JPH06106046A - Production of hydrogen peroxide - Google Patents

Production of hydrogen peroxide

Info

Publication number
JPH06106046A
JPH06106046A JP4261812A JP26181292A JPH06106046A JP H06106046 A JPH06106046 A JP H06106046A JP 4261812 A JP4261812 A JP 4261812A JP 26181292 A JP26181292 A JP 26181292A JP H06106046 A JPH06106046 A JP H06106046A
Authority
JP
Japan
Prior art keywords
separation membrane
hydrogen peroxide
membrane
working fluid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4261812A
Other languages
Japanese (ja)
Inventor
Takashi Kawai
孝 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4261812A priority Critical patent/JPH06106046A/en
Publication of JPH06106046A publication Critical patent/JPH06106046A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/013Separation; Purification; Concentration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To easily control, to shorten the residence time of a working liquid, to produce in a flow system and to improve productivity by using a separation membrane in an oxidation-reduction process. CONSTITUTION:In a reduction process, a working liquid 1 is transferred to a separation membrane module or separation membrane element 4 by a pump 2 and hydrogen 7 is fed into the other side of the separation membrane. In an oxidizing process, a working liquid 5 is transferred to a separation membrane module or separation membrane element 11 by a pump 9 and oxygen 14 is fed into the other side of the separation membrane. Since the gas-liquid mixing reactor using a gas permeable membrane performs gas-liquid mixing by using a vapor-liquid equilibrium relationship, gas more than that in a saturated state is not mixed in. Therefore it is not possible that excess gas not required for reaction is mixed in to generate insufficiently dissolved bubbles in the working liquid. In addition, the feed quantity of gas to the working liquid is controlled by a simple operation and reduction or oxidation reaction us performed uniformly and in a short time, in a flow system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、キノン類を用いる過酸
化水素の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing hydrogen peroxide using quinones.

【0002】[0002]

【従来の技術】過酸化水素は工業的には(1)キノン類
を含む作動液(I)を触媒の存在下に水素添加し、ヒド
ロキノン化合物を生成する還元工程、(2)作動液(I
I)中のヒドロキノン化合物を酸化しキノン化合物およ
び過酸化水素を生成する酸化工程、(3)生成した過酸
化水素を作動液(III )より抽出する抽出工程、(4)
抽出工程後に作動液(IV)を再生して還元工程に循環使
用するための再生工程の4工程により製造される。そし
て(1)の還元工程では水素を、(2)の酸化工程では
酸素を作動液に注気混合する必要があるが、反応槽ある
いは流液配管中に直接注入する方法や、静止型ミキサー
などを用いて混合させるのが一般的であった。また、
(3)の抽出工程では大量の水を混合してデカンテーシ
ョン法で抽出しているのが一般的であった。
BACKGROUND ART Hydrogen peroxide is industrially (1) a reducing step of hydrogenating a working fluid (I) containing quinones in the presence of a catalyst to produce a hydroquinone compound, and (2) a working fluid (I
An oxidation step of oxidizing the hydroquinone compound in I) to generate a quinone compound and hydrogen peroxide, (3) an extraction step of extracting the generated hydrogen peroxide from the working fluid (III), (4)
After the extraction step, the hydraulic fluid (IV) is regenerated and is regenerated for recycling in the reduction step. Then, it is necessary to inject and mix hydrogen into the working fluid in the reducing step of (1) and oxygen in the oxidizing step of (2). However, a method of directly injecting hydrogen into the reaction tank or the flowing liquid pipe, a static mixer, etc. It was common to mix using. Also,
In the extraction step (3), a large amount of water was generally mixed and extracted by the decantation method.

【0003】[0003]

【発明が解決しようとする課題】流液配管中に直接注入
して作動液中にガスを混合する場合には、単に流液圧力
よりも高い圧力でガスを吹き込むだけであるため、均一
混合および高反応率に達するには時間がかかり、大容量
の反応槽を設置して作動液を滞留させなければならな
い。また、静止型ミキサーを用いても、注入量のばらつ
きが大きくてコントロールしにくいため、均一混合およ
び高反応率に達するには時間がかかり、大容量の反応槽
を設置して作動液を滞留させなければならないという問
題は依然として残る。
When the gas is mixed into the working fluid by directly injecting it into the liquid flow pipe, the gas is merely blown at a pressure higher than the pressure of the liquid flow, so that uniform mixing and It takes time to reach a high reaction rate, and a large-capacity reaction tank must be installed to retain the working fluid. In addition, even if a static mixer is used, it is difficult to control because the variation of the injection amount is large, so it takes time to reach uniform mixing and a high reaction rate, and a large-capacity reaction tank is installed to retain the working fluid. The problem of having to remain remains.

【0004】デカンテーション法による抽出では、抽出
率を高くするためには混合時間を長くしたり抽出水を大
量に使用することとなり、しかも完全に液液分離するた
めにも長時間が必要なため、大容量の抽出塔や分液塔を
設置しなければならない。また、抽出液中の過酸化水素
濃度が低いため濃縮工程が必要となり水を蒸発するため
のエネルギーの問題もある。
In the extraction by the decantation method, the mixing time is lengthened or a large amount of extracted water is used in order to increase the extraction rate, and moreover, a long time is required for complete liquid-liquid separation. A large-capacity extraction tower or separation tower must be installed. Further, since the concentration of hydrogen peroxide in the extract is low, a concentration step is required, and there is a problem of energy for evaporating water.

【0005】[0005]

【課題を解決するための手段】本発明の課題は、酸化還
元工程に分離膜を用いることを特徴とする過酸化水素の
製造方法により、基本的に解決できる。
The object of the present invention can be basically solved by a method for producing hydrogen peroxide which is characterized in that a separation membrane is used in a redox process.

【0006】分離膜とは気体分離膜、パーベーパレーシ
ョン膜、逆浸透膜、ナノフィルトレーション膜、透析
膜、限外濾過膜、精密濾過膜、イオン交換膜、脱気膜、
注気膜などをいい、単一膜、複合膜、均質膜、不均質
膜、均一膜、不均一膜など膜の素材、微細構造に変化が
あっても良い。
The separation membrane is a gas separation membrane, a pervaporation membrane, a reverse osmosis membrane, a nanofiltration membrane, a dialysis membrane, an ultrafiltration membrane, a microfiltration membrane, an ion exchange membrane, a degassing membrane,
This refers to an insufflation film, etc., and there may be changes in the material and microstructure of the film such as a single film, a composite film, a homogeneous film, a heterogeneous film, a uniform film, and a non-uniform film.

【0007】膜の素材としてはセルロース系、酢酸セル
ロース系、ポリアクリロニトリル系、ポリメチルメタク
リル系、ポリスルホン系、ポリエーテルスルホン系、ポ
リアミド系、ポリエステル系、ポリカーボネート系、ポ
リウレタン系、ポリウレア系、ポリメチルペンテン系、
ポリスルフィド系、ポリスルフィドスルフォン系、ポリ
エーテル系、ポリエーテルケトン系、ポリエチレン系、
ポリプロピレン系、ポリシロキサン系、ポリビニルクロ
ライド系、ポリフッ化ビニリデン系、ポリテトラフルオ
ロエチレン系、エポキシ樹脂系あるいはこれらを組み合
わせた系からなる重合体などの有機物あるいはアルミナ
系、ジルコニア系、シリカ系、ゼオライト系あるいはこ
れらを組み合わせた系などの無機物を挙げることができ
る。
The material of the membrane is cellulose, cellulose acetate, polyacrylonitrile, polymethylmethacryl, polysulfone, polyethersulfone, polyamide, polyester, polycarbonate, polyurethane, polyurea, polymethylpentene. system,
Polysulfide type, polysulfide sulfone type, polyether type, polyether ketone type, polyethylene type,
Polypropylene-based, polysiloxane-based, polyvinyl chloride-based, polyvinylidene fluoride-based, polytetrafluoroethylene-based, epoxy resin-based, or organic compounds such as polymers made of a combination thereof or alumina-based, zirconia-based, silica-based, zeolite-based Alternatively, an inorganic material such as a system in which these are combined can be used.

【0008】また、化学薬品、放射線あるいは熱などで
処理して耐薬品性、耐熱性、表面エネルギーなどの特性
を変えた分離膜であってもよく、例えば親水性膜、疎水
性膜あるいは親・疎水性膜であってもよい。
Further, it may be a separation membrane which is treated with chemicals, radiation or heat to change its characteristics such as chemical resistance, heat resistance and surface energy. For example, a hydrophilic membrane, a hydrophobic membrane or a parent membrane. It may be a hydrophobic membrane.

【0009】膜の構造としてはフィルム状、板状、中空
糸状、キャピラリー状、チューブ状あるいはパイプ状の
いずれでもよいが、コンパクトで膜の表面積を大きくで
きて本発明の課題解決の効果を大きくするためには、フ
ィルム状、中空糸状、キャピラリー状が好ましく、さら
には中空糸状が好ましい。
The structure of the membrane may be any of a film, a plate, a hollow fiber, a capillary, a tube or a pipe, but it is compact and the surface area of the membrane can be increased to enhance the effect of solving the problems of the present invention. Therefore, a film shape, a hollow fiber shape, or a capillary shape is preferable, and a hollow fiber shape is more preferable.

【0010】分離膜はエレメントあるいはモジュールに
組み込んで使用するが、エレメントあるいはモジュール
の形状には特に制限はない。
The separation membrane is used by incorporating it into an element or module, but the shape of the element or module is not particularly limited.

【0011】作動液に用いられているキノン類とはキノ
ン化合物またはキノン化合物を還元して得られるヒドロ
キノン化合物とキノン化合物との混合物を示す。キノン
化合物としては、一般にモノアルキルアントラキノン、
ジアルキルアントラキノン、あるいは2、3−ジアルキ
ルナフトキノンが知られており、通常C2 〜C4 のアル
キル基を有するキノン化合物である。
The quinones used in the working fluid refer to a quinone compound or a mixture of a hydroquinone compound and a quinone compound obtained by reducing the quinone compound. The quinone compound is generally a monoalkylanthraquinone,
Dialkyl anthraquinone and 2,3-dialkylnaphthoquinone are known and are usually quinone compounds having a C 2 to C 4 alkyl group.

【0012】溶媒としては、キノン化合物およびヒドロ
キノン化合物を溶解させるために、芳香族炭化水素とア
ルコール類またはエステル類の混合物が用いられる。
As the solvent, a mixture of aromatic hydrocarbon and alcohols or esters is used in order to dissolve the quinone compound and the hydroquinone compound.

【0013】水素添加触媒としては、一般にパラジウム
やラネーニッケルなどが用いられるが、本発明では分離
膜の表面あるいは内部に固定して用いることは有効で好
ましい。
As the hydrogenation catalyst, palladium, Raney nickel, etc. are generally used, but in the present invention, it is effective and preferable to fix them on the surface or inside of the separation membrane.

【0014】触媒を分離膜に担持させる方法としては、
製膜原液に触媒を分散させるなどして製膜時に担持させ
る方法、触媒分散液を分離膜に透過させるなどして製膜
後に担持させる方法のいずれでも、さらには化学的処理
を加えても良く、そして、担持は物理的、化学的いずれ
の作用でも良い。
As a method for supporting the catalyst on the separation membrane,
Either a method of supporting the catalyst during film formation by dispersing the catalyst in the membrane forming stock solution, a method of supporting the catalyst dispersion after the membrane formation by permeating the catalyst dispersion liquid, or further chemical treatment may be added. The loading may be either physical or chemical.

【0015】分離膜を介して水素または水素を含むガス
あるいは酸素または酸素を含むガスを作動液に透過混合
して反応させる方法には特に制限はなく、ガス透過膜の
片面に作動液を流し、該膜の反対側の面に水素または水
素を含むガスあるいは酸素または酸素を含むガスを流す
ことによってガスを膜透過させて、作動液中に混合して
反応させることを特徴とする気液混合反応装置とするこ
とで基本的に達成される。
The method of permeating and reacting hydrogen or a gas containing hydrogen or oxygen or a gas containing oxygen with the working fluid through the separation membrane to cause a reaction is not particularly limited, and the working fluid is flowed to one side of the gas permeable membrane, A gas-liquid mixed reaction characterized in that hydrogen or a gas containing hydrogen, or oxygen or a gas containing oxygen is caused to flow through the membrane by passing hydrogen through the surface on the opposite side of the membrane, and the gas is mixed in a working liquid to cause a reaction. It is basically achieved by using a device.

【0016】本発明の好適な構成の一例は、図1に示す
とおりであるが、これになんら限定されるものではな
い。還元工程では、通常作動液(I)1がポンプ2で分
離膜モジュールまたは分離膜エレメント4へ送られる
が、ポンプを使わずに圧力で供給することも可能であ
る。分離膜のもう一方の側に水素7が供給される。作動
液(I)側と水素側は分離膜で区別されていて、作動液
(I)が水素側に流れ込むことはない。モジュールまた
はエレメント当たりの膜面積は大きいので水素が良く分
散して供給されて還元反応が均一に起こり、作動液(I
I)5が得られる。その一部をバイパスライン6を通し
て還流することで還元反応率を高めることも可能であ
る。また、作動液(I)や水素の供給圧力、流量、温度
などを調整するための設備をさらに付け加えても良く、
モジュールまたはエレメントを直列あるいは並列に複数
本使用することも可能である。
An example of the preferred configuration of the present invention is as shown in FIG. 1, but the present invention is not limited to this. In the reduction step, the working fluid (I) 1 is usually sent by the pump 2 to the separation membrane module or the separation membrane element 4, but it is also possible to supply it by pressure without using a pump. Hydrogen 7 is supplied to the other side of the separation membrane. The working fluid (I) side and the hydrogen side are separated by a separation membrane, and the working fluid (I) does not flow into the hydrogen side. Since the membrane area per module or element is large, hydrogen is well dispersed and supplied, the reduction reaction occurs uniformly, and the working fluid (I
I) 5 is obtained. It is also possible to raise the reduction reaction rate by refluxing a part of it through the bypass line 6. Further, equipment for adjusting the supply pressure, flow rate, temperature, etc. of the working fluid (I) and hydrogen may be further added,
It is also possible to use a plurality of modules or elements in series or in parallel.

【0017】酸化工程では、通常作動液(II)5がポン
プ9で分離膜モジュールまたは分離膜エレメント11へ
送られるが、ポンプを使わずに圧力で供給することも可
能である。分離膜のもう一方の側に酸素14が供給され
る。作動液(II)側と酸素側は分離膜で区別されてい
て、作動液(II)が酸素側に流れ込むことはない。モジ
ュールまたはエレメント当たりの膜面積は大きいので酸
素が良く分散して供給されて酸化反応が均一に起こり、
作動液(III )12が得られる。その一部をバイパスラ
イン13を通して還流することで酸化反応率を高めるこ
とも可能である。また、作動液(II)や酸素の供給圧
力、流量、温度などを調整するための設備をさらに付け
加えても良く、モジュールまたはエレメントを直列ある
いは並列に複数本使用することも可能である。
In the oxidation step, the working fluid (II) 5 is usually sent to the separation membrane module or the separation membrane element 11 by the pump 9, but it is also possible to supply it under pressure without using a pump. Oxygen 14 is supplied to the other side of the separation membrane. The hydraulic fluid (II) side and the oxygen side are separated by a separation membrane, and the hydraulic fluid (II) does not flow into the oxygen side. Since the membrane area per module or element is large, oxygen is well dispersed and supplied, and the oxidation reaction occurs uniformly,
A hydraulic fluid (III) 12 is obtained. It is also possible to raise the oxidation reaction rate by refluxing a part of it through the bypass line 13. Further, equipment for adjusting the supply pressure, flow rate, temperature, etc. of the hydraulic fluid (II) or oxygen may be further added, and a plurality of modules or elements may be used in series or in parallel.

【0018】ガス透過膜を用いた気液混合反応装置は、
気液間の平衡関係を利用して気液混合を行なうものであ
るため飽和状態以上のガスを混入することがないため、
従来の直接注入法や静止型ミキサーによる気液混合法を
採用していた時のように、反応には不必要な過剰のガス
を混入して溶解不足の気泡が作動液中にできることもな
い。しかも、作動液供給圧力、ガス圧力、ガス流量、作
動液温度を調節することにより作動液中へのガス注入量
を任意にかつ簡単な操作でコントロールでき、均一かつ
短時間に、しかも流動系で還元あるいは酸化反応を実施
することができる。
A gas-liquid mixing reactor using a gas permeable membrane is
Since gas-liquid mixing is performed by utilizing the equilibrium relationship between gas-liquid, there is no possibility of mixing gases above the saturated state.
Unlike the case where the conventional direct injection method or the gas-liquid mixing method using a static mixer is adopted, an excessive amount of gas that is unnecessary for the reaction is not mixed and bubbles that are insufficiently dissolved are not formed in the working fluid. Moreover, by adjusting the hydraulic fluid supply pressure, gas pressure, gas flow rate, and hydraulic fluid temperature, the amount of gas injected into the hydraulic fluid can be controlled arbitrarily and by simple operation, and in a uniform, short-time, fluid system. A reduction or oxidation reaction can be carried out.

【0019】分離膜を介して作動液から過酸化水素を取
り出す方法としては、過酸化水素のみを透過させる膜を
使って直接分離する方法、過酸化水素を含む抽出溶媒
(例えば水など)の系を作動液から膜分離する方法ある
いは分離膜の片面に過酸化水素を含む作動液を流し、該
膜の反対側の面に抽出溶媒(例えば水など)を流すこと
によって過酸化水素を膜透過させて分離する方法などが
良い。
As a method of taking out hydrogen peroxide from the working liquid through the separation membrane, a method of directly separating by using a membrane that allows only hydrogen peroxide to permeate, an extraction solvent system containing hydrogen peroxide (for example, water, etc.) is used. The membrane is separated from the working fluid, or the working fluid containing hydrogen peroxide is caused to flow on one surface of the separation membrane and the extraction solvent (for example, water) is caused to flow on the opposite surface of the membrane so that the hydrogen peroxide permeates the membrane. A good method is to separate them.

【0020】本発明の基本的な構成は図1に示すとおり
であり、通常作動液(III )はポンプ16で分離膜モジ
ュールまたは分離膜エレメント18へ送られ、分離膜の
もう一方の側に水21がポンプ22で供給されるが、ポ
ンプを使わずに圧力で供給することも可能である。作動
液(III )側と水側は分離膜で区別されていて、作動液
(III )が水側に流れ込むことはない。モジュールまた
はエレメント当たりの膜面積は大きいので過酸化水素の
水抽出が膜面全体で均一に起こり、過酸化水素水24が
得られる。その一部をバイパスライン25を通して還流
することで過酸化水素濃度を高めることも可能である。
また、過酸化水素抽出後に得られる作動液(IV)の一部
をバイパスライン20を通して還流することで過酸化水
素抽出率を高めることも可能である。さらに、作動液
(III )や水の供給圧力、流量、温度などを調整するた
めの設備をさらに付け加えても良く、モジュールまたは
エレメントを直列あるいは並列に複数本使用することも
可能である。
The basic constitution of the present invention is as shown in FIG. 1. Normally, the working fluid (III) is sent to the separation membrane module or the separation membrane element 18 by the pump 16, and water is supplied to the other side of the separation membrane. 21 is supplied by the pump 22, but it is also possible to supply by pressure without using the pump. The hydraulic fluid (III) side and the water side are separated by a separation membrane, and the hydraulic fluid (III) does not flow into the water side. Since the membrane area per module or element is large, water extraction of hydrogen peroxide occurs uniformly on the entire membrane surface, and hydrogen peroxide solution 24 is obtained. It is also possible to raise the hydrogen peroxide concentration by refluxing a part of it through the bypass line 25.
It is also possible to raise the hydrogen peroxide extraction rate by refluxing a part of the working liquid (IV) obtained after the hydrogen peroxide extraction through the bypass line 20. Furthermore, equipment for adjusting the supply pressure, flow rate, temperature, etc. of the hydraulic fluid (III) or water may be further added, and it is also possible to use a plurality of modules or elements in series or in parallel.

【0021】分離膜を用いた過酸化水素の分離は、作動
液(III )中に溶解せずに分散している過酸化水素を大
きな面積の膜面で捕らえ、抽出水に溶解させるため、従
来のデカンテーション法法を採用していた時のように、
大量の水を使用したり、大量の水を混合後大容量の槽内
で液液分離のための静置に時間を掛けたりする必要もな
い。しかも、作動液(III )と水の供給圧力、流量、温
度を調節することにより過酸化水素水の濃度や抽出率を
任意にかつ簡単な操作でコントロールでき、均一かつ短
時間に、しかも流動系で抽出処理を実施することができ
る。
In the separation of hydrogen peroxide using a separation membrane, the hydrogen peroxide dispersed without being dissolved in the working fluid (III) is captured by the membrane surface having a large area and dissolved in the extracted water. As when the decantation method of
There is no need to use a large amount of water or to stand still for liquid-liquid separation in a large capacity tank after mixing a large amount of water. Moreover, by adjusting the supply pressure, flow rate, and temperature of the hydraulic fluid (III) and water, the concentration and extraction rate of the hydrogen peroxide solution can be controlled arbitrarily and by simple operation. The extraction process can be carried out with.

【0022】過酸化水素抽出後の作動液(IV)はポンプ
27で分離膜モジュールまたは分離膜エレメント29へ
送られ、膜処理によって副反応生成物や分解物を除去し
て再生した作動液(I)として還元工程に送られるが、
ポンプを使わずに圧力で供給することも可能である。そ
の一部をバイパスライン30を通して還流することで濾
過効率を高めることも可能である。
The working fluid (IV) after the hydrogen peroxide extraction is sent to the separation membrane module or the separation membrane element 29 by the pump 27, and the working fluid (I) regenerated by removing the side reaction products and decomposition products by the membrane treatment. ) Is sent to the reduction process,
It is also possible to supply by pressure without using a pump. It is also possible to improve the filtration efficiency by refluxing a part of the flow through the bypass line 30.

【0023】また、作動液(IV)の供給圧力、流量、温
度などを調整するための設備をさらに付け加えても良
く、モジュールまたはエレメントを直列あるいは並列に
複数本使用することも可能である。
Further, equipment for adjusting the supply pressure, flow rate, temperature, etc. of the hydraulic fluid (IV) may be further added, and a plurality of modules or elements can be used in series or in parallel.

【0024】分離膜を用いた作動液の再生では、作動液
(IV)の供給圧力、流量、温度を調節することで再生効
率を任意にかつ簡単な操作でコントロールでき、小型で
あるにもかかわらず大容量の作動液を流動系で再生処理
することができる。
In the regeneration of the working fluid using the separation membrane, the regeneration efficiency can be arbitrarily and easily controlled by adjusting the supply pressure, the flow rate and the temperature of the working fluid (IV). Instead, a large volume of hydraulic fluid can be regenerated in a fluid system.

【0025】[0025]

【実施例】次に、本発明を実施例に基づき説明するが、
これにより、なんら限定されるものではない。
EXAMPLES Next, the present invention will be explained based on examples.
This is by no means limiting.

【0026】実施例1 特開平1−34408号公報に記載の方法により、ポリ
テトラフルオロエチレン系樹脂多孔性中空糸膜(分離孔
径0.2μm、内径/外径=0.6mm/1.0mm)を作
製した。この中空糸膜の束の両端部を接着剤でシールし
て中空糸膜の内側と外側を区別した中空糸膜モジュール
(有効長50cm×本数3000本)を作製した。
Example 1 A polytetrafluoroethylene resin porous hollow fiber membrane (separation pore diameter 0.2 μm, inner diameter / outer diameter = 0.6 mm / 1.0 mm) was prepared by the method described in JP-A-1-34408. Was produced. Both ends of this bundle of hollow fiber membranes were sealed with an adhesive to prepare a hollow fiber membrane module (effective length 50 cm × 3000 pieces) in which the inside and outside of the hollow fiber membrane were distinguished.

【0027】次に、塩化パラジウム1%水溶液を90℃
に加熱し、水酸化ナトリウム水溶液でPH10±0.5
に保ちながら50分の1の容量の37%ホルマリンを滴
下し、前記中空糸膜で瀘過しながら循環通液した後、純
水で洗浄、減圧乾燥して触媒担持膜を得た。(パラジウ
ムの重量=210g)/(膜の重量=660g)=31.8%であった。
Then, a 1% aqueous solution of palladium chloride was added at 90 ° C.
Heated to pH 10 ± 0.5 with sodium hydroxide solution.
37% formalin with a volume of 1/50 was added dropwise while maintaining the above temperature, and the solution was circulated while passing through the hollow fiber membrane, washed with pure water and dried under reduced pressure to obtain a catalyst-supporting membrane. (Palladium weight = 210 g) / (membrane weight = 660 g) = 31.8%.

【0028】この中空糸膜の内側に、C9 −アルキルベ
ンゼン75容量%、トリオクチルリン酸エステル25容
量%の溶媒に2−エチルアントラキノンを30.0g/
リットル、2−エチルテトラヒドロアントラキノンを7
0.0g/リットル含む作動液を45℃、0.5トン/
時間で供給し、中空糸膜の外側から水素ガスを1.5kg
/cm2 の圧力で供給した。出口側の作動液の組成は、2
−エチルアントラキノンを30g/リットル、2−エチ
ルテトラヒドロアントラキノンを36.5g/リット
ル、2−エチルテトラヒドロアントラヒドロキノンを3
3.8g/リットルであった。
Inside the hollow fiber membrane, 30.0 g of 2-ethylanthraquinone was added to a solvent containing 75% by volume of C 9 -alkylbenzene and 25% by volume of trioctyl phosphate.
7 liters of 2-ethyltetrahydroanthraquinone
Working fluid containing 0.0 g / liter at 45 ° C, 0.5 ton /
The hydrogen gas is supplied for 1.5 hours from the outside of the hollow fiber membrane.
It was supplied at a pressure of / cm 2 . The composition of the hydraulic fluid on the outlet side is 2
-Ethylanthraquinone 30 g / liter, 2-ethyltetrahydroanthraquinone 36.5 g / liter, 2-ethyltetrahydroanthrahydroquinone 3
It was 3.8 g / liter.

【0029】実施例2 パラジウムを担持させていない以外は実施例1と同様の
中空糸膜モジュールを用い、中空糸膜の内側に実施例1
で得られた作動液を50℃、0.5トン/時間で供給
し、中空糸膜の外側から酸素ガスを1.5kg/cm2 の圧
力で供給した。出口側の作動液の組成は、2−エチルア
ントラキノンを30.0g/リットル、2−エチルテト
ラヒドロアントラキノンを69.8g/リットル、2−
エチルテトラヒドロアントラヒドロキノンを0.2g/
リットル、過酸化水素5.1g/リットルであった。
Example 2 The same hollow fiber membrane module as in Example 1 was used except that palladium was not supported, and Example 1 was placed inside the hollow fiber membrane.
The working fluid obtained in Step 2 was supplied at 50 ° C. at 0.5 ton / hour, and oxygen gas was supplied from the outside of the hollow fiber membrane at a pressure of 1.5 kg / cm 2 . The composition of the working fluid on the outlet side was as follows: 2-ethylanthraquinone 30.0 g / liter, 2-ethyltetrahydroanthraquinone 69.8 g / liter, 2-
0.2 g of ethyltetrahydroanthrahydroquinone /
It was liter and hydrogen peroxide 5.1 g / liter.

【0030】実施例3 エタノールにより親水化処理した以外は実施例2と同様
の中空糸膜モジュールを用い、中空糸膜の内側に実施例
2で得られた作動液を0.5トン/時間で供給し、中空
糸膜の外側に純水(30℃)を0.005トン/時間で
供給して作動液から過酸化水素を抽出した。抽出水中の
過酸化水素の濃度は30.3重量%であった。
Example 3 The same hollow fiber membrane module as in Example 2 was used except that it was hydrophilized with ethanol, and the working fluid obtained in Example 2 was placed inside the hollow fiber membrane at 0.5 ton / hour. Then, pure water (30 ° C.) was supplied to the outside of the hollow fiber membrane at 0.005 ton / hour to extract hydrogen peroxide from the working liquid. The concentration of hydrogen peroxide in the extracted water was 30.3% by weight.

【0031】[0031]

【発明の効果】本発明により、コントロールが容易でし
かも設置スペースなどが小さい小型の装置による過酸化
水素の製造が可能となる。そして、過酸化水素の消費場
所近くでの製造が可能となるため、直接消費ラインに接
続することが可能となったり、運送費などの削減ができ
るという効果もある。また、作動液の滞留時間が短く、
流動系における製造が可能となるため、生産効率が高
く、品質面や省エネルギーの観点からも効果が大きい。
According to the present invention, hydrogen peroxide can be produced by a small apparatus which is easy to control and has a small installation space. Further, since hydrogen peroxide can be manufactured near the place of consumption, it is possible to connect directly to the consumption line, and it is also possible to reduce transportation costs and the like. In addition, the residence time of the hydraulic fluid is short,
Since it can be manufactured in a fluid system, the production efficiency is high, and the effect is great in terms of quality and energy saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化還元反応の方法の一例FIG. 1 is an example of the method of the redox reaction of the present invention.

【符号の説明】[Explanation of symbols]

1:作動液(I) 2:ポンプ 3:フィルター 4:分離膜モジュールまたは分離膜エレメント 5:作動液(II) 6:バイパスライン 7:水素 8:分離膜 9:ポンプ 10:フィルター 11:分離膜モジュールまたは分離膜エレメント 12:作動液(III ) 13:バイパスライン 14:酸素 15:分離膜 16:ポンプ 17:フィルター 18:分離膜モジュールまたは分離膜エレメント 19:作動液(IV) 20:バイパスライン 21:水 22:ポンプ 23:フィルター 24:過酸化水素水 25:バイパスライン 26:分離膜 27:ポンプ 28:フィルター 29:分離膜モジュールまたは分離膜エレメント 30:バイパスライン 31:分離膜 1: working fluid (I) 2: pump 3: filter 4: separation membrane module or separation membrane element 5: working fluid (II) 6: bypass line 7: hydrogen 8: separation membrane 9: pump 10: filter 11: separation membrane Module or separation membrane element 12: hydraulic fluid (III) 13: bypass line 14: oxygen 15: separation membrane 16: pump 17: filter 18: separation membrane module or separation membrane element 19: hydraulic fluid (IV) 20: bypass line 21 : Water 22: Pump 23: Filter 24: Hydrogen peroxide water 25: Bypass line 26: Separation membrane 27: Pump 28: Filter 29: Separation membrane module or separation membrane element 30: Bypass line 31: Separation membrane

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化還元工程に分離膜を用いることを特
徴とする過酸化水素の製造方法。
1. A method for producing hydrogen peroxide, which comprises using a separation membrane in the redox step.
【請求項2】 (1)キノン類を含む作動液(I)を触
媒の存在下に水素添加し、ヒドロキノン化合物を生成す
る還元工程、(2)作動液(II)中のヒドロキノン化合
物を酸化しキノン化合物および過酸化水素を生成する酸
化工程、(3)生成した過酸化水素を作動液(III )よ
り分離する分離工程、及び(4)分離工程後に作動液
(IV)を再生して還元工程に循環使用するための再生工
程よりなる群より選ばれる、少なくとも(1)及び
(2)の工程を含んだ工程を有し、かつ、少なくとも
(1)または(2)の工程に分離膜を用いることを特徴
とする過酸化水素の製造方法。
2. A reduction step of (1) hydrogenating a working fluid (I) containing quinones in the presence of a catalyst to produce a hydroquinone compound, and (2) oxidizing a hydroquinone compound in the working fluid (II). Oxidation step for producing quinone compound and hydrogen peroxide, (3) Separation step for separating generated hydrogen peroxide from working fluid (III), and (4) Regeneration and reduction step for working fluid (IV) after separation step Has a step including at least the steps (1) and (2) selected from the group consisting of a regeneration step for recycling and using a separation membrane in at least the step (1) or (2) A method for producing hydrogen peroxide, comprising:
【請求項3】 請求項2記載の(1)のキノン類を含む
作動液を触媒の存在下に水素添加し、ヒドロキノン化合
物を生成する還元工程において、分離膜を介して水素を
透過混合して反応させることを特徴とする過酸化水素の
製造方法。
3. A hydrogen-containing working fluid containing the quinone according to claim 1 is added in the presence of a catalyst to produce a hydroquinone compound, and hydrogen is permeated and mixed through a separation membrane. A method for producing hydrogen peroxide, which comprises reacting.
【請求項4】 請求項2記載の(2)のヒドロキノン化
合物を酸化しキノン化合物および過酸化水素を生成する
酸化工程において、分離膜を介して酸素を透過混合して
反応させることを特徴とする過酸化水素の製造方法。
4. In the oxidation step of oxidizing the hydroquinone compound according to claim 2 (2) to generate a quinone compound and hydrogen peroxide, oxygen is permeated and mixed through a separation membrane to react. Method for producing hydrogen peroxide.
【請求項5】 請求項2記載の(3)の生成した過酸化
水素を作動液より分離する工程において、分離膜を介し
て過酸化水素を取り出すことを特徴とする過酸化水素の
製造方法。
5. A method for producing hydrogen peroxide, wherein in the step (3) of separating hydrogen peroxide produced from a working fluid, hydrogen peroxide is taken out through a separation membrane.
【請求項6】 請求項1、2、3、4、5記載の分離膜
の少なくとも1つが中空糸膜であることを特徴とする過
酸化水素の製造方法。
6. A method for producing hydrogen peroxide, wherein at least one of the separation membranes according to claims 1, 2, 3, 4, and 5 is a hollow fiber membrane.
JP4261812A 1992-09-30 1992-09-30 Production of hydrogen peroxide Pending JPH06106046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4261812A JPH06106046A (en) 1992-09-30 1992-09-30 Production of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4261812A JPH06106046A (en) 1992-09-30 1992-09-30 Production of hydrogen peroxide

Publications (1)

Publication Number Publication Date
JPH06106046A true JPH06106046A (en) 1994-04-19

Family

ID=17367064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4261812A Pending JPH06106046A (en) 1992-09-30 1992-09-30 Production of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPH06106046A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521616A (en) * 2002-03-28 2005-07-21 デグサ アクチエンゲゼルシャフト Method for producing hydrogen peroxide
JP2015020940A (en) * 2013-07-22 2015-02-02 国立大学法人静岡大学 Hydrogen peroxide synthesis method
CN105439100A (en) * 2015-12-23 2016-03-30 安徽金禾实业股份有限公司 Exhaust gas discharging apparatus for reducing oxidation-fluid storage tanks
CN105540551A (en) * 2014-11-03 2016-05-04 中国石油化工股份有限公司 Efficient hydrogenation process in hydrogen peroxide production
JP2020007201A (en) * 2018-07-11 2020-01-16 三菱瓦斯化学株式会社 Method for producing hydrogen peroxide solution
CN113233425A (en) * 2021-06-28 2021-08-10 清华大学 Hydrogen peroxide extraction process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521616A (en) * 2002-03-28 2005-07-21 デグサ アクチエンゲゼルシャフト Method for producing hydrogen peroxide
JP2015020940A (en) * 2013-07-22 2015-02-02 国立大学法人静岡大学 Hydrogen peroxide synthesis method
CN105540551A (en) * 2014-11-03 2016-05-04 中国石油化工股份有限公司 Efficient hydrogenation process in hydrogen peroxide production
CN105439100A (en) * 2015-12-23 2016-03-30 安徽金禾实业股份有限公司 Exhaust gas discharging apparatus for reducing oxidation-fluid storage tanks
JP2020007201A (en) * 2018-07-11 2020-01-16 三菱瓦斯化学株式会社 Method for producing hydrogen peroxide solution
CN110713174A (en) * 2018-07-11 2020-01-21 三菱瓦斯化学株式会社 Method for producing aqueous hydrogen peroxide solution
CN113233425A (en) * 2021-06-28 2021-08-10 清华大学 Hydrogen peroxide extraction process

Similar Documents

Publication Publication Date Title
Strathmann Membrane separation processes: current relevance and future opportunities
JP4447457B2 (en) Filtration equipment, membrane bioreactors, and membrane bioreactor processes
KR100575113B1 (en) Porous hollow fiber membranes and method of making the same
US6423236B1 (en) Method for treating waste water
JP2007519823A (en) Apparatus and method for osmotic membrane distillation
KR100623326B1 (en) Method for treating waste water
JPH01502192A (en) Phase transfer catalysis method
US9149769B2 (en) Dehydration system and dehydration method
EP1255698B1 (en) Water treatment unit
JPH06106046A (en) Production of hydrogen peroxide
US5925254A (en) Process for separating sodium from aqueous effluents resulting from the reprocessing of spent nuclear fuel elements
US20110083285A1 (en) Apparatus and method for production of natural dye
WO2001028666A1 (en) Process for removing and recovering of phenolic compounds from aqueous fluids
US5348657A (en) Process for the separation of catalyst-free working solution from the hydrogenation circuit of the anthraquinone process for the production of hydrogen peroxide
US4822491A (en) Process for transporting metal ions by means of microporous membranes
CN215917002U (en) Internal pressure formula dull and stereotyped membrane filtration membrane group in nuclear pore
JPS6143088B2 (en)
US7799225B1 (en) Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof
JPH06106045A (en) Method for oxidation-reduction reaction
JPH0813353B2 (en) Pure water production equipment
CN117771974B (en) Preparation method and application of graphene oxide ceramic composite membrane
CN112076627B (en) Method for applying reverse osmosis membrane and permeable membrane to separation of epoxy chloropropane
CN215782750U (en) Nuclear pore flat plate membrane filtration membrane group
JPH0515790A (en) New hollow fiber ion adsorbing membrane structure
JPH0356186A (en) Apparatus for removing dissolved carbon dioxide in liquid