JPH06116042A - Method for degreasing and calcining ceramic compact - Google Patents

Method for degreasing and calcining ceramic compact

Info

Publication number
JPH06116042A
JPH06116042A JP4267577A JP26757792A JPH06116042A JP H06116042 A JPH06116042 A JP H06116042A JP 4267577 A JP4267577 A JP 4267577A JP 26757792 A JP26757792 A JP 26757792A JP H06116042 A JPH06116042 A JP H06116042A
Authority
JP
Japan
Prior art keywords
heating furnace
air
molded body
degreasing
ceramic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4267577A
Other languages
Japanese (ja)
Other versions
JP2604094B2 (en
Inventor
Makoto Kato
誠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4267577A priority Critical patent/JP2604094B2/en
Publication of JPH06116042A publication Critical patent/JPH06116042A/en
Application granted granted Critical
Publication of JP2604094B2 publication Critical patent/JP2604094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent a ceramic compact from being cracked and to promote cooling by smoothly and surely degreasing the compact and improving the temp. distribution in a heating furnace in the cooling process. CONSTITUTION:A beta-alumina compact P of specified shape is placed in a sheath tube 8 in a heating furnace 1, air is introduced into the furnace 1 from its lower air inlet 17 by an air feeder 10, the furnace 1 is simultaneously heated, and the waste gas is discharged from an upper exhaust port 20. The compact P is degreased in this way. The furnace is further heated to calcine the compact P, and the compact is cooled by introducing air into the furnace 1 from the inlet 17. Meanwhile, the air is agitated in the furnace 1 by a wind direction control plate 16, and the temp. distribution is made uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばナトリウム−
硫黄電池の固体電解質管として用いられるベータアルミ
ナ管などのセラミック成形体の脱脂・仮焼方法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to, for example, sodium-
The present invention relates to a degreasing / calcining method for a ceramic molded body such as a beta-alumina tube used as a solid electrolyte tube of a sulfur battery.

【0002】[0002]

【従来の技術】従来、ベータアルミナ管は、まずベータ
アルミナ粉末に成形助剤として有機質バインダーなどが
配合され、成形機により所定の有底円筒状に加圧成形さ
れる。その後、ベータアルミナ成形体は加熱炉において
加熱され、脱脂及び仮焼すなわち予備焼成が行われた
後、本焼成が行われる。さらに、ベータアルミナ管の端
部が切断処理されて所望とするベータアルミナ管が得ら
れる。
2. Description of the Related Art Conventionally, in a beta-alumina tube, a beta-alumina powder is first mixed with an organic binder or the like as a molding aid, and is pressure-molded by a molding machine into a predetermined bottomed cylindrical shape. Then, the beta-alumina molded body is heated in a heating furnace, degreased and calcined, that is, pre-baked, and then main-baked. Further, the end portion of the beta alumina tube is cut to obtain the desired beta alumina tube.

【0003】上記脱脂工程においては、加熱炉内でベー
タアルミナ成形体が所定の昇温速度で約600℃まで加
熱処理される。
In the above-mentioned degreasing step, the beta-alumina compact is heat-treated in the heating furnace to a temperature of about 600 ° C. at a predetermined heating rate.

【0004】[0004]

【発明が解決しようとする課題】ところが、本発明者が
従来行っていた上記のような方法は、製品の窯内有効容
積に占める割合が30%以下であり、非効率的であっ
た。また、脱脂を目的としており、脱脂温度は600℃
以下で行われていた。そのため、脱脂後の成形体強度が
低く、取扱時に破損することがあった。
However, the above-mentioned method that the present inventor has conventionally performed was inefficient because the ratio of the product to the effective volume in the kiln was 30% or less. Also, the purpose is degreasing, the degreasing temperature is 600 ℃
It was done below. Therefore, the strength of the molded body after degreasing is low, and it may be damaged during handling.

【0005】さらに、脱脂工程においては、空気を導入
することなく行っていたため、バインダーの蒸発分や分
解ガスが加熱炉内で部分的に滞留したり、加熱炉内の温
度分布の不均一や、酸素不足によってバインダーの分
解、燃焼が不十分となり、バインダー成分の残留によ
り、本焼成後の焼結体の密度低下や寸法特性の不良が発
生していた。また、冷却過程においては、加熱炉内の上
下の温度差が100〜200℃という大きい状態で成形
体の冷却が行われる。そのため、成形体の上下方向にお
ける熱歪が生じて、成形体にクラックが発生するという
問題があった。
Further, since the degreasing process is carried out without introducing air, the evaporated components of the binder and the decomposed gas are partially retained in the heating furnace, the temperature distribution in the heating furnace is uneven, and the like. Due to lack of oxygen, the binder was not decomposed and burned sufficiently, and the binder component remained, resulting in a decrease in density of the sintered body after the main firing and defective dimensional characteristics. Further, in the cooling process, the molded body is cooled in a state where the temperature difference between the upper and lower sides in the heating furnace is as large as 100 to 200 ° C. Therefore, there has been a problem that thermal distortion occurs in the vertical direction of the molded body and cracks occur in the molded body.

【0006】この発明は上記従来の問題に着目してなさ
れたものであって、その目的は、加熱炉内容積の有効利
用による製品のコストダウン、脱脂体の破損防止、さら
には脱脂工程での成形体の脱脂を円滑かつ確実に行い、
焼結体の品質を安定させるとともに、冷却過程における
加熱炉内の温度分布を改善して、成形体にクラックが発
生するのを防止することができるセラミック成形体の脱
脂・仮焼方法を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to reduce the cost of the product by effectively utilizing the internal volume of the heating furnace, prevent damage to the degreasing body, and further in the degreasing process. Degreasing the molded body smoothly and reliably,
Provided is a degreasing / calcining method for a ceramic molded body, which can stabilize the quality of the sintered body and improve the temperature distribution in the heating furnace in the cooling process to prevent the molded body from cracking. Especially.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明では所定形状に成形したセラミック成形
体を、加熱炉内に収容し、外部から加熱炉内に空気を導
入しながら加熱炉内を加熱して前記成形体の脱脂を行っ
た後、さらに加熱して成形体の仮焼を行い、次いで外部
から加熱炉内に空気を導入しながら冷却を行うことを特
徴とする。第2の発明では、前記セラミック成形体を加
熱炉内有効容積の50%以上の容積で窯詰めすることを
特徴とする。第3の発明では前記セラミック成形体がベ
ータアルミナ成形体であることを特徴とする。
In order to achieve the above object, in the first aspect of the present invention, a ceramic molded body molded into a predetermined shape is housed in a heating furnace and air is introduced into the heating furnace from the outside. It is characterized in that after heating the inside of the heating furnace to degrease the molded body, it is further heated to calcine the molded body, and then cooling while introducing air into the heating furnace from the outside. A second aspect of the invention is characterized in that the ceramic compact is kiln-filled in a volume of 50% or more of the effective volume in the heating furnace. A third invention is characterized in that the ceramic molded body is a beta-alumina molded body.

【0008】第4の発明では、第1の発明で加熱炉内に
おいて収納容器を配置し、この収納容器内にセラミック
成形体を収容することを特徴とする。第5の発明では、
第1の発明において加熱炉内の下部に空気を導入する空
気導入口を設けるとともに、高温となる上部に排ガスを
排出する排気口を設けることを特徴とする。
A fourth aspect of the invention is characterized in that in the first aspect of the invention, a storage container is arranged in the heating furnace, and the ceramic molded body is stored in the storage container. In the fifth invention,
In the first invention, an air inlet for introducing air is provided in the lower part of the heating furnace, and an exhaust port for exhausting exhaust gas is provided in the upper part where the temperature becomes high.

【0009】第6の発明では、第5の発明で加熱炉内に
おいて空気導入口に対向するように風向調整板を傾斜状
態で配設し、この風向調整板に対し空気導入口から空気
を吹き付けて加熱炉内の空気の流動を調整することを特
徴とする。第7の発明では、第4の発明で収納容器内の
温度が、冷却過程において140℃以下に達したとき、
加熱炉の加熱及び空気の導入を停止することを特徴とす
る。
In a sixth aspect of the present invention, in the fifth aspect of the present invention, an air flow direction adjusting plate is arranged in an inclined state so as to face the air introducing port in the heating furnace, and air is blown from the air introducing port to the air direction adjusting plate. It is characterized by adjusting the flow of air in the heating furnace. In the seventh invention, when the temperature in the storage container in the fourth invention reaches 140 ° C. or lower in the cooling process,
It is characterized in that heating of the heating furnace and introduction of air are stopped.

【0010】[0010]

【作用】第1の発明においては、脱脂工程において加熱
炉内に強制的に空気を導入するように構成したことか
ら、加熱炉内の空気が攪拌されて温度分布がほぼ均一に
保持される。このため、セラミック成形体中のバインダ
ーの分解や燃焼が均一かつ容易に行われるとともに、酸
素の供給が円滑に行われる。また、冷却過程において
は、前記の攪拌効果により加熱炉内のセラミック成形体
の上下方向の温度差が少なくなり、成形体の熱歪による
クラックの発生が抑制されるとともに、加熱炉内の冷却
が促進される。
In the first aspect of the invention, since the air is forcibly introduced into the heating furnace in the degreasing step, the air in the heating furnace is agitated and the temperature distribution is maintained substantially uniform. Therefore, the decomposition and combustion of the binder in the ceramic molded body are uniformly and easily performed, and the oxygen is smoothly supplied. Further, in the cooling process, the temperature difference in the vertical direction of the ceramic molded body in the heating furnace is reduced by the stirring effect, and the generation of cracks due to thermal strain of the molded body is suppressed, and the cooling of the heating furnace is performed. Be promoted.

【0011】第2の発明では、加熱炉内有効容積の内、
製品の占める割合が50%以上であるため、脱脂、仮焼
が効率的、経済的に行われる。第3の発明ではセラミッ
ク成形体として水分等の影響を受けやすいベータアルミ
ナ成形体に上記脱脂・仮焼方法を適用すると、脱脂・仮
焼が有効かつ円滑に行われる。第4の発明では、セラミ
ック成形体が収納容器内に収納され、その状態で加熱焼
成されることから、セラミック成形体が保護された状態
で均一に加熱処理される。
In the second invention, of the effective volume in the heating furnace,
Since the product occupies 50% or more, degreasing and calcination are efficiently and economically performed. In the third invention, when the above-described degreasing / calcining method is applied to a beta-alumina molded body that is easily affected by moisture or the like as a ceramic molded body, degreasing / calcination is effectively and smoothly performed. In the fourth aspect of the invention, the ceramic molded body is housed in the container and heated and fired in that state, so that the ceramic molded body is uniformly heat-treated in a protected state.

【0012】第5の発明では、加熱炉内の下部の空気導
入口から空気が導入されるとともに、上部の排出口から
高温の排ガスが排出されるため、水分の結露やタール分
の付着が防止される。第6の発明では、前記空気導入口
から導入された空気は、それに対向するように傾斜状態
で配設された風向調整板に当たって、その流動方向が調
整され、加熱炉内での温度分布が均一化される。第7の
発明では、収納容器内の温度が、冷却過程において14
0℃以下に達したとき、加熱炉の加熱及び空気の導入が
停止され、その後収納容器から焼成されたセラミック成
形体が取り出される。このような条件下では外気温との
温度差が許容され、この成形体にはクラックの発生が防
止される。
In the fifth aspect of the invention, since air is introduced from the lower air inlet in the heating furnace and high temperature exhaust gas is discharged from the upper outlet, moisture condensation and tar deposits are prevented. To be done. In the sixth invention, the air introduced from the air introduction port hits an airflow direction adjusting plate arranged in an inclined state so as to face it, the flow direction thereof is adjusted, and the temperature distribution in the heating furnace is uniform. Be converted. In the seventh invention, the temperature inside the storage container is 14 during the cooling process.
When the temperature reaches 0 ° C. or lower, the heating of the heating furnace and the introduction of air are stopped, and then the fired ceramic compact is taken out from the storage container. Under such conditions, a temperature difference from the outside air temperature is allowed, and cracks are prevented from occurring in this molded body.

【0013】[0013]

【実施例】以下にこの発明を具体化した実施例について
図面に基づいて説明する。図1に示すように、加熱炉1
は断面が逆L字状に形成された加熱炉本体2と、底部の
台車3と、前面の開閉扉4とによって四角箱状に形成さ
れている。台車3は車輪5を有し、移動可能に形成され
ている。アルミナからなる板状の複数のセッター6及び
収納容器としての鞘管8は交互に積層されている。最下
部のセッター6は台車3上に支持脚7にて支持されると
ともに、最上部の鞘管8の上端には蓋体9が被せられて
いる。鞘管8はアルミナ製である。この鞘管8内には複
数のベータアルミナ成形体Pがセッター6上に載置され
ている。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the heating furnace 1
Is formed in a rectangular box shape by a heating furnace body 2 having an inverted L-shaped cross section, a dolly 3 at the bottom, and an opening / closing door 4 at the front. The dolly 3 has wheels 5 and is movably formed. A plurality of plate-shaped setters 6 made of alumina and a sheath tube 8 as a storage container are alternately laminated. The lowermost setter 6 is supported by the support legs 7 on the carriage 3, and the upper end of the uppermost sheath tube 8 is covered with a lid 9. The sheath tube 8 is made of alumina. A plurality of beta-alumina compacts P are placed on the setter 6 in the sheath tube 8.

【0014】このセッター6と台車3との間に一定の隙
間が形成され、この隙間は、空気を通過させ、更に加熱
炉1内温度を均一にするため20mm以上であることが望
ましく、40mm程度が最適である。また、加熱炉1内有
効容積の内、鞘管8を含む製品の占める割合を50%以
上とするため、窯詰め方法を上下2段積みとした。
A constant gap is formed between the setter 6 and the trolley 3, and this gap is preferably 20 mm or more, in order to allow the air to pass therethrough and make the temperature inside the heating furnace 1 uniform, about 40 mm. Is the best. Further, in order to make the ratio of the product including the sheath tube 8 out of the effective volume in the heating furnace 1 to be 50% or more, the kiln packing method was two-tier stacking.

【0015】空気導入装置10は加熱炉1の後方に配置
され、送風ファン11、除湿機12及びフィルター13
を備え、それぞれ連結配管14で連結されている。接続
配管15は送風ファン11と加熱炉1内とを接続し、送
風ファン11からの除塵と除湿された空気(外気)を空
気導入口17を介して加熱炉1内に導入する。
The air introduction device 10 is arranged behind the heating furnace 1, and has a blower fan 11, a dehumidifier 12 and a filter 13.
And are connected by a connecting pipe 14. The connection pipe 15 connects the blower fan 11 and the inside of the heating furnace 1, and introduces dust and dehumidified air (outside air) from the blower fan 11 into the heating furnace 1 through the air introduction port 17.

【0016】風向調整板16は上記空気導入口17に対
向するように、鞘管8の外側下部に下部ほど空気導入口
17に近接するように斜状に設けられている。図2に示
すように、この風向調整板16は下部中央に切欠部18
を有している。そして、空気導入口17から導入される
空気は風向調整板16に当たってその大部分が上方へ流
れるとともに、風向調整板16の切欠部18からセッタ
ー6の下に一部が導入される。
The wind direction adjusting plate 16 is obliquely provided on the outer lower part of the sheath pipe 8 so as to face the air introducing port 17 and the lower part thereof is closer to the air introducing port 17. As shown in FIG. 2, the wind direction adjusting plate 16 has a notch 18 at the center of the lower part.
have. The air introduced from the air introduction port 17 hits the airflow direction adjusting plate 16 and most of the air flows upward, and a part of the air is introduced under the setter 6 from the cutout portion 18 of the airflow direction adjusting plate 16.

【0017】排気口20は加熱炉1の上部3箇所に設け
られ、これら排気口20に排気ダクト19が接続されて
排気口20から加熱炉1内の空気が排気ダクト19を経
て排気される。ダンパ21は各排気ダクト19に取付け
られ、加熱炉1内の空気の排気を許容又は遮断する。な
お、加熱炉1内には温度測定用熱電対22が配置され、
加熱炉1内の温度を測定する。
Exhaust ports 20 are provided at three upper portions of the heating furnace 1, and exhaust ducts 19 are connected to the exhaust ports 20 so that the air in the heating furnace 1 is exhausted from the exhaust port 20 through the exhaust duct 19. The damper 21 is attached to each exhaust duct 19 to allow or block the exhaust of air in the heating furnace 1. In addition, a thermocouple 22 for temperature measurement is arranged in the heating furnace 1,
The temperature in the heating furnace 1 is measured.

【0018】次に、この実施例の作用について説明す
る。さて、常法に従って有底円筒状に成形された多数の
ベータアルミナ成形体Pは鞘管8内に上下2段に収納配
置された状態で、この鞘管8が台車3上に複数個載置さ
れる。そして、開閉扉4が閉じられる。
Next, the operation of this embodiment will be described. By the way, a large number of beta-alumina molded bodies P molded in a bottomed cylindrical shape according to a conventional method are placed in the sheath tube 8 in two upper and lower stages, and a plurality of the sheath tubes 8 are placed on the carriage 3. To be done. Then, the opening / closing door 4 is closed.

【0019】この状態で、ベータアルミナ成形体Pの脱
脂を行う脱脂工程に移る。脱脂工程においては、ベータ
アルミナ成形体P中のバインダーを分解・燃焼して除去
することにより、焼成時における成形体の変形を防止す
る。すなわち、図示しない電気加熱装置により加熱炉1
内が加熱昇温され、200〜600℃の範囲で脱脂が行
われる。このとき、鞘管8内のベータアルミナ成形体P
は内部のバインダーが加熱によって分解・燃焼してガス
を発生するが、このガスは鞘管8とセッター6や蓋体9
との隙間から加熱炉1内に流出し、脱脂が促進される。
In this state, a degreasing process for degreasing the beta alumina molded body P is performed. In the degreasing step, the binder in the beta-alumina compact P is decomposed and burned to be removed to prevent the compact from being deformed during firing. That is, the heating furnace 1 is heated by an electric heating device (not shown).
The inside is heated and heated, and degreasing is performed in the range of 200 to 600 ° C. At this time, the beta-alumina molded body P in the sheath tube 8
The internal binder decomposes and burns by heating to generate gas, which is generated by the sheath pipe 8, the setter 6, and the lid 9.
It flows out into the heating furnace 1 through the gap between and, and degreasing is promoted.

【0020】この間、空気導入装置10を駆動させ、空
気導入口17から空気を加熱炉1内に導入して、加熱炉
1内の温度分布をほぼ均一にする。この脱脂時における
空気の導入量は1〜3m3/Hr であることが望ましい。す
なわち、1時間当たりの空気導入量は加熱炉1の容積の
0.5 〜3 倍の範囲が好適であり、1〜2倍の範囲が最適
である。ちなみに、この実施例では加熱炉1の大きさが
縦1150mm、横600mm 、高さ900mm で、その容積が0.6 m3
である。
During this period, the air introducing device 10 is driven to introduce air into the heating furnace 1 through the air introducing port 17 to make the temperature distribution in the heating furnace 1 substantially uniform. The amount of air introduced during degreasing is preferably 1 to 3 m 3 / Hr. That is, the amount of air introduced per hour depends on the volume of the heating furnace 1.
The range of 0.5 to 3 times is suitable, and the range of 1 to 2 times is optimal. By the way, in this embodiment, the heating furnace 1 has a size of 1150 mm in length, 600 mm in width and 900 mm in height, and its volume is 0.6 m 3.
Is.

【0021】このように加熱炉1内に導入された空気
は、鞘管8の隙間から鞘管8内に流入し、バインダーの
酸化が促進される。そして、ベータアルミナ成形体P中
に残留カーボンが生成することが防止され、完全な脱脂
が行われる。なお、加熱炉1内への空気の導入は、加熱
炉1内の温度分布を均一にするために、脱脂工程の前す
なわち加熱炉1内の温度が200℃に昇温するまでに行
ってもよい。
The air thus introduced into the heating furnace 1 flows into the sheath tube 8 through the gap between the sheath tubes 8 and accelerates the oxidation of the binder. Then, generation of residual carbon in the beta-alumina molded body P is prevented, and complete degreasing is performed. The air may be introduced into the heating furnace 1 even before the degreasing step, that is, before the temperature inside the heating furnace 1 rises to 200 ° C. in order to make the temperature distribution inside the heating furnace 1 uniform. Good.

【0022】加熱炉1内に導入された空気は加熱されて
高温となり、バインダーの分解ガスや燃焼ガスとともに
排ガスとして排気口20及び排気ダクト19から排出さ
れる。この排気口20及び排気ダクト19は加熱炉1の
上部に設けられ、この部分は高温状態にあることから、
排気口20や排気ダクト19内に蒸発した水分が結露し
たり、バインダー中のタール分が付着したりすることが
防止される。従って、ベータアルミナ成形体Pの吸湿を
低下させることができるとともに、排気ダクト19に設
けられたダンパ21の開閉に支障を来すおそれはない。
なお、導入される空気はフィルター13で塵が除去され
るとともに、除湿機12で湿度20%以下に除湿され、
成形体Pの劣化を防止する。
The air introduced into the heating furnace 1 is heated to a high temperature, and is discharged from the exhaust port 20 and the exhaust duct 19 as exhaust gas together with the decomposition gas of the binder and the combustion gas. The exhaust port 20 and the exhaust duct 19 are provided in the upper part of the heating furnace 1, and since this part is in a high temperature state,
It is possible to prevent the evaporated moisture from being condensed in the exhaust port 20 and the exhaust duct 19, and the tar component in the binder from being attached. Therefore, the moisture absorption of the beta-alumina molded body P can be reduced, and there is no possibility that the opening and closing of the damper 21 provided in the exhaust duct 19 will be hindered.
In addition, the introduced air is dehumidified by the filter 13 and dehumidified by the dehumidifier 12 to a humidity of 20% or less,
The deterioration of the molded body P is prevented.

【0023】前記空気導入口17から加熱炉1内へ導入
された空気は、風向調整板16に当たるが、この風向調
整板16は傾斜配置されているため、ほとんど上方へ誘
導され、加熱炉1内の空気の流れに対流を発生させる。
従って、加熱炉1内の空気は攪拌状態となって、バイン
ダーの分解ガスや燃焼ガスが加熱炉内において部分的に
滞留することがなくなる。その上、温度分布の均一化が
図られ、加熱炉1内の上下位置における温度差が少なく
なる。加熱炉1内の温度分布は±10℃以内であるのが
よい。加えて、加熱炉1内全体にわたって酸素が供給さ
れ、各鞘管8内のベータアルミナ成形体P中の残留カー
ボンの生成が防止される。
The air introduced into the heating furnace 1 through the air inlet 17 hits the airflow direction adjusting plate 16, but since the airflow direction adjusting plate 16 is inclined, it is guided almost upwards and the inside of the heating furnace 1 is guided. Generate convection in the air flow.
Therefore, the air in the heating furnace 1 is agitated, and the decomposed gas of the binder and the combustion gas are not partially retained in the heating furnace. Moreover, the temperature distribution is made uniform, and the temperature difference between the upper and lower positions in the heating furnace 1 is reduced. The temperature distribution in the heating furnace 1 is preferably within ± 10 ° C. In addition, oxygen is supplied throughout the heating furnace 1 to prevent generation of residual carbon in the beta-alumina molded body P in each sheath tube 8.

【0024】また、加熱炉1内へ導入された空気の一部
は風向調整板16の切欠部18から台車3と下部のセッ
ター6との間の40mm程度の隙間に導入されるため、こ
の部分においても温度分布の均一化が図られる。従っ
て、支持脚7や鞘管8のスポーリング、すなわち温度変
化による膨張差に基づくクラックの発生を防止できる。
Further, a part of the air introduced into the heating furnace 1 is introduced into the gap of about 40 mm between the carriage 3 and the lower setter 6 from the cutout portion 18 of the wind direction adjusting plate 16, so that this portion. In this case, the temperature distribution can be made uniform. Therefore, it is possible to prevent spalling of the support legs 7 and the sheath tube 8, that is, generation of cracks due to the difference in expansion due to temperature change.

【0025】次に、仮焼工程に移る。この仮焼工程は、
前記脱脂を行ったベータアルミナ成形体Pの機械加工や
取扱いに必要な強度を発現させるために、600〜10
00℃に加熱することにより行われる。この工程におい
ても、加熱炉1内の温度分布を均一化するために、前記
と同様に加熱炉1内に空気を導入することが好ましい。
Next, the calcination process is performed. This calcination process
In order to develop the strength required for machining and handling of the degreased beta-alumina molded body P, 600 to 10
It is carried out by heating to 00 ° C. Also in this step, in order to make the temperature distribution in the heating furnace 1 uniform, it is preferable to introduce air into the heating furnace 1 as described above.

【0026】次に、冷却過程はベータアルミナ成形体P
の冷却時における加熱炉内の温度分布を均一にして成形
体Pの割れを防止するとともに、冷却を迅速に行うこと
により製品の生産性を向上させる。すなわち、前記空気
導入装置10を駆動させ、空気導入口17から加熱炉1
内へ冷却空気を導入する。この冷却空気の導入量は、冷
却速度を所定範囲に維持するために、脱脂工程より相当
多い15〜20m3/Hrの範囲が好適である。この過程で
も導入される冷却空気はフィルタ13で塵が除去され、
除湿機12で湿度20%以下に除湿され、成形体Pの劣
化を防止する。
Next, in the cooling process, a beta alumina compact P
The temperature distribution in the heating furnace during cooling is made uniform to prevent cracking of the molded body P, and rapid cooling improves product productivity. That is, the air introduction device 10 is driven to drive the heating furnace 1 from the air introduction port 17.
Introduce cooling air into it. The amount of this cooling air introduced is preferably in the range of 15 to 20 m 3 / Hr, which is considerably higher than in the degreasing step, in order to maintain the cooling rate within a predetermined range. Dust is removed from the cooling air introduced in this process by the filter 13,
The dehumidifier 12 dehumidifies the humidity to 20% or less to prevent the molded body P from deteriorating.

【0027】その後、鞘管8内の温度が序々に低下して
140℃に到達した場合に相当する加熱炉1内の温度、
例えばその温度が120℃まで低下したら、電気炉の加
熱を停止すると同時に、空気の導入も停止する。そし
て、開閉扉4を少し開いてその状態を数分間保持した
後、成形体Pを加熱炉1から徐々に引き出す。このよう
な条件下では、その後直ちにベータアルミナ成形体Pを
加熱炉1内から取り出しても成形体Pは割れるおそれが
ない。従って、冷却時間を短縮でき、生産性が向上す
る。
Thereafter, the temperature in the heating furnace 1 corresponding to the case where the temperature in the sheath tube 8 gradually decreases and reaches 140 ° C.,
For example, when the temperature drops to 120 ° C., the heating of the electric furnace is stopped and the introduction of air is stopped at the same time. Then, after opening and closing the door 4 a little and holding the state for several minutes, the molded body P is gradually pulled out from the heating furnace 1. Under such conditions, even if the beta-alumina molded body P is taken out of the heating furnace 1 immediately thereafter, the molded body P is not likely to crack. Therefore, the cooling time can be shortened and the productivity is improved.

【0028】なお、鞘管8内の温度が140℃を越える
状態で成形体Pを取り出すと、成形体Pの外面が室温に
晒されて、成形体Pの内側と外側との温度差が100℃
以上となるとともに、成形体Pの形状は底部が厚肉で、
側壁が薄肉であるため、成形体P内に歪みが生じて割れ
が発生しやすい。
When the molded body P is taken out in a state where the temperature inside the sheath tube 8 exceeds 140 ° C., the outer surface of the molded body P is exposed to room temperature, and the temperature difference between the inside and outside of the molded body P is 100. ℃
In addition to the above, the shape of the molded body P has a thick bottom portion,
Since the side wall is thin, the molded body P is likely to be distorted and cracked.

【0029】そして、5〜10分放置後鞘管8内の温度
が50〜80℃となったら、鞘管8の蓋体9を外して、
ベータアルミナ管成形体Pを取り出し、素早くビニール
袋に入れて密封する。このようにして、仮焼を終えた所
望のベータアルミナ管が得られる。上記鞘管8内の温度
が50℃未満ではベータアルミナ成形体Pが吸湿しやす
く、80℃を越えると作業者が取り扱う上で困難とな
る。
When the temperature inside the sheath tube 8 reaches 50 to 80 ° C. after standing for 5 to 10 minutes, the lid 9 of the sheath tube 8 is removed,
The beta-alumina tube molded body P is taken out, quickly put in a vinyl bag and sealed. In this way, the desired beta-alumina tube after calcination is obtained. If the temperature in the sheath tube 8 is less than 50 ° C., the beta-alumina molded body P tends to absorb moisture, and if it exceeds 80 ° C., it becomes difficult for an operator to handle.

【0030】上述のように、この実施例では加熱炉1内
容積の有効利用を図ったことから、脱脂、仮焼を効率
的、経済的に行うことができるとともに、製品のコスト
ダウンを図ることができる。また、脱脂工程における加
熱炉1内の温度分布を大幅に改善できることから、ベー
タアルミナ成形体Pの脱脂を円滑に、しかも確実に行う
ことができる。加えて、冷却過程においても加熱炉1内
に空気を導入して温度分布を改良できることから、成形
体Pにクラックが発生するのを確実に防止できる上に、
冷却処理を迅速に行うことができる。
As described above, since the internal volume of the heating furnace 1 is effectively utilized in this embodiment, degreasing and calcination can be performed efficiently and economically, and the cost of the product can be reduced. You can Further, since the temperature distribution in the heating furnace 1 in the degreasing step can be significantly improved, the beta alumina molded body P can be degreased smoothly and reliably. In addition, since it is possible to improve the temperature distribution by introducing air into the heating furnace 1 even in the cooling process, it is possible to reliably prevent the molded body P from being cracked, and
The cooling process can be performed quickly.

【0031】なお、この発明は上記実施例に限定される
ものではなく、発明の趣旨を逸脱しない範囲で例えば次
のように構成を任意に変更して具体化してもよい。 (a)加熱炉1内へ強制的に空気を導入する空気導入口
17を加熱炉1の上部に設けるとともに、排気ダクト1
9を加熱炉1の下部に設け、冷却過程において空気導入
装置10を駆動させること。この場合、高温部から冷却
空気を導入し、低温部から排気ガスを排気することか
ら、冷却効率が向上する。また、加熱炉1内の温度分布
も均一化する。 (b)前記実施例では加熱炉1を単独の容器としたが、
脱脂、仮焼、冷却の各工程を連続的に操作できるトンネ
ル窯状の容器とすること。 (c)空気導入装置10の空気導入口17を加熱炉1に
複数箇所設け、その複数箇所から加熱炉1内に空気を導
入すること。この場合、空気導入装置10は各空気導入
口17に対応して設けてもよい。 (d)加熱炉1内に空気の流動を調整するための例えば
攪拌用のファンを上部に設けること。 (e)セラミック成形体として、ベータアルミナ以外の
例えばα−アルミナなどの成形体を用いること。 (f)電気炉を用いた加熱炉に代えて、ラジアントバー
ナによる間接加熱炉を用いること。 (g)脱脂過程において、導入する空気の代わりに、酸
素を少なくとも含む気体を用いること。 (h)脱脂過程において、加熱された空気を導入するこ
と。 (i)冷却過程において、空気以外の冷却気体を導入す
ること。
The present invention is not limited to the above-described embodiments, but may be embodied by arbitrarily changing the configuration as follows, for example, within the scope not departing from the gist of the invention. (A) An air inlet 17 for forcibly introducing air into the heating furnace 1 is provided in the upper part of the heating furnace 1, and the exhaust duct 1
9 is provided in the lower part of the heating furnace 1, and the air introducing device 10 is driven in the cooling process. In this case, since cooling air is introduced from the high temperature part and exhaust gas is exhausted from the low temperature part, cooling efficiency is improved. Moreover, the temperature distribution in the heating furnace 1 is also made uniform. (B) Although the heating furnace 1 is a single container in the above embodiment,
Use a tunnel kiln-like container that allows continuous operation of degreasing, calcination, and cooling. (C) The air introducing ports 17 of the air introducing device 10 are provided in the heating furnace 1 at a plurality of locations, and air is introduced into the heating furnace 1 from the plurality of locations. In this case, the air introducing device 10 may be provided corresponding to each air introducing port 17. (D) A fan for stirring, for example, for adjusting the flow of air in the heating furnace 1 is provided at the top. (E) As the ceramic molded body, use a molded body other than beta-alumina, for example, α-alumina. (F) Use an indirect heating furnace with a radiant burner instead of the heating furnace using an electric furnace. (G) In the degreasing process, a gas containing at least oxygen is used instead of the air to be introduced. (H) To introduce heated air in the degreasing process. (I) Introducing a cooling gas other than air in the cooling process.

【0032】[0032]

【発明の効果】この発明は以上詳述したように構成され
ていることから、以下のような優れた効果を奏する。
Since the present invention is configured as described above in detail, it has the following excellent effects.

【0033】第1の発明によれば、脱脂工程及び仮焼工
程の冷却過程において加熱炉内に強制的に空気を導入す
るように構成したことから、脱脂工程での加熱炉内の温
度分布を改善して、セラミック成形体の脱脂を円滑かつ
確実に行うことができる。また、冷却過程においても加
熱炉内に空気を導入することにより、成形体にクラック
が発生するのを効果的に防止できる上に、冷却を促進す
ることができる。
According to the first aspect of the invention, since the air is forcibly introduced into the heating furnace in the cooling process of the degreasing process and the calcination process, the temperature distribution in the heating furnace in the degreasing process is changed. As a result, the ceramic molded body can be degreased smoothly and reliably. In addition, by introducing air into the heating furnace even in the cooling process, it is possible to effectively prevent the generation of cracks in the molded body and accelerate cooling.

【0034】第2の発明によれば、加熱炉内有効容積の
内、製品の占める割合が50%以上であり、効率的かつ
経済的に脱脂、仮焼が行われる。第3の発明によれば、
ベータアルミナ成形体の脱脂・仮焼工程において吸湿が
防止された状態で円滑かつ確実に行われる。第4の発明
によれば、ベータアルミナ成形体が収納容器により保護
されるとともに、成形体の全体が均一に焼成処理され
る。
According to the second aspect of the invention, the product occupies 50% or more of the effective volume in the heating furnace, and the degreasing and calcination are efficiently and economically performed. According to the third invention,
Smooth and reliable operation is performed in the degreasing and calcination process of the beta-alumina molded body while preventing moisture absorption. According to the fourth invention, the beta-alumina molded body is protected by the storage container, and the entire molded body is uniformly baked.

【0035】第5の発明によれば、空気が加熱炉の下部
の空気導入口から導入されるとともに、高温の排ガスが
上部の排出口から排出されるため結露、タール分の付着
が防止される。第6の発明では、傾斜状態に配設された
風向調整板により、空気の流動方向が適正に調整され、
温度分布の均一化が効果的に行われる。第7の発明によ
れば、収納容器内の温度が、冷却過程において140℃
以下に達したとき、加熱炉の加熱及び空気の導入が停止
されるため、仮焼されたセラミック成形体にクラックが
入るのが有効に防止されるとともに、迅速な冷却処理が
行われる。
According to the fifth aspect of the invention, air is introduced through the air inlet at the bottom of the heating furnace, and high-temperature exhaust gas is discharged through the outlet at the top, so that condensation and tar deposits are prevented. . In the sixth invention, the flow direction of the air is properly adjusted by the wind direction adjusting plate arranged in an inclined state,
The temperature distribution is effectively made uniform. According to the seventh invention, the temperature inside the storage container is 140 ° C. during the cooling process.
When the temperature reaches the following, the heating of the heating furnace and the introduction of air are stopped, so that cracks can be effectively prevented from entering the calcined ceramic molded body, and a rapid cooling process is performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を具体化した実施例の脱脂・仮焼のた
めの装置を示す断面図である。
FIG. 1 is a cross-sectional view showing an apparatus for degreasing / calcining according to an embodiment of the present invention.

【図2】風向調節板を示す正面図である。FIG. 2 is a front view showing a wind direction adjusting plate.

【符号の説明】[Explanation of symbols]

1…加熱炉、8…収納容器としての鞘管、16…風向調
整板、17…空気導入口、P…セラミック成形体として
のベータアルミナ成形体。
DESCRIPTION OF SYMBOLS 1 ... Heating furnace, 8 ... Sheath pipe as a storage container, 16 ... Wind direction adjusting plate, 17 ... Air inlet, P ... Beta-alumina molded body as a ceramic molded body.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 所定形状に成形したセラミック成形体
を、加熱炉内に収容し、外部から加熱炉内に空気を導入
しながら加熱炉内を加熱して前記成形体の脱脂を行った
後、さらに加熱して成形体の仮焼を行い、次いで外部か
ら加熱炉内に空気を導入しながら冷却を行うことを特徴
とするセラミック成形体の脱脂・仮焼方法。
1. A ceramic molded body molded into a predetermined shape is housed in a heating furnace, and after heating the inside of the heating furnace while introducing air into the heating furnace from the outside to degrease the molded body, A method for degreasing and calcining a ceramic molded body, further comprising heating to calcinate the molded body, and then cooling while introducing air into the heating furnace from the outside.
【請求項2】 前記セラミック成形体を加熱炉内有効容
積の50%以上の容積で窯詰めすることを特徴とする請
求項1に記載のセラミック成形体の脱脂・仮焼方法。
2. The degreasing / calcining method for a ceramic molded body according to claim 1, wherein the ceramic molded body is kiln-filled in a volume of 50% or more of the effective volume in the heating furnace.
【請求項3】 前記セラミック成形体がベータアルミナ
成形体であることを特徴とする請求項1に記載のセラミ
ック成形体の脱脂・仮焼方法。
3. The degreasing / calcining method for a ceramic molded body according to claim 1, wherein the ceramic molded body is a beta-alumina molded body.
【請求項4】 前記加熱炉内において収納容器を配置
し、この収納容器内にセラミック成形体を収容すること
を特徴とする請求項1に記載のセラミック成形体の脱脂
・仮焼方法。
4. The degreasing / calcining method for a ceramic molded body according to claim 1, wherein a storage container is arranged in the heating furnace, and the ceramic molded body is stored in the storage container.
【請求項5】 前記加熱炉内の下部に空気を導入する空
気導入口を設けるとともに、高温となる上部に排ガスを
排出する排気口を設けることを特徴とする請求項1に記
載のセラミック成形体の脱脂・仮焼方法。
5. The ceramic molded body according to claim 1, wherein an air inlet for introducing air is provided in a lower part of the heating furnace, and an exhaust port for discharging exhaust gas is provided in an upper part of the heating furnace. Degreasing and calcination method.
【請求項6】 前記加熱炉内において空気導入口に対向
するように風向調整板を傾斜状態で配設し、この風向調
整板に対し空気導入口から空気を吹き付けて加熱炉内の
空気の流動を調整することを特徴とする請求項5に記載
のセラミック成形体の脱脂・仮焼方法。
6. An air flow adjusting plate is arranged in an inclined state in the heating furnace so as to face the air introducing port, and air is blown from the air introducing port to the air flowing direction adjusting plate to flow the air in the heating furnace. The method for degreasing / calcining a ceramic molded body according to claim 5, wherein
【請求項7】 前記収納容器内の温度が、冷却過程にお
いて140℃以下に達したとき、加熱炉の加熱及び空気
の導入を停止することを特徴とする請求項4に記載のセ
ラミック成形体の脱脂・仮焼方法。
7. The ceramic molded body according to claim 4, wherein when the temperature in the storage container reaches 140 ° C. or lower in the cooling process, heating of the heating furnace and introduction of air are stopped. Degreasing and calcination method.
JP4267577A 1992-10-06 1992-10-06 Degreasing and calcination method for ceramic molded body Expired - Lifetime JP2604094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267577A JP2604094B2 (en) 1992-10-06 1992-10-06 Degreasing and calcination method for ceramic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267577A JP2604094B2 (en) 1992-10-06 1992-10-06 Degreasing and calcination method for ceramic molded body

Publications (2)

Publication Number Publication Date
JPH06116042A true JPH06116042A (en) 1994-04-26
JP2604094B2 JP2604094B2 (en) 1997-04-23

Family

ID=17446716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267577A Expired - Lifetime JP2604094B2 (en) 1992-10-06 1992-10-06 Degreasing and calcination method for ceramic molded body

Country Status (1)

Country Link
JP (1) JP2604094B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894817A (en) * 1987-03-16 1990-01-16 Olympus Optical Co., Ltd. Method of writing data on optical card by projecting thereon intensity modulated light beam
CN113999022A (en) * 2021-12-15 2022-02-01 冠立科技扬州有限公司 Ceramic powder gel post-discharging device and discharging method thereof
CN114985731A (en) * 2022-06-14 2022-09-02 福建省智胜矿业有限公司 Carbonization-polluted alumina burning board burning-back purification equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374970A (en) * 1986-09-17 1988-04-05 株式会社豊田中央研究所 Method of dewaxing ceramic formed body
JPH02153004A (en) * 1988-12-02 1990-06-12 Komatsu Ltd Apparatus for degreasing powder forming body
JPH0380158A (en) * 1989-08-23 1991-04-04 Yazaki Corp Manufacture of ceramic compacted product
JPH04157103A (en) * 1990-10-18 1992-05-29 Kawasaki Steel Corp Degreasing method
JPH04127236U (en) * 1991-05-07 1992-11-19 セイコー電子工業株式会社 Degreasing furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374970A (en) * 1986-09-17 1988-04-05 株式会社豊田中央研究所 Method of dewaxing ceramic formed body
JPH02153004A (en) * 1988-12-02 1990-06-12 Komatsu Ltd Apparatus for degreasing powder forming body
JPH0380158A (en) * 1989-08-23 1991-04-04 Yazaki Corp Manufacture of ceramic compacted product
JPH04157103A (en) * 1990-10-18 1992-05-29 Kawasaki Steel Corp Degreasing method
JPH04127236U (en) * 1991-05-07 1992-11-19 セイコー電子工業株式会社 Degreasing furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894817A (en) * 1987-03-16 1990-01-16 Olympus Optical Co., Ltd. Method of writing data on optical card by projecting thereon intensity modulated light beam
CN113999022A (en) * 2021-12-15 2022-02-01 冠立科技扬州有限公司 Ceramic powder gel post-discharging device and discharging method thereof
CN114985731A (en) * 2022-06-14 2022-09-02 福建省智胜矿业有限公司 Carbonization-polluted alumina burning board burning-back purification equipment
CN114985731B (en) * 2022-06-14 2024-03-01 福建省智胜矿业有限公司 Backfire purifying equipment for carbonized and polluted alumina burning bearing plate

Also Published As

Publication number Publication date
JP2604094B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
JP4869295B2 (en) Method for firing ceramic honeycomb body
US20150028527A1 (en) Fast firing method for high porosity ceramics
JP4465648B2 (en) Method for producing porous ceramic honeycomb structure
US20120322016A1 (en) Roller hearth calcining furnace and method of use
US4552530A (en) Ring section baking furnace and procedure for operating same
JPH06116042A (en) Method for degreasing and calcining ceramic compact
US3838526A (en) Method of drying battery plates
JP3340044B2 (en) Heating equipment
JP4782537B2 (en) Carbon material firing furnace and carbon material firing method
US3813214A (en) Drying oven for lead battery plates
CN210602845U (en) Collecting and processing device for kiln flue gas
CN112629252A (en) Kiln
JP2005069668A (en) Baking container for silicon nitride-based ceramic
JPS5838717B2 (en) sagger
JP2828517B2 (en) Ceramic firing container
JP2598590B2 (en) Drying method for molded ceramic products
JPH11211363A (en) Sheath supporting structure used for continuous heat treatment furnace, and continuous heat treatment method
JPH0526580A (en) Continuous baking furnace
RU2037115C1 (en) Drying shaft furnace
RU2051323C1 (en) High-temperature vacuum furnace
SU610827A1 (en) Method of roasting carbon-ceramic billets
FR2453377A1 (en) Electric furnace for baking stacked ceramic workpieces - has vertical resistance heaters located between stacks to ensure uniform, rapid baking
JPH0674951B2 (en) Ceramic firing equipment
JPH0141118Y2 (en)
JP2004060991A (en) Muffle for kiln and its use