JPH06112078A - Manufacture of co-cu artificial grating film - Google Patents

Manufacture of co-cu artificial grating film

Info

Publication number
JPH06112078A
JPH06112078A JP28243992A JP28243992A JPH06112078A JP H06112078 A JPH06112078 A JP H06112078A JP 28243992 A JP28243992 A JP 28243992A JP 28243992 A JP28243992 A JP 28243992A JP H06112078 A JPH06112078 A JP H06112078A
Authority
JP
Japan
Prior art keywords
ratio
artificial lattice
lattice film
layer mainly
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28243992A
Other languages
Japanese (ja)
Inventor
Kazushi Yamauchi
一志 山内
Hiroshi Kano
博司 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28243992A priority Critical patent/JPH06112078A/en
Publication of JPH06112078A publication Critical patent/JPH06112078A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Abstract

PURPOSE:To obtain a Co-Cu artificial grating film large in a MR (magnetic resistance) ratio by a method wherein a sputtering process is carried out in an inert gas atmosphere of prescribed pressure to alternately laminate a layer mainly formed of Co and another layer mainly formed of Cu an a non-magnetic support for the formation of a Co-Cu artificial grating film. CONSTITUTION:A sputtering process is carried out in an inert gas of 0.07 to 0.5Pa to alternately laminate a layer mainly formed of Co and another layer mainly formed of Cu on a non-magnetic support for the formation of a Co-Cu artificial grating film. At this point, the layer mainly formed of Co and the other layer mainly formed of Cu are formed as thick as 0.5 to 3nm and 1.7 to 4nm respectively. By this setup, a Co-Cu artificial grating film possessed of a large MR ratio even in a magnetic field lower than 0.1T at a room temperature or below can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁性磁気抵抗効果を
利用して磁界を検出する磁気抵抗効果素子として有用な
Co−Cu系人工格子膜の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Co-Cu based artificial lattice film useful as a magnetoresistive effect element for detecting a magnetic field by utilizing a ferromagnetic magnetoresistive effect.

【0002】[0002]

【従来の技術】磁気抵抗効果を用いて磁界を検出する磁
気抵抗効果素子は、磁気センサー、磁気ヘッド、回転検
出素子、位置検出素子等として現在盛んに用いられてい
る。一般に磁気抵抗効果素子として挙げられるパーマロ
イは異方性磁界4ガウス程度と小さく、非常に良好な軟
磁気特性を示す。このため、磁気記録の分野において
は、微弱な信号磁界を読み出す磁気抵抗(MR)ヘッド
用材料に適している。
2. Description of the Related Art Magnetoresistive elements for detecting a magnetic field by utilizing the magnetoresistive effect are currently actively used as magnetic sensors, magnetic heads, rotation detecting elements, position detecting elements and the like. Permalloy, which is generally mentioned as a magnetoresistive element, has a small anisotropic magnetic field of about 4 Gauss and exhibits very good soft magnetic characteristics. Therefore, in the field of magnetic recording, it is suitable as a material for a magnetoresistive (MR) head that reads out a weak signal magnetic field.

【0003】しかし、今後さらに進展すると思われる高
密度磁気記録に対応するため、より大きな磁気抵抗比
(MR比)を持つ材料が必要である。Fe層とCr層を
交互に繰り返して作製された積層体において、4.2K
の低温、磁場2Tの下で、約50%のMR比が観測され
注目を集めた(M.N.Baibich,et al; Phys.Rev.Lett. 61
(1988)2472.)。
However, a material having a larger magnetoresistive ratio (MR ratio) is required in order to cope with high density magnetic recording which is expected to progress further in the future. 4.2K in a laminated body made by alternately repeating Fe layers and Cr layers
At a low temperature of 2T and a magnetic field of 2T, an MR ratio of about 50% was observed and attracted attention (MNBaibich, et al; Phys. Rev. Lett. 61).
(1988) 2472.).

【0004】その後、Co−Cu((Co 1.5nm−Cu
0.9nm)×30層)人工格子膜において、室温,磁場
0.5Tなる条件下で、48%のMR比が観察され、C
o−Cu((Co 1.5nm−Cu 2nm)×30層)人工格
子膜においては、室温,磁場0.05Tなる条件下で、
約19%のMR比が観察された(D.H.Mosca et al; J.M
ag.Magn.Mat. 94(1991)L1.)。
After that, Co-Cu ((Co 1.5nm-Cu
In an artificial lattice film of 0.9 nm) × 30 layers), an MR ratio of 48% was observed under the conditions of room temperature and magnetic field of 0.5 T, and C
In an o-Cu ((Co 1.5nm-Cu 2nm) x 30 layer) artificial lattice film, at room temperature and a magnetic field of 0.05T,
An MR ratio of about 19% was observed (DHMosca et al; JM
ag.Magn.Mat. 94 (1991) L1.).

【0005】また、バイアス・スパッタの条件について
調べたものとして、三村哲哉等の報告(日本応用磁気学
会16(1992)319.)があるが、室温での最大のMR比は1
3.1%であった。
In addition, as a study of the conditions of bias sputtering, there is a report by Tetsuya Mimura et al. (Japan Applied Magnetics Society 16 (1992) 319.), But the maximum MR ratio at room temperature is 1
It was 3.1%.

【0006】一般に、人工格子膜は真空蒸着法、スパッ
タリング法、イオンプレーティング法等で形成されるの
であるが、報告者により装置も作製条件も異なってい
る。また、基板も単にガラスの他に、人工格子膜のエピ
タキシャル成長を考慮して単結晶のGaAs,Si,M
gO基板等を使用していることも多く、最適な条件が未
だ明らかにされていない。
Generally, the artificial lattice film is formed by a vacuum vapor deposition method, a sputtering method, an ion plating method or the like, but the apparatus and the manufacturing conditions differ depending on the reporter. The substrate is not only glass but also single crystal GaAs, Si, M in consideration of the epitaxial growth of the artificial lattice film.
Since the gO substrate is often used, the optimum conditions have not been clarified yet.

【0007】[0007]

【発明が解決しようとする課題】このように、より大き
なMR比を得るために様々な作製条件で人工格子膜が作
製されているが、大きな外部磁場を必要とする等、十分
なものではなかった。そこで本発明は、かかる実情に鑑
みて提案されたものであり、Co−Cu系人工格子膜の
作製条件を最適化し、室温,磁場0.1T以下なる条件
下でも大きなMR比を示すような優れたCo−Cu系人
工格子膜を製造する方法を提供することを目的とする。
As described above, artificial lattice films are produced under various production conditions in order to obtain a larger MR ratio, but they are not sufficient because they require a large external magnetic field. It was Therefore, the present invention has been proposed in view of such circumstances, and is excellent in that the manufacturing conditions of the Co—Cu artificial lattice film are optimized and that a large MR ratio is exhibited even under the conditions of room temperature and a magnetic field of 0.1 T or less. Another object of the present invention is to provide a method for producing a Co-Cu based artificial lattice film.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の目的を
達成するために提案されたものである。本発明は、0.
07〜0.5Paなる不活性ガス雰囲気下でスパッタリ
ングすることによって、非磁性支持体上にCoを主体と
する層とCuを主体とする層とを交互に積層してCo−
Cu系人工格子膜を形成することを特徴とするものであ
る。
The present invention has been proposed to achieve the above object. The present invention relates to
By sputtering in an inert gas atmosphere of 07 to 0.5 Pa, Co-based layers and Cu-based layers are alternately laminated on the non-magnetic support to form Co-
It is characterized in that a Cu-based artificial lattice film is formed.

【0009】特に、Coを主体とする層の厚みを0.5
〜3nm、且つ、Cuを主体とする層の厚みを1.7〜
4nmに形成することが好ましい。また、Co層−Cu
層の1組を1層として、上記人工格子膜は10層以上積
層されることが好ましい。
In particular, the thickness of the layer mainly composed of Co is 0.5
~ 3 nm, and the thickness of the layer mainly composed of Cu is 1.7 ~
The thickness is preferably 4 nm. Also, Co layer-Cu
It is preferable that 10 or more layers of the artificial lattice film are laminated with one set of layers as one layer.

【0010】スパッタリング時の不活性ガス圧力が0.
5Pa以上になると、Co−Cu系人工格子膜の比抵抗
ρは徐々に増加し、Δρは急激に減少する。よって、M
R比(磁気抵抗比)は急激に減少して10%以下の値と
なってしまう。一方、上記不活性ガス圧力が0.07P
a以下になると、比抵抗ρが増加し始め、MR比も急激
に減少してしまうので好ましくない。
The inert gas pressure during sputtering is 0.
Above 5 Pa, the specific resistance ρ of the Co—Cu artificial lattice film gradually increases and Δρ rapidly decreases. Therefore, M
The R ratio (magnetic resistance ratio) sharply decreases to a value of 10% or less. On the other hand, the inert gas pressure is 0.07P
When it becomes a or less, the specific resistance ρ starts to increase and the MR ratio also sharply decreases, which is not preferable.

【0011】また、Cuを主体とする層の厚さが4nm
以上であるとMR比が10%以下となってしまい、1.
7nm以下であるとMR比が小さい上、磁気抵抗が飽和
する外部磁場が0.1Tよりも大きくなるので弱磁場で
の検出に好ましくない。同様に、Coを主体とする層の
厚さが3nm以上であったり、0.5nm以下であった
りするとMR比が急減し15%を下回るため好ましくな
い。
The thickness of the layer mainly composed of Cu is 4 nm.
If it is above, the MR ratio becomes 10% or less, and 1.
If it is 7 nm or less, the MR ratio is small and the external magnetic field at which the magnetic resistance saturates becomes larger than 0.1 T, which is not preferable for detection in a weak magnetic field. Similarly, if the thickness of the layer mainly composed of Co is 3 nm or more or 0.5 nm or less, the MR ratio sharply decreases and falls below 15%, which is not preferable.

【0012】[0012]

【作用】Co−Cu系人工格子膜のMR比は、製造工程
における諸条件、例えば、スパッタリング時の不活性ガ
ス圧力、Co或いはCuの層の厚さ等で変化してくる。
このため、最適な製造条件を選んでやると、室温下しか
も0.1T以下の低磁場においても大きなMR比を持つ
Co−Cu系人工格子膜が得られる。
The MR ratio of the Co-Cu artificial lattice film changes depending on various conditions in the manufacturing process, for example, the pressure of the inert gas during sputtering, the thickness of the Co or Cu layer, and the like.
Therefore, if optimal manufacturing conditions are selected, a Co—Cu artificial lattice film having a large MR ratio at room temperature and in a low magnetic field of 0.1 T or less can be obtained.

【0013】[0013]

【実施例】以下、本発明を適用した具体的な実施例につ
いて、実験結果に基づき説明する。本実施例では、様々
な作製条件下でCo−Cu系人工格子膜を作製し、MR
比等を測定した。
EXAMPLES Specific examples to which the present invention is applied will be described below based on experimental results. In this example, Co-Cu based artificial lattice film was prepared under various preparation conditions, and MR
The ratio etc. were measured.

【0014】Co−Cu系人工格子膜はスパッタリング
装置を用いガラス基板上に形成したCoとCuからなる
多層膜である。スパッタリング装置は1×10-4Paま
で減圧し、直径5インチのCuと直径6インチのCoタ
ーゲットを使用し、室温でArガス雰囲気下、回転して
いる基板上にCoとCuを交互に膜付けし、150層の
多層膜を作製した。
The Co-Cu artificial lattice film is a multilayer film composed of Co and Cu formed on a glass substrate by using a sputtering device. The sputtering system reduced the pressure to 1 × 10 -4 Pa, used Cu with a diameter of 5 inches and a Co target with a diameter of 6 inches, and alternately deposited Co and Cu on a rotating substrate in an Ar gas atmosphere at room temperature. Then, a multilayer film having 150 layers was produced.

【0015】上記スパッタリングの方法として、RFマ
グネトロン方式,DCマグネトロン方式,対向ターゲッ
ト方式等が有効である。なお、人工格子膜の積層周期は
CoとCuのターゲットに加える電力と基板の回転数の
コントロールにより制御した。
As the sputtering method, the RF magnetron method, DC magnetron method, facing target method, etc. are effective. The stacking period of the artificial lattice film was controlled by controlling the power applied to the Co and Cu targets and the rotation speed of the substrate.

【0016】実験1 先ず、スパッタリング時のArガス圧がCo−Cu系人
工格子膜の形成にどのように影響するのかを調べた。種
々のArガス圧(1.5, 0.67, 0.34, 0.24, 0.13, 0.11P
a )でスパッタリングしたCo 0.5nm−Cu 2nm(各C
o層が0.5nm 厚,各Cu層が2nm 厚で積層されているこ
とを示す。)人工格子膜を作製した。
Experiment 1 First, how the Ar gas pressure during sputtering influences the formation of a Co-Cu artificial lattice film was examined. Various Ar gas pressure (1.5, 0.67, 0.34, 0.24, 0.13, 0.11P
a) sputtered Co 0.5nm-Cu 2nm (each C
It shows that the o layer is 0.5 nm thick and each Cu layer is 2 nm thick. ) An artificial lattice film was prepared.

【0017】全ての試料について、小角X線回折により
積層周期を、中角X線回折により結晶構造を調べた。上
記試料のX線回折像を図1に示す。この図から小角での
回折が1.5Paのとき1次、0.67Paのとき2
次、0.34Pa以下のとき3次までのピークが検出さ
れ、Arガス圧力が低い方が積層膜の界面での拡散が小
さいことを示している。
For all samples, the stacking period was examined by small-angle X-ray diffraction, and the crystal structure was examined by medium-angle X-ray diffraction. The X-ray diffraction image of the above sample is shown in FIG. From this figure, it is the first order when the small angle diffraction is 1.5 Pa, and the second when 0.67 Pa.
Next, when the pressure is 0.34 Pa or less, peaks up to the third order are detected, indicating that the lower the Ar gas pressure, the smaller the diffusion at the interface of the laminated film.

【0018】なお、図中矢印Aは1次の回折ピーク、矢
印Bは2次の回折ピーク、矢印Cは3次の回折ピークを
示す。
In the figure, arrow A indicates the first-order diffraction peak, arrow B indicates the second-order diffraction peak, and arrow C indicates the third-order diffraction peak.

【0019】中角X線回折で5本の回折ピークが観測さ
れ、これらは面心立方(以下FCC とする。)(11
1),(200),(220),(311),(22
2)と同定される。なお、図1中では、順に矢印a,
b,c,d,eで示されている。しかし、各々のピーク
の2θ位置はFCC Cuのそれよりも高角度側にずれ、FC
C Coのそれよりも低角度側に観測される。従って、FC
C CoとFCC Cuとの干渉またはFCC CoとFCC Cuと
エピタキシャル成長していることを示唆している。
Five diffraction peaks were observed by medium-angle X-ray diffraction, and these were face-centered cubic (hereinafter referred to as FCC) (11).
1), (200), (220), (311), (22
2) identified. In FIG. 1, arrow a,
It is indicated by b, c, d and e. However, the 2θ position of each peak is shifted to a higher angle side than that of FCC Cu, and FC
It is observed on the lower angle side than that of C Co. Therefore, FC
It suggests that the interference between C Co and FCC Cu or the epitaxial growth of FCC Co and FCC Cu.

【0020】この図1を見ると、0.13Paのとき
(111)の回折線が最も強く結晶配向していることが
わかる。また、Co−Cu系人工格子膜において、(1
11)配向の方が(100)配向のときよりもCoとC
uの界面での拡散が少ないことが知られている。他のA
rガス圧、積層周期の試料でも主ピークの回りにサテラ
イトピークが加わる他はほぼ同じである。
From FIG. 1, it can be seen that the diffraction line of (111) has the strongest crystal orientation at 0.13 Pa. In addition, in the Co-Cu-based artificial lattice film, (1
11) orientation is Co and C more than when it is (100) orientation
It is known that the diffusion of u at the interface is small. Other A
A sample with r gas pressure and stacking period is almost the same except that a satellite peak is added around the main peak.

【0021】上述の試料について、室温,外部磁場±
0.1Tなる条件下でMR比を測り、その結果を図2に
示す。図2より、スパッタリング時のArガス圧よって
MR比が変化することが判る。これによると、0.13
Paでスパッタリングされた人工格子膜が最も大きなM
R比をとっている。
For the above samples, room temperature, external magnetic field ±
The MR ratio was measured under the condition of 0.1T, and the result is shown in FIG. From FIG. 2, it can be seen that the MR ratio changes depending on the Ar gas pressure during sputtering. According to this, 0.13
The artificial lattice film sputtered at Pa has the largest M
It takes the R ratio.

【0022】この0.13Paなるガス圧でスパッタリ
ングされた人工格子膜は、先のX線回折測定で最も強い
結晶配向をしているものであることが示されており、こ
れより、結晶配向性の良いものほどMR比が大きいと考
えられる。
The artificial lattice film sputtered at the gas pressure of 0.13 Pa was shown to have the strongest crystal orientation in the above X-ray diffraction measurement. It is considered that the better the value is, the larger the MR ratio is.

【0023】なお、各Co層が1.5nm厚であること
以外は上記のCo−Cu系人工格子膜と同様にして、種
々のArガス圧でスパッタリングして作製された人工格
子膜についても同様にMR比を測定したところ、0.2
4Paのガス圧でスパッタリングされたものが最も大き
な値をとった。
It should be noted that, except that each Co layer has a thickness of 1.5 nm, the same applies to artificial lattice films prepared by sputtering with various Ar gas pressures in the same manner as the above Co-Cu artificial lattice film. The MR ratio was measured to be 0.2
The largest value was obtained by sputtering at a gas pressure of 4 Pa.

【0024】実験2 次に、Co 1nm−Cu 2nm 人工格子膜において、作製
時のArガス圧力が0.67Paと0.24Paの2種
の試料について比較した。
Experiment 2 Next, two samples of Co 1 nm-Cu 2 nm artificial lattice film having Ar gas pressures of 0.67 Pa and 0.24 Pa at the time of production were compared.

【0025】図3(I)はArガス圧0.67Paでス
パッタリングした人工格子膜の、磁化容易軸Mに垂直に
磁場Hと電流Iを流したときの磁気抵抗Rを示し、(I
I)は同じく磁化容易軸Mに平行に磁場Hと電流Iを流
したときの磁気抵抗Rを示す。また、図4はArガス圧
0.24Paでスパッタリングした人工格子膜の、磁化
容易軸Mに垂直に磁場Hと電流Iを流したときの磁気抵
抗Rを示す。
FIG. 3 (I) shows the magnetic resistance R of an artificial lattice film sputtered at an Ar gas pressure of 0.67 Pa when a magnetic field H and a current I are applied perpendicularly to the easy axis M of magnetization.
Similarly, I) shows the magnetic resistance R when a magnetic field H and a current I are passed in parallel with the easy axis M. Further, FIG. 4 shows the magnetic resistance R of the artificial lattice film sputtered at an Ar gas pressure of 0.24 Pa when a magnetic field H and a current I are passed perpendicularly to the easy axis M of magnetization.

【0026】なお、図4に示される人工格子膜には、試
料の膜面内で等方的であり、磁化容易軸Mに対して平行
に磁場Hと電流Iを流しても、殆ど同様の結果となっ
た。
It should be noted that the artificial lattice film shown in FIG. 4 is isotropic in the film plane of the sample, and is almost the same even when the magnetic field H and the current I are passed in parallel to the easy axis M of magnetization. It became a result.

【0027】図3(I)で示される人工格子膜のMR比
(室温,±0.1T)は0.36%であり、図3(I
I)に示される人工格子膜のMR比は0.39%であっ
た。また、図4に示される人工格子膜のMR比は27.
8%と大きな値をとる。なお、比抵抗ρ及びΔρは0.
67Paのとき23.6μΩ.cm ,0.08μΩ.cm
で、0.24Paのとき13.89μΩ.cm ,3.0μ
Ω.cm であった。
The MR ratio (room temperature, ± 0.1T) of the artificial lattice film shown in FIG. 3 (I) is 0.36%.
The MR ratio of the artificial lattice film shown in I) was 0.39%. The MR ratio of the artificial lattice film shown in FIG.
It takes a large value of 8%. The specific resistances ρ and Δρ are 0.
At 67 Pa, 23.6 μΩ.cm, 0.08 μΩ.cm
At 0.24Pa, 13.89μΩ.cm, 3.0μ
It was Ω.cm.

【0028】実験3 さらに、人工格子膜を構成する層の厚さがMR比に与え
る影響を調べた。ここでは、0.24PaのArガス圧
力下でスパッタリングしたCo−Cu系人工格子膜につ
いて層の厚さを変化させた。
Experiment 3 Furthermore, the influence of the thickness of the layers constituting the artificial lattice film on the MR ratio was investigated. Here, the layer thickness of the Co—Cu based artificial lattice film sputtered under the Ar gas pressure of 0.24 Pa was changed.

【0029】先ず、Cu層の厚さを2.1nmに定めた
状態でCo層の厚さを種々に変化させ、Co層の膜厚と
MR比(室温,±0.1T)との関係を調べる。この結
果を図5に示す。これより、Co層が1.0〜1.5n
mの厚さのとき25%以上の大きなMR比が得られるこ
とが判る。
First, the thickness of the Co layer was variously changed while the thickness of the Cu layer was set to 2.1 nm, and the relationship between the thickness of the Co layer and the MR ratio (room temperature, ± 0.1 T) was calculated. Find out. The result is shown in FIG. From this, the Co layer is 1.0 to 1.5 n
It can be seen that when the thickness is m, a large MR ratio of 25% or more can be obtained.

【0030】次に、Co層の厚さを0.5nm又は1.
5nmに定めてCu層の厚さを変化させ、MR比を測定
した。この結果を図6に示す。図中、○でプロットされ
た曲線がCo層厚1.5nmのものであり、△でプロッ
トされた曲線がCo層厚0.5nmのものである。この
図より、MR比の値がCu層の厚さによって振動してお
り、Cu層が2.0nm付近で最大値をとるのが判る。
Next, the thickness of the Co layer is set to 0.5 nm or 1.
The MR ratio was measured by setting the thickness to 5 nm and changing the thickness of the Cu layer. The result is shown in FIG. In the figure, the curve plotted with ◯ is for the Co layer thickness of 1.5 nm, and the curve plotted with Δ is for the Co layer thickness of 0.5 nm. From this figure, it can be seen that the MR ratio value oscillates depending on the thickness of the Cu layer, and the Cu layer takes the maximum value in the vicinity of 2.0 nm.

【0031】この結果は、人工格子膜の積層数の違いの
ためかD.H.Mosca 等の報告と大きく異なるものとなっ
た。
This result is significantly different from the report of DH Mosca et al., Probably because of the difference in the number of laminated artificial lattice films.

【0032】実験4 そこで、上記のように積層数によってMR比が変化する
かどうか調べた。ここでは、Co 1.5nm−Cu 2.0nm
人工格子膜の積層数を変化させた試料を作製し、室温,
磁場±0.1Tなる条件下でMR比を測定した。この結
果を図7に示す。これより、積層数を増加させると10
層付近で急激にMR比が上昇することが判る。
Experiment 4 Therefore, it was examined whether the MR ratio changes depending on the number of stacked layers as described above. Here, Co 1.5nm-Cu 2.0nm
Samples with different number of artificial lattice films were prepared and
The MR ratio was measured under the condition of a magnetic field of ± 0.1T. The result is shown in FIG. 7. From this, it is 10 when the number of layers is increased.
It can be seen that the MR ratio sharply increases near the layer.

【0033】実験5 最後に、人工格子膜を形成させる基板の違いによるMR
比の変化も調べた。(Co 1.5nm−Cu 2.1nm)×15
5層 人工格子膜を種々の下地基板(ガラス,ホトセラ
ム,石英ガラス,ポリイミド,シリコン)に対して膜付
けし、室温,磁場±0.1Tなる条件下でMR比を測定
し、この結果を図8に示す。
Experiment 5 Finally, MR due to the difference in the substrate on which the artificial lattice film is formed
The change in ratio was also examined. (Co 1.5nm-Cu 2.1nm) x 15
A 5-layer artificial lattice film is attached to various base substrates (glass, photocellum, quartz glass, polyimide, silicon) and the MR ratio is measured under room temperature and magnetic field of ± 0.1T. 8 shows.

【0034】MR比の値は以下に示すようになり、基板
によってMR比に違いがあることが判る。
The values of the MR ratio are as shown below, and it can be seen that the MR ratio differs depending on the substrate.

【0035】(L)ガラス : 21.8% (M)ホトセラム : 24.8% (N)石英ガラス : 19.8% (O)ポリイミド : 24.0% (P)シリコン : 20.8%(L) Glass: 21.8% (M) Photoceram: 24.8% (N) Quartz glass: 19.8% (O) Polyimide: 24.0% (P) Silicon: 20.8%

【0036】以上の結果より、Co−Cu系人工格子膜
を作製する際、Arガス圧力は0.07〜0.5Paで
あること、Co層の厚さは0.5〜3nm且つCu層の
厚さが1.7〜4nmであること、積層数は10層以上
であること等を満たして作製すると、優れたMR比を有
するCo−Cu系人工格子膜となることが判った。
From the above results, when the Co-Cu artificial lattice film is produced, the Ar gas pressure is 0.07 to 0.5 Pa, the Co layer thickness is 0.5 to 3 nm and the Cu layer thickness is 0.5 to 3 nm. It was found that a Co—Cu based artificial lattice film having an excellent MR ratio can be obtained when the film is manufactured so that the thickness is 1.7 to 4 nm and the number of layers is 10 or more.

【0037】なお、本発明に係わる磁気抵抗効果膜は、
その膜面と平行な向きに磁場を印加するとともに電流を
流す場合、磁場印加方向が電流と平行であっても、垂直
な方向であっても殆ど同じ磁気抵抗を示している。
The magnetoresistive film according to the present invention is
When a magnetic field is applied and a current is passed in a direction parallel to the film surface, almost the same magnetic resistance is exhibited regardless of whether the magnetic field application direction is parallel or perpendicular to the current.

【0038】ところで、本発明の人工格子膜はCoとC
uからなるが、これらの一部を他の元素で置換すること
も可能である。例えば、Coは約50原子%までFeや
Ni等強磁性物質で置換することができ、Coを50原
子%Niで置換した Co50Ni50 1nm−Cu 2nm 人
工格子膜を0.24PaのArガス圧力下でスパッタリ
ングして作製した場合、MR比は19.2%となる。
By the way, the artificial lattice film of the present invention contains Co and C.
Although it is composed of u, it is also possible to replace some of these with other elements. For example, Co can be replaced with a ferromagnetic material such as Fe or Ni up to about 50 atomic%, and a Co 50 Ni 50 1nm-Cu 2nm artificial lattice film in which Co is replaced with 50 atomic% Ni is used as an Ar gas of 0.24 Pa. When manufactured by sputtering under pressure, the MR ratio is 19.2%.

【0039】一方、Cuは約10原子%まではPtやA
g等の非磁性物質で置換しても、15%程度のMR比を
保持することができる。
On the other hand, Cu is Pt or A up to about 10 atomic%.
Even if it is replaced with a non-magnetic substance such as g, an MR ratio of about 15% can be maintained.

【0040】[0040]

【発明の効果】以上の説明からも明らかなように、Co
−Cu系人工格子膜のMR比は、製造工程における諸条
件、例えば、スパッタリング時のArガス圧力、Co或
いはCuの層の厚さ、積層数、基板の違い等で変化して
くる。このため、最適な製造条件を選んでやると、室温
下しかも0.1T以下の低磁場においても大きなMR比
を持つCo−Cu系人工格子膜を得ることができる。
As is clear from the above description, Co
The MR ratio of the —Cu-based artificial lattice film changes depending on various conditions in the manufacturing process, for example, the Ar gas pressure during sputtering, the thickness of the Co or Cu layer, the number of stacked layers, the difference in the substrate, and the like. Therefore, if optimal manufacturing conditions are selected, a Co—Cu artificial lattice film having a large MR ratio at room temperature and in a low magnetic field of 0.1 T or less can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】人工格子膜のX線回折像を示す特性図である。FIG. 1 is a characteristic diagram showing an X-ray diffraction image of an artificial lattice film.

【図2】Arガス圧力とMR比の関係を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing the relationship between Ar gas pressure and MR ratio.

【図3】外部磁場と磁気抵抗の関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing a relationship between an external magnetic field and a magnetic resistance.

【図4】外部磁場と磁気抵抗の関係を示す特性図であ
る。
FIG. 4 is a characteristic diagram showing a relationship between an external magnetic field and a magnetic resistance.

【図5】Co層の膜厚とMR比の関係を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing a relationship between a film thickness of a Co layer and an MR ratio.

【図6】Cu層の膜厚とMR比の関係を示す特性図であ
る。
FIG. 6 is a characteristic diagram showing the relationship between the thickness of a Cu layer and the MR ratio.

【図7】積層数とMR比の関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship between the number of stacked layers and the MR ratio.

【図8】基板の種類による磁気抵抗効果の違いを示す特
性図である。
FIG. 8 is a characteristic diagram showing a difference in magnetoresistive effect depending on the type of substrate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.07〜0.5Paなる不活性ガス雰
囲気下でスパッタリングすることによって、非磁性支持
体上にCoを主体とする層とCuを主体とする層とを交
互に積層してCo−Cu系人工格子膜を形成することを
特徴とするCo−Cu系人工格子膜の製造方法。
1. A layer mainly containing Co and a layer mainly containing Cu are alternately laminated on a non-magnetic support by sputtering in an inert gas atmosphere of 0.07 to 0.5 Pa. A method for producing a Co-Cu artificial lattice film, which comprises forming a Co-Cu artificial lattice film.
【請求項2】 Coを主体とする層の厚みを0.5〜3
nm、且つ、Cuを主体とする層の厚みを1.7〜4n
mとすることを特徴とする請求項1記載のCo−Cu系
人工格子膜の製造方法。
2. The thickness of the layer mainly composed of Co is 0.5 to 3
nm, and the thickness of the layer mainly composed of Cu is 1.7 to 4n.
The method for producing a Co-Cu-based artificial lattice film according to claim 1, wherein m is m.
JP28243992A 1992-09-28 1992-09-28 Manufacture of co-cu artificial grating film Withdrawn JPH06112078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28243992A JPH06112078A (en) 1992-09-28 1992-09-28 Manufacture of co-cu artificial grating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28243992A JPH06112078A (en) 1992-09-28 1992-09-28 Manufacture of co-cu artificial grating film

Publications (1)

Publication Number Publication Date
JPH06112078A true JPH06112078A (en) 1994-04-22

Family

ID=17652434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28243992A Withdrawn JPH06112078A (en) 1992-09-28 1992-09-28 Manufacture of co-cu artificial grating film

Country Status (1)

Country Link
JP (1) JPH06112078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025371A1 (en) * 1998-10-26 2000-05-04 Mitsubishi Denki Kabushiki Kaisha Magnetoresistant device and a magnetic sensor comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025371A1 (en) * 1998-10-26 2000-05-04 Mitsubishi Denki Kabushiki Kaisha Magnetoresistant device and a magnetic sensor comprising the same

Similar Documents

Publication Publication Date Title
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
US5578385A (en) Magnetoresistance effect element
JP3694440B2 (en) Method for manufacturing exchange coupling film, method for manufacturing magnetoresistive effect element using exchange coupling film, and method for manufacturing thin film magnetic head using magnetoresistance effect element
JP3670928B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
US6051304A (en) Magnetoresistance element and its manufacture
JPH06325934A (en) Magnetoresistance effect element
US6607641B2 (en) Method of producing exchange coupling film and method of producing magnetoresistive sensor by using the exchange coupling film
US5568115A (en) Artificial lattice film and magneto-resistance effect element using the same
JP2000091665A (en) Magnetoresistance effect film and manufacture thereof
JP4540288B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH06112078A (en) Manufacture of co-cu artificial grating film
JP3670929B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
JP2002280641A (en) Exchange connection film and magnetic detection element using the same
JP3488652B2 (en) Magnetoresistive film, method of manufacturing the same, and magnetic head using the same
JPH0923031A (en) Magnetoresistance effect multilayered film
JPH10294217A (en) Spin valve type magnetoresistance effect film and magnetic head having the same
JP3694441B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
JPH0992908A (en) Manufacture of magnetoresistance effect device
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JP3286244B2 (en) Magnetoresistive element, magnetic head and magnetic recording device using the same
JP3116855B2 (en) Exchange coupling film and magnetoresistive element using the same
JPH0888424A (en) Multi-layer film magnetoresistance effect element and its manufacture
JP2002171011A (en) Magnetoresistance effect device and its manufacturing method and magnetoresistance effect sensor
JPH0629589A (en) Magnetoresistance effect element
JPH10214716A (en) Switched connection film and preparation thereof, and magnetoresistance element using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130