JPH06114275A - Production of ion exchange functional material - Google Patents

Production of ion exchange functional material

Info

Publication number
JPH06114275A
JPH06114275A JP26588592A JP26588592A JPH06114275A JP H06114275 A JPH06114275 A JP H06114275A JP 26588592 A JP26588592 A JP 26588592A JP 26588592 A JP26588592 A JP 26588592A JP H06114275 A JPH06114275 A JP H06114275A
Authority
JP
Japan
Prior art keywords
zeolite
ion exchange
raw material
functional material
diatomaceous earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26588592A
Other languages
Japanese (ja)
Inventor
Chuichi Tashiro
忠一 田代
Toshiyuki Ezaki
敏之 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTAI KK
Original Assignee
NITSUTAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTAI KK filed Critical NITSUTAI KK
Priority to JP26588592A priority Critical patent/JPH06114275A/en
Publication of JPH06114275A publication Critical patent/JPH06114275A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To produce a high-performance ion exchange functional material having any shape by a simple method by forming the raw material essentially comprising diatomaceous earth, molding and calcining the molded body, and effecting hydrothermal synthesis to change at least the surface of the calcined body into zeolite. CONSTITUTION:The ion exchange functional material is produced by the following method. First, the raw material essentially comprising diatomaceous earth is molded into a desired shape. The amt. of diatomaceous earth in the raw material is not specified, but about 50wt.% or larger is preferable to sufficiently effect hydrothermal reaction to make zeolite and to increase the ion exchange amt. The molding method is not limited and any well-known method such as extrusion molding, press forming, rotary granulation or the like can be used. Then by firing the molded body, the fired body has high strength while maintaining its shape. Then by hydrothermal reaction, at least the surface of the fired body is changed into zeolite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン交換機能材の製
造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ion exchange functional material.

【0002】[0002]

【従来の技術及びその課題】従来使用されているイオン
交換機能を有する材料としては、天然ゼオライト等の天
然材料及び合成により製造されるイオン交換樹脂や合成
ゼオライト等がある。
2. Description of the Related Art Conventionally used materials having an ion exchange function include natural materials such as natural zeolite and synthetically produced ion exchange resins and synthetic zeolites.

【0003】これらの材料のうちで、天然材料は形状品
質などに制限があり、使用範囲が限定されるという問題
点がある。また、合成材料は、通常は、合成時に粉状と
なることが多く、取扱いの容易な粒状物や成形体とする
ためには、再固結させることが必要となり、処理手続き
が煩雑である。特に合成ゼオライトでは、合成物がゲル
状となるために、粒状物や成形体を得るためにはゲル状
を粉状物とする工程が更に必要となり、技術的に難し
く、また経済的にも不利である。
Among these materials, natural materials have a problem in that they are limited in shape quality and the range of use is limited. Further, the synthetic material is usually powdery at the time of synthesis, and it is necessary to re-solidify it in order to form a granular material or a molded body that is easy to handle, and the processing procedure is complicated. Particularly in the case of synthetic zeolite, since the synthetic product becomes a gel, it is technically difficult and economically disadvantageous that a step of converting the gel into a powder is required to obtain a granular product or a molded product. Is.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記したご
とき問題点を解消すべく、鋭意研究を重ねてきた。その
結果、珪藻土を主成分とする原料を焼成して所定の形状
とした後、これを水熱合成反応によりゼオライト化する
場合には、任意の形状の多孔質のイオン交換機能を有す
る材料を非常に簡単な工程で得ることができ、しかも得
られたイオン交換機能材は、イオン交換機能を有すると
ともに、多孔質成形体としての特性も兼ね備えたものと
なることを見出し、ここに本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted extensive studies in order to solve the above problems. As a result, when a raw material containing diatomaceous earth as a main component is fired to a predetermined shape and then converted into a zeolite by a hydrothermal synthesis reaction, a material having a porous ion exchange function of an arbitrary shape is used. It was found that the ion-exchange functional material obtained by a simple process can have an ion-exchange function and also has properties as a porous molded body, and the present invention has been completed here. Came to do.

【0005】即ち、本発明は、珪藻土を主成分とする原
料を成形、焼成した後、水熱合成反応により、焼成体の
少なくとも表面部分をゼオライト化することを特徴とす
るイオン交換機能材の製造法に係る。
That is, according to the present invention, after manufacturing and firing a raw material containing diatomaceous earth as a main component, at least the surface portion of the fired body is made into zeolite by a hydrothermal synthesis reaction. Pertaining to the law.

【0006】本発明の製造法では、まず、珪藻土を主成
分とする原料を所定の形状に成形する。原料中の珪藻土
の量は、特に限定的ではないが、50重量%程度以上と
することによって、水熱合成反応によるゼオライト化が
十分に進行して、イオン交換容量を高めることができ
る。原料中の珪藻土以外の成分としては、必要に応じ
て、ベントナイト、シャモット、粘土等を添加でき、ま
たその他、公知のバインダー成分も添加できる。
In the manufacturing method of the present invention, first, a raw material containing diatomaceous earth as a main component is formed into a predetermined shape. The amount of diatomaceous earth in the raw material is not particularly limited, but by setting it to about 50% by weight or more, the zeoliticization by the hydrothermal synthesis reaction is sufficiently advanced, and the ion exchange capacity can be increased. As components other than diatomaceous earth in the raw material, bentonite, chamotte, clay and the like can be added, if necessary, and known binder components can also be added.

【0007】成形方法は、特に限定はなく、押し出し成
形、プレス成形、転動造粒等の公知の方法を採用でき
る。形状は、用途に応じて任意に決めればよく、例え
ば、造粒物、柱状物、塊状物、管状物、ハニカム状物等
とすることができる。
The molding method is not particularly limited, and known methods such as extrusion molding, press molding and rolling granulation can be adopted. The shape may be arbitrarily determined according to the application, and may be, for example, a granulated material, a columnar material, a lump, a tubular material, a honeycomb-shaped material, or the like.

【0008】次いで、成形体を焼成して焼成体とする。
焼成条件は、特に限定的ではないが、通常、空気中で7
00〜1200℃程度の温度で5分〜2時間程度加熱す
ればよい。焼成によって、成形体は、その形状を保持し
て高強度の焼成体となる。
Next, the molded body is fired to obtain a fired body.
The firing conditions are not particularly limited, but usually 7 in air.
The heating may be performed at a temperature of about 00 to 1200 ° C. for about 5 minutes to 2 hours. By firing, the molded body retains its shape and becomes a high-strength fired body.

【0009】次いで、水熱合成反応によって、焼成体を
ゼオライト化することにより、イオン交換機能材が得ら
れる。ゼオライト化の方法としては、焼成体中のSiO
2 成分をゼオライト化反応の原料の一種として利用し、
通常の水熱合成反応と同様にすればよい。具体的には、
例えば、カセイソーダ、アルミン酸ソーダ、珪酸ソーダ
などを含有する水溶液中に、該焼成体を浸漬し、常法に
従って水熱合成反応を行なえばよい。水溶液中の添加剤
成分の種類及び量は、焼成体の原料の組成、目的とする
ゼオライトの組成等に応じて決めればよい。通常は、ア
ルミン酸ソーダを含有する水溶液を用いればよいが、焼
成体中にアルミナ分が多く含まれる場合には、アルミン
酸ソーダを使用することなく、カセイソーダのみを含む
水溶液を用いて、ゼオライト化することも可能である。
また、Na2 Oの比率の高いゼオライトやSiO2 の比
率の高いゼオライトを得る場合には、その割合に応じ
て、水溶液中にカセイソーダ、珪酸ソーダなどを適宜配
合することができる。水溶液中の各成分の濃度は、特に
限定的ではないが、上記した添加剤成分であるカセイソ
ーダ、アルミン酸ソーダ、珪酸ソーダなどの合計量が1
〜50重量%となるような水溶液にすることが適当であ
る。また、焼成体に対する水溶液の使用量は、焼成体1
00重量部に対して、上記した添加剤成分の合計量(固
形分)が0.5〜20重量部程度となるようにすること
が好ましい。
Next, the ion-exchange functional material is obtained by converting the calcined body into zeolite by hydrothermal synthesis reaction. As a method for forming the zeolite, SiO in the fired body is used.
Utilizing the two components as one of the raw materials for the zeolite formation reaction,
It may be carried out in the same manner as a normal hydrothermal synthesis reaction. In particular,
For example, the calcined product may be dipped in an aqueous solution containing caustic soda, sodium aluminate, sodium silicate, etc., and a hydrothermal synthesis reaction may be carried out according to a conventional method. The type and amount of the additive component in the aqueous solution may be determined according to the composition of the raw material of the fired body, the composition of the desired zeolite, and the like. Usually, an aqueous solution containing sodium aluminate may be used, but when the calcined body contains a large amount of alumina, without using sodium aluminate, an aqueous solution containing only caustic soda is used to form the zeolite. It is also possible to do so.
Further, when obtaining a zeolite having a high Na 2 O ratio or a zeolite having a high SiO 2 ratio, caustic soda, sodium silicate or the like can be appropriately added to the aqueous solution according to the ratio. The concentration of each component in the aqueous solution is not particularly limited, but the total amount of the above-mentioned additive components caustic soda, sodium aluminate, sodium silicate, etc. is 1
It is suitable to prepare an aqueous solution of about 50% by weight. Further, the amount of the aqueous solution used with respect to the fired body is 1
It is preferable that the total amount (solid content) of the above-mentioned additive components is about 0.5 to 20 parts by weight with respect to 00 parts by weight.

【0010】水熱合成反応の条件は、特に限定的ではな
いが、通常60〜200℃程度の温度で、オートクレー
ブ中で1時間〜2日程度反応させればよい。
The conditions of the hydrothermal synthesis reaction are not particularly limited, but the reaction is usually carried out at a temperature of about 60 to 200 ° C. in an autoclave for about 1 hour to 2 days.

【0011】本発明では、焼成体のゼオライト化は、必
ずしも完全に進行させる必要はなく、要求するイオン交
換能等との関連で、目的に応じて、水溶液との接触部分
のみをゼオライト化し非接触部はゼオライト化されてい
ない構造、いわゆる傾斜構造としてもよい。傾斜構造の
成形体とするには、焼成体の表面からゼオライト化が進
行するので、反応時間を適宜短縮すればよく、この場合
には、反応時間が短縮されて経済的に有利となる。
In the present invention, the zeoliticization of the calcined product does not necessarily have to be completely progressed, and in view of the required ion-exchange capacity and the like, only the contact portion with the aqueous solution is zeoliticized and non-contacted depending on the purpose. The part may have a non-zeolitic structure, that is, a so-called inclined structure. In order to obtain a molded product having a graded structure, since the zeolite formation proceeds from the surface of the fired product, the reaction time may be appropriately shortened. In this case, the reaction time is shortened, which is economically advantageous.

【0012】以上の方法によって、イオン交換機能材が
得られる。得られたイオン交換機能材は、強度が高く、
嵩比重の小さい多孔質成形体の少なくとも表面部分をゼ
オライト化したものであり、多孔質成形体として保水
性、通気性等の性質を有すると共に、表面がゼオライト
化されているために、優れたイオン交換機能をも有する
ものである。
An ion exchange functional material can be obtained by the above method. The obtained ion exchange functional material has high strength,
At least the surface portion of a porous compact having a low bulk specific gravity is made into a zeolite, and it has properties such as water retention and air permeability as a porous molded body, and since the surface is made into a zeolite, it is an excellent ion. It also has an exchange function.

【0013】[0013]

【発明の効果】本発明の方法によれば、珪藻土を主成分
とする原料を焼成して所定の形状とした後、ゼオライト
化することにより任意の形状のイオン交換機能材を容易
に得ることができる。
According to the method of the present invention, an ion-exchange functional material having an arbitrary shape can be easily obtained by firing a raw material containing diatomaceous earth as a main component into a predetermined shape and then converting it into a zeolite. it can.

【0014】得られたイオン交換機能材は、多孔質成形
体として保水性、通気性等の性質を有すると共に、表面
がゼオライト化されているために、陽イオン交換性、分
子ふるい性、触媒作用、塩基に対する抵抗性等を有し、
しかも予め焼成して得た多孔質成形体中の成分が反応し
て形成されたゼオライトが成形体と一体化しており、高
強度で扱い易く、しかもゼオライト成分が流失し難いも
のである。
The obtained ion-exchange functional material has properties such as water retention and air permeability as a porous molded body, and since its surface is made into zeolite, it has cation exchangeability, molecular sieving property, and catalytic action. , Has resistance to bases,
Moreover, the zeolite formed by reacting the components in the porous molded body obtained by firing in advance is integrated with the molded body, and has high strength and is easy to handle, and the zeolite component is less likely to be washed away.

【0015】本発明によって得られるイオン交換機能材
は、上記したような特性を利用して、土壌改良材、吸着
材、消臭材等の各種用途に有効に用いることができる。
The ion exchange functional material obtained by the present invention can be effectively used for various applications such as a soil improving material, an adsorbent, a deodorant and the like by utilizing the above characteristics.

【0016】[0016]

【実施例】以下に、実施例を挙げて本発明を更に詳細に
説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0017】実施例1 珪藻土70重量部及び粘土30重量部からなる原料を、
抜き出し成形によって直径約5mm、長さ約10mmの
造粒物とし、ロータリーキルンで900℃で20分間焼
成した。また、シャモット95重量部及び粘土5重量部
からなる原料を用いて、同様にして焼成物を得た。得ら
れた焼成物の性質を下記表1に示す。表中、CECは、
イオン交換容量であり、ソーダイオンについて測定した
ものである。
Example 1 A raw material composed of 70 parts by weight of diatomaceous earth and 30 parts by weight of clay,
A granulated product having a diameter of about 5 mm and a length of about 10 mm was formed by extraction molding and fired at 900 ° C. for 20 minutes in a rotary kiln. Further, a fired product was obtained in the same manner by using a raw material composed of 95 parts by weight of chamotte and 5 parts by weight of clay. The properties of the obtained fired product are shown in Table 1 below. In the table, CEC is
Ion exchange capacity, measured for soda ions.

【0018】[0018]

【表1】 [Table 1]

【0019】これらの造粒焼成品を原料とし、アルミン
酸ソーダ10%水溶液、可性ソーダ5%水溶液及び珪酸
ソーダ5%水溶液を用いて、各水溶液の固形分量が焼成
体に対して下記表2に示す割合(重量%)となるように
添加して、水熱合成反応を行ない、焼成物をゼオライト
化し、水洗後乾燥してイオン交換機能材を得た。得られ
たイオン交換機能材について、吸水率、CEC及び芝生
育試験の結果を表2に併せて記す。芝生育試験は、上記
イオン交換機能材を20重量%混合した土壌を用いて、
芝を生育させ、芝の生育の程度を土壌のみの場合と比較
することによって行なった。生育の程度が土壌のみの場
合と比べて大きいものの順に、◎、○、△(大差なし)
で示す。
Using these granulated and fired products as raw materials, a 10% aqueous solution of sodium aluminate, a 5% aqueous solution of sodium chloride and a 5% aqueous solution of sodium silicate were used, and the solid content of each aqueous solution was as shown in Table 2 below. In order to obtain the ion exchange functional material, the hydrothermal synthesis reaction was carried out, the calcined product was made into zeolite, washed with water and dried. Table 2 also shows the results of the water absorption rate, CEC, and lawn growth test for the obtained ion-exchange functional material. The lawn cultivation test was conducted by using soil mixed with 20% by weight of the ion exchange functional material,
The lawn was grown by comparing the degree of lawn growth with that of soil alone. ◎, ○, △ (no big difference) in descending order of growth compared to soil only
Indicate.

【0020】[0020]

【表2】 [Table 2]

【0021】以上の結果より、珪藻土を主成分とする原
料の造粒焼成品をゼオライト化した場合には、イオン交
換容量が高くなり、吸水率とバランスをとった構造とす
ることによって、土壌改良材として、有用性が高いもの
となることが判る。
From the above results, when the granulated and fired product of the raw material containing diatomaceous earth as the main component is made into zeolite, the ion exchange capacity becomes high and the structure is balanced with the water absorption rate to improve the soil. It can be seen that the material is highly useful.

【0022】また、実験番号4の試料について、断面を
EPMAで解析した結果、表面からゼオライト化が進行
している傾斜構造が認められた。
As a result of analyzing the cross section of the sample of Experiment No. 4 by EPMA, an inclined structure in which the zeolite formation progressed from the surface was recognized.

【0023】また、下記表3に示す配合の原料を粒径
0.3mm以下に粉砕混練後、上記した場合と同様の方
法で焼成して造粒焼成品とし、これにアルミン酸ソーダ
10%水溶液を焼成品に対して2重量%となるように添
加し、オートクレーブ中で140℃で4時間水熱合成反
応を行なった。得られたイオン交換機能材について、C
ECを測定した結果を下記表3に併せて示す。
Further, the raw materials having the formulations shown in Table 3 below were pulverized and kneaded to have a particle size of 0.3 mm or less, and then fired in the same manner as described above to obtain a granulated fired product, and a 10% aqueous solution of sodium aluminate was added thereto. Was added so as to be 2% by weight with respect to the calcined product, and a hydrothermal synthesis reaction was carried out at 140 ° C. for 4 hours in an autoclave. Regarding the obtained ion exchange functional material, C
The results of EC measurement are also shown in Table 3 below.

【0024】[0024]

【表3】 [Table 3]

【0025】表3から、珪藻土を50重量%程度以上含
有する原料を用いた場合に、ゼオライト化し易く、CE
Cが高くなることが判る。
From Table 3, when a raw material containing 50% by weight or more of diatomaceous earth is used, it is easy to form a zeolite and CE
It can be seen that C becomes high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】珪藻土を主成分とする原料を成形、焼成し
た後、水熱合成反応により、焼成体の少なくとも表面部
分をゼオライト化することを特徴とするイオン交換機能
材の製造法。
1. A method for producing an ion-exchange functional material, which comprises forming a raw material containing diatomaceous earth as a main component, firing the raw material, and then converting at least the surface portion of the fired body into a zeolite by a hydrothermal synthesis reaction.
JP26588592A 1992-10-05 1992-10-05 Production of ion exchange functional material Pending JPH06114275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26588592A JPH06114275A (en) 1992-10-05 1992-10-05 Production of ion exchange functional material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26588592A JPH06114275A (en) 1992-10-05 1992-10-05 Production of ion exchange functional material

Publications (1)

Publication Number Publication Date
JPH06114275A true JPH06114275A (en) 1994-04-26

Family

ID=17423456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26588592A Pending JPH06114275A (en) 1992-10-05 1992-10-05 Production of ion exchange functional material

Country Status (1)

Country Link
JP (1) JPH06114275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097216A1 (en) * 2002-05-22 2003-11-27 Daikin Industries,Ltd. Adsorption element and humidity adjusting device
EP1758450A1 (en) * 2004-06-04 2007-03-07 Envirofocus Limited Improvements in or relating to plant treatment agents
JP2009062270A (en) * 2007-09-04 2009-03-26 Ifp Preparation of porous composite material based on eu-1 zeolite and its implementation in isomerization of 8c aromatic compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097216A1 (en) * 2002-05-22 2003-11-27 Daikin Industries,Ltd. Adsorption element and humidity adjusting device
EP1758450A1 (en) * 2004-06-04 2007-03-07 Envirofocus Limited Improvements in or relating to plant treatment agents
EP1758450A4 (en) * 2004-06-04 2011-07-06 Envirofocus Ltd Improvements in or relating to plant treatment agents
JP2009062270A (en) * 2007-09-04 2009-03-26 Ifp Preparation of porous composite material based on eu-1 zeolite and its implementation in isomerization of 8c aromatic compound

Similar Documents

Publication Publication Date Title
US4818508A (en) Process for preparing molecular sieve bodies
US3119660A (en) Process for producing molecular sieve bodies
JPS6291410A (en) Calcium phosphate hydroxyapatite for chromatographic separation and its production
KR100538961B1 (en) Method for obtaining lsx zeolite granular agglomerates with low inert binding material ratio
DE102008046155B4 (en) Process for producing an adsorbent granulate
US2992068A (en) Method for making synthetic zeolitic material
DE1203238B (en) Process for the production of molecular sieve moldings
CN102861551B (en) Bax type zeolite granule and process for preparing the same
US3979335A (en) Process for the preparation of synthetic zeolites
JPH06114275A (en) Production of ion exchange functional material
JPH06183725A (en) Binderless x-type zeolite formed body and production thereof
JP2782744B2 (en) Method for producing binderless zeolite molded body
JPS6219363B2 (en)
US5192722A (en) High density leucite/pollucite based ceramics from zeolite
JPH04198011A (en) Production of molded article of binderless x type zeolite
JP2000210557A (en) Molded product containing x-type zeolite, manufacture and use application thereof
US3527826A (en) Catalyst for the disproportionation of toluene
JP6355179B1 (en) Method for producing color zeolite ceramics
RU2677870C1 (en) Granulated cracking catalyst and method for its preparation
JP4528957B2 (en) Apatite molded body having specific adsorption property for specific protein and method for producing the same
SU1151527A1 (en) Ceramic compound
JPS6068052A (en) Zeolite composition suitable for separating oxygen and nitrogen and manufacture of its molded body
JPH026846A (en) Production of molded body of oxygen-nitrogen separating agent made of zeolite composition
JP2756568B2 (en) Method for producing A-type zeolite molded body
JPH05147926A (en) Production of 3a-zeolite molded body