPS60133840A (en) Apparatus for producing food such as ice cream
KR910002810Y1 (en) Evaporator for ice-maker
US4527401A (en) Apparatus and method for making ice particles and method of making said apparatus
US6343416B1 (en) Method of preparing surfaces of a heat exchanger
JPS6214541Y2 (en)
WO2024041231A1 (en) Ice-making module and ice-making apparatus
KR19980054659A (en) Chiller of ice cream maker
US1559883A (en) Air-cooled refrigerating machine
US2900798A (en) Heat-exchanger in which a multi-component medium is cooled
US2481662A (en) Water cooler
JP2007303708A (en) Refrigerator of high humidity
KR101814118B1 (en) Icecream manufacturing device
US6470701B2 (en) Ice maker and method of making ice
JP2005083629A (en) Food cooling tray and cooling storage with the same
JPS6221890Y2 (en)
JPH058426Y2 (en)
RU2305949C1 (en) Freezing cylinder for ice-cream making machine
US1718530A (en) Refrigerating apparatus
JPH0426851Y2 (en)
CN218033860U (en) Extrusion type ice maker
KR102029758B1 (en) Evaporating tube structure of auger type ice maker horizontally installed
SU983402A1 (en) Continuous-action scale-type ice generator
US11859886B2 (en) Ice making assemblies for making clear ice