JPH06104228A - Method and apparatus for rounding notch part in semiconductor wafer - Google Patents

Method and apparatus for rounding notch part in semiconductor wafer

Info

Publication number
JPH06104228A
JPH06104228A JP27541892A JP27541892A JPH06104228A JP H06104228 A JPH06104228 A JP H06104228A JP 27541892 A JP27541892 A JP 27541892A JP 27541892 A JP27541892 A JP 27541892A JP H06104228 A JPH06104228 A JP H06104228A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
notch
cylindrical grindstone
chamfering
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27541892A
Other languages
Japanese (ja)
Inventor
Haruo Ozaki
治雄 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Shoji Co Ltd
M Tec Co Ltd
Original Assignee
Daito Shoji Co Ltd
M Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daito Shoji Co Ltd, M Tec Co Ltd filed Critical Daito Shoji Co Ltd
Priority to JP27541892A priority Critical patent/JPH06104228A/en
Priority to DE19934331727 priority patent/DE4331727A1/en
Publication of JPH06104228A publication Critical patent/JPH06104228A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To simultaneously round the upper and lower portions of a notch part by a method wherein a semiconductor wafer is transferred rectlinearly to a direction in which it is brought into close to, or separated from, a cylindrical whetstone. CONSTITUTION:The angle of rotation of a semiconductor wafer 14 is input sequentially to a computer 13, and the relative rectlinear movement amount between the semiconductor wafer 14 and a cylindrical whetstone 11 in the G-H direction with reference to the angle of rotation of the semiconductor wafer 14 is operated according to an operation expression which has been stored in advance in a memory in the computer 13. A work mounting stand 12 and, consequently, the semiconductor wafer 14 are moved relatively to the inner surface part of a groove in the cylindrical whetstone 11 in the G-H direction by means of the value of the relative rectlinear movement amount which has been operated sequentially. In this manner, from the grinding face, i.e., the inner face part of the groove part, of the cylindrical whetstone 11, the peripheral edge part of a notch part 14b in the semiconductor wafer 14 and the boundary part between the notch part 14b and an outer circumferential part 14a are rounded according to a desired finish contour.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウェーハのノッ
チ部のアール面取り方法及び装置に係り、特に外周面に
断面台形の溝部を設けた円筒状砥石を用いて半導体ウェ
ーハのノッチ部の上下両面の先端角部に板厚方向のアー
ル面取りを同時に加工できるようにした、作業性の極め
て優れた半導体ウェーハのノッチ部のアール面取り方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for chamfering a notch portion of a semiconductor wafer, and more particularly, to the upper and lower surfaces of the notch portion of a semiconductor wafer using a cylindrical grindstone having a groove portion having a trapezoidal cross section on its outer peripheral surface. And a round chamfering method for a notch portion of a semiconductor wafer, which is extremely excellent in workability, and is capable of simultaneously performing round chamfering in the plate thickness direction on the tip corner portion of the above.

【0002】[0002]

【従来の技術】半導体ウェーハは、薄い円板状の半導体
の総称であり、通常円柱状に精製された単体結晶母材か
ら円板状に切り出され、その一表面は鏡面研摩され、種
々の半導体素子がその表面上にエッチング法などにより
形成されるものである。
2. Description of the Related Art A semiconductor wafer is a general term for thin disk-shaped semiconductors, and is usually cut into a disk shape from a single crystal base material refined into a cylindrical shape, one surface of which is mirror-polished to form various semiconductors. An element is formed on the surface by an etching method or the like.

【0003】半導体ウェーハでは、例えばその寸法は、
直径10乃至400mmφ、厚さ200μm乃至10m
mの薄い円板状のものであり、円周方向の方位を容易に
合わせ易くするため、従来は外周部、即ち端面の一部を
直線状に研削していわゆるオリエンテーションフラット
を形成していた。
For semiconductor wafers, for example, their dimensions are
Diameter 10 to 400 mmφ, thickness 200 μm to 10 m
It is a thin disk-shaped m, and in order to easily match the orientation in the circumferential direction, conventionally, a so-called orientation flat was formed by linearly grinding the outer peripheral portion, that is, a part of the end face.

【0004】しかしオリエンテーションフラットは、半
導体ウェーハの一部を直線状に切り取ることにより形成
されるので、近年半導体ウェーハが大型化するに伴い該
切り取られる部分も多くなって無視できない無駄が生
じ、高価な半導体ウェーハを効率的に利用する上で問題
があった。
However, since the orientation flat is formed by cutting a part of the semiconductor wafer in a straight line, the size of the cut part increases as the size of the semiconductor wafer increases in recent years, resulting in waste that cannot be ignored and is expensive. There is a problem in efficiently using the semiconductor wafer.

【0005】このような要求から、オリエンテーション
フラットに代わって半導体ウェーハの外周部にV字状の
ノッチ部を形成し、該ノッチ部に位置決めピンを当接さ
せて半導体ウェーハの位置決めを行う方法が提案されて
いる。
In view of these requirements, a method of forming a V-shaped notch portion on the outer peripheral portion of the semiconductor wafer instead of the orientation flat and positioning the semiconductor wafer by abutting a positioning pin on the notch portion is proposed. Has been done.

【0006】一方、半導体ウェーハの表面上に微細な加
工を行う際に問題となるのは、半導体ウェーハの表面や
外周面より発生する塵埃であり、半導体ウェーハの外周
面やノッチ部のエッジがシャープであると、該エッジに
位置決めピン等を当接させたとき、欠けやチップが発生
して塵埃の原因となっていた。
On the other hand, a problem when performing fine processing on the surface of a semiconductor wafer is dust generated from the surface or outer peripheral surface of the semiconductor wafer, and the outer peripheral surface of the semiconductor wafer or the edges of notches are sharp. Then, when a positioning pin or the like is brought into contact with the edge, chips or chips are generated, which causes dust.

【0007】このような塵埃は、半導体ウェーハの表面
に付着して半導体ウェーハ上に製作される電子部品の収
率を低下させるばかりでなく、製作された電子部品の性
能を劣化させる原因となっていた。
[0007] Such dust not only adheres to the surface of the semiconductor wafer and reduces the yield of electronic components manufactured on the semiconductor wafer, but also causes the performance of the produced electronic components to deteriorate. It was

【0008】この問題は、近年益々集積度が上がりパタ
ーンの線幅が更に細くなる傾向にあるため歩留りを向上
させて生産性を向上させる上で深刻な問題となってい
る。
In recent years, this problem has become more and more integrated and the line width of patterns tends to become narrower, which is a serious problem in improving yield and productivity.

【0009】外周面に形成されるオリエンテーションフ
ラットやノッチ部のエッジを除去することは、塵埃の発
生を防止する上で有効な手段であり、従来オリエンテー
ションフラットについては面取り加工が施されていた
が、ノッチ部は、形状の複雑さから加工が面倒であり、
そのまま使用されることが多かった。
Removal of the orientation flats and the edges of the notches formed on the outer peripheral surface is an effective means for preventing the generation of dust. Conventionally, the orientation flats have been chamfered. The notch part is complicated to shape, which makes it difficult to process.
It was often used as it was.

【0010】該ノッチ部の面取り加工の方法として、例
えば特開平2−87523に開示されているように、回
転砥石をノッチ部のエッジに上方から、また下方から接
触させて上下面を別々の工程で面取り加工する方法が提
案されているが、該方法による処理はエッジを直線状に
削除する、いわゆる45°面取り加工であって90°の
鋭いエッジはなくなるものの、45°のエッジが残り、
エッジに丸みが付けられた理想的なエッジ処理方法(以
後アール面取り加工という。)ではなく改善の余地があ
った。
As a method of chamfering the notch, for example, as disclosed in Japanese Patent Laid-Open No. 2-87523, a rotating grindstone is brought into contact with the edge of the notch from above and below to separate the upper and lower surfaces from each other. Although a method of chamfering is proposed by the method, the processing by the method is a so-called 45 ° chamfering process in which edges are deleted linearly, and sharp edges of 90 ° are eliminated, but 45 ° edges remain,
There was room for improvement rather than the ideal edge treatment method with rounded edges (hereinafter referred to as R chamfering).

【0011】また上記従来例においては、上下のエッジ
を夫々別工程で加工しなければならず、加工に多くの時
間を要するという欠点があった。
Further, in the above-mentioned conventional example, the upper and lower edges must be processed in separate steps, and there is a drawback in that the processing takes a lot of time.

【0012】また本願出願人の特願昭63−33517
9に開示された装置によりアール面取り加工を行うため
には、図5を参照して、回転砥石1を回転させて半導体
ウェーハ2に接触させながら該回転砥石1の中心軸3を
図に示す複雑な曲線Sに沿って矢印T方向に移動させて
加工しなければならず、回転砥石1の動きに複雑な制
御、即ち3軸制御を必要とし、装置が高価かつ大型とな
る点で不利であった。
The applicant's Japanese Patent Application No. Sho 63-33517
In order to perform the round chamfering process by the apparatus disclosed in No. 9, referring to FIG. It has to be moved along the curved line S in the direction of the arrow T for machining, requires complicated control for the movement of the rotary grindstone 1, that is, three-axis control, and is disadvantageous in that the device is expensive and large. It was

【0013】また半導体ウェーハの直径やノッチ部を正
確な寸法に加工することは、次工程の微細加工時の位置
合わせ時間を短縮することができる結果となるので、高
精度の研削加工が要求される。
Further, if the diameter or notch of the semiconductor wafer is processed to an accurate dimension, the positioning time at the time of fine processing in the next process can be shortened, so that highly accurate grinding is required. It

【0014】[0014]

【発明が解決しようとする課題】本発明は,上記した従
来技術の欠点を除くためになされたものであって、その
目的とするところは、隅部に丸みを持つ断面台形の溝が
形成された円筒状砥石を半導体ウェーハの軸芯と平行に
配設された軸を回転中心として回転させながら半導体ウ
ェーハの外周部に形成されたノッチ部に当接させ、該ノ
ッチ部の平面形状に沿って移動させることにより、ノッ
チ部の上下2つの先端角部の板厚方向のアール(R)面
取りを1回の加工によって同時に行うことができるよう
にすることであり、またこれによって複雑な3軸制御を
必要とせず、また装置を大型のものとすることなく短時
間の加工によってエッジに板厚方向の丸みが付けられた
理想的なアール面取り加工のエッジ処理を行うことがで
きるようにすることである。
SUMMARY OF THE INVENTION The present invention has been made to eliminate the above-mentioned drawbacks of the prior art. The object of the present invention is to form a groove having a trapezoidal cross section with a rounded corner. The cylindrical grindstone is brought into contact with the notch portion formed on the outer peripheral portion of the semiconductor wafer while rotating around an axis arranged parallel to the axis of the semiconductor wafer as a rotation center, and along the plane shape of the notch portion. By moving it, it is possible to simultaneously perform rounded (R) chamfering in the plate thickness direction of the upper and lower two tip corners of the notch part by one machining, and by this, complicated three-axis control It is possible to perform an ideal round chamfering edge treatment with a rounded edge in the plate thickness direction by a short-time processing without requiring a large-sized device. It is.

【0015】また他の目的は、ノッチ部のエッジに板厚
方向のアール面取りすることにより、ノッチ部に位置決
めピンを当接させたときノッチ部先端角部の欠けを防止
して塵埃の発生をなくし、半導体ウェーハへの塵埃の付
着を防止し、ひいては半導体素子の製作歩留りを大幅に
向上させることである。
Another object is to round the edges of the notch in the plate thickness direction so as to prevent chipping of the corner of the tip of the notch when the positioning pin is brought into contact with the notch and to prevent dust from being generated. The purpose is to prevent dust from adhering to the semiconductor wafer, and to greatly improve the manufacturing yield of semiconductor elements.

【0016】[0016]

【課題を解決するための手段】要するに本発明方法(請
求項1)は、ノッチ部が形成された半導体ウェーハの該
ノッチ部周縁部を面取りするにあたり、直進移送可能と
したワーク取付け台に面取り加工すべき半導体ウェーハ
を水平状に支持して固定し、外周面に断面台形の溝部を
形成しかつ該溝部の底部の両隅部に丸みを形成した円筒
状砥石を垂直状に配置すると共に前記半導体ウェーハの
ノッチ部周縁部が該円筒状砥石の溝内面部と接触するよ
うに配置して該円筒状砥石をその中心軸回りに高速回転
させる一方、前記ワーク取付け台に固定された前記半導
体ウェーハをその中心軸回り(D方向)に低速度で回転
させながら該半導体ウェーハを前記円筒状砥石に対し接
近し又は離脱する方向(H−G方向)に直進移送し、こ
れにより前記半導体ウェーハのノッチ部周縁部及び該半
導体ウェーハのノッチ部と外周部との両側境界部のアー
ル面取りを行うことを特徴とするものである。
In summary, according to the method of the present invention (claim 1), when chamfering a peripheral edge portion of a notch-formed semiconductor wafer, a chamfering process is carried out on a work mounting table which can be moved in a straight line. The semiconductor wafer to be supported is horizontally supported and fixed, and a cylindrical grindstone having a groove with a trapezoidal cross section formed on the outer peripheral surface and rounded corners at the bottom of the groove is arranged vertically and the semiconductor The notch peripheral edge of the wafer is arranged so as to be in contact with the groove inner surface of the cylindrical grindstone and the cylindrical grindstone is rotated at high speed around its central axis, while the semiconductor wafer fixed to the work mount is fixed. While rotating at a low speed around the central axis (direction D), the semiconductor wafer is linearly transferred in a direction toward or away from the cylindrical grindstone (direction H-G), whereby the semiconductor wafer is moved. It is characterized in carrying out the radiusing both sides boundary between the notch periphery and the notch portion and the peripheral portion of the semiconductor wafer of the wafer.

【0017】また、本発明装置(請求項2)は、ノッチ
部が形成された半導体ウェーハの該ノッチ部周縁部を面
取りする面取り装置において、外周面に断面台形の溝部
を形成しかつ該溝部の底部の両隅部に丸み部を形成した
円筒状砥石と、該円筒状砥石を垂直状に回転可能に支持
する支持台と、該円筒状砥石をその中心軸回りに高速回
転させる第1回転駆動手段と、前記半導体ウェーハを水
平状に固定する台座を有すると共に該台座の高さを調整
可能としたワーク取付け台と、該ワーク取付け台に固定
された半導体ウェーハの周縁部を前記円筒状砥石の溝部
の内部に接近し又は離脱する方向(H−G方向)に直進
移送する直進移送手段と、前記ワーク取付け台に固定さ
れた半導体ウェーハをその中心軸回り(D方向)に低速
回転させる第2回転駆動手段と、前記第1回転駆動手
段、前記第2回転駆動手段及び前記直進移送手段と接続
され、前記半導体ウェーハの回転角度を逐次検出すると
共に逐次検出された該回転角度に対応するH−G方向の
直進移動距離を演算し、該各演算値に基いて前記円筒状
砥石と半導体ウェーハとを逐次H−G方向に移動させる
ことにより前記半導体ウェーハのノッチ部周縁部及び該
半導体ウェーハの円周部と該ノッチ部周縁部との境界部
の面取り動作を制御する電子制御装置とを備えたことを
特徴とするものである。
Further, the apparatus of the present invention (Claim 2) is a chamfering device for chamfering a peripheral edge portion of a notch portion of a semiconductor wafer having a notch portion, wherein a groove portion having a trapezoidal cross section is formed on an outer peripheral surface, and the groove portion is formed. A cylindrical grindstone having rounded corners at the bottom, a support for vertically rotatably supporting the cylindrical grindstone, and a first rotation drive for rotating the cylindrical grindstone at high speed around its central axis. Means, a work mount having a pedestal for horizontally fixing the semiconductor wafer, and a height of the pedestal adjustable, and a peripheral portion of the semiconductor wafer fixed on the work mount to the cylindrical grindstone. A rectilinear transfer means for rectilinearly transferring in a direction toward or away from the inside of the groove (HG direction), and a semiconductor wafer fixed to the work mount, which is rotated at a low speed around its central axis (D direction). Times The driving means is connected to the first rotation driving means, the second rotation driving means, and the rectilinear transfer means, and the rotation angle of the semiconductor wafer is sequentially detected and the H-G corresponding to the rotation angle is sequentially detected. Direction straight travel distance is calculated, and the cylindrical grindstone and the semiconductor wafer are sequentially moved in the H-G direction based on the calculated values, thereby forming the notch peripheral edge of the semiconductor wafer and the circumference of the semiconductor wafer. And an electronic control device for controlling a chamfering operation of a boundary portion between the notch portion and the peripheral portion of the notch portion.

【0018】[0018]

【実施例】以下本発明を図面に示す実施例に基いて説明
する。図1から図4を参照して、本発明に係る半導体ウ
ェーハのノッチ部のアール面取り装置10は、円筒状砥
石11と、ワーク取付け台12と、制御装置13とを備
えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in the drawings. With reference to FIGS. 1 to 4, a round chamfering device 10 for a notch portion of a semiconductor wafer according to the present invention includes a cylindrical grindstone 11, a work mounting base 12, and a control device 13.

【0019】円筒状砥石11は、半導体ウェーハ14の
外周部14aに形成されたV字形(厳密に言えば台形)
のノッチ部14bを研削して板厚方向のエッジ部14c
をアール面取りするためのものであって、断面形状が台
形の溝部11aが形成された円筒形状に製作されてお
り、隅部11bに半径r(例えば0.03mm)の丸み
が付けられて製作されている。
The cylindrical grindstone 11 is V-shaped (strictly speaking, trapezoidal) formed on the outer peripheral portion 14a of the semiconductor wafer 14.
The notch portion 14b of the plate is ground to edge 14c in the plate thickness direction.
For round chamfering, is manufactured in a cylindrical shape with a groove 11a having a trapezoidal cross section, and is formed by rounding a corner 11b with a radius r (for example, 0.03 mm). ing.

【0020】そして溝部11aの底部11cの半径は、
半導体ウェーハ14のノッチ部14bの底部14dの曲
率半径R1 と同等又はこれより小さい半径に設定されて
おり、中心には駆動装置の一例たる電動モータ15の回
転軸16が挿通され、ナット18によって取り外し可能
に固定されている。
The radius of the bottom portion 11c of the groove portion 11a is
The radius of curvature R 1 of the bottom portion 14d of the notch portion 14b of the semiconductor wafer 14 is set to be equal to or smaller than the radius R 1, and the rotary shaft 16 of the electric motor 15, which is an example of a driving device, is inserted through the center and the nut 18 is used. It is fixed so that it can be removed.

【0021】円筒状砥石11の回転アンバランス量は、
0.3gmm以下とされ、電動モータ15による矢印A
方向の高速回転(例えば30,000乃至50,000
rpm)に耐え得るようになっている。
The rotational unbalance amount of the cylindrical grindstone 11 is
The arrow A by the electric motor 15 is set to 0.3 gmm or less.
High speed rotation (eg 30,000 to 50,000)
rpm).

【0022】電動モータ15が固定された移動台7に
は、電動モータ19の回転軸に固定されたおねじ8が螺
合するナット9が固着されており、電動モータ19を回
転させることにより移動台7、即ち円筒状砥石11を矢
印B又はC方向に移動させるように構成されている。
A nut 9 to which a male screw 8 fixed to a rotating shaft of an electric motor 19 is fixed is fixed to a moving table 7 to which the electric motor 15 is fixed, and the nut 9 is rotated by rotating the electric motor 19. The table 7, that is, the cylindrical grindstone 11 is configured to move in the arrow B or C direction.

【0023】ワーク取付け台12は、半導体ウェーハ1
4を取り付けて加工するためのものであって、上面12
aにエア吸引穴12b及びエア吸引溝12cが形成され
ており、該エア吸引穴12b及びエア吸引溝12cは、
真空ポンプ(図示せず)に連通接続され、該真空ポンプ
の作用によりエアがエア吸引穴12bから吸引されて半
導体ウェーハ14を吸着して固定するようになってい
る。
The work mounting base 12 is the semiconductor wafer 1
4 for attaching and processing 4, and the upper surface 12
An air suction hole 12b and an air suction groove 12c are formed in a, and the air suction hole 12b and the air suction groove 12c are
A vacuum pump (not shown) is communicatively connected, and air is sucked from the air suction holes 12b by the action of the vacuum pump to suck and fix the semiconductor wafer 14.

【0024】またワーク取付け台12には、半導体ウェ
ーハ14の回転中心とワーク取付け台12の回転中心と
を合わせるための図示しない芯出し機構が設けられてい
る。
Further, the work mounting base 12 is provided with a centering mechanism (not shown) for aligning the rotation center of the semiconductor wafer 14 and the rotation center of the work mounting base 12.

【0025】更にワーク取付け台12は、DCサーボモ
ータ22の回転軸22aに直結されると共にワーク移動
台20に固定された支持円筒21により回動自在に支持
されていて、DCサーボモータ22を回転させることに
よりワーク取付け台12を半導体ウェーハ14と共に矢
印D方向に回転させるように構成されている。
Further, the work mounting base 12 is rotatably supported by a supporting cylinder 21 which is directly connected to the rotary shaft 22a of the DC servo motor 22 and is fixed to the work moving base 20 to rotate the DC servo motor 22. By doing so, the work mounting base 12 is rotated in the direction of arrow D together with the semiconductor wafer 14.

【0026】ワーク移動台20には、送りナット23が
固定されており、該送りナット23にDCサーボモータ
24の回転軸24aに固着された送りねじ25が螺合
し、DCサーボモータ24を矢印E又はF方向に正逆回
転させることにより、ワーク移動台20を矢印G又はH
方向に往復動させて半導体ウェーハ14を円筒状砥石1
1に接近又は離脱させるように構成されている。
A feed nut 23 is fixed to the work moving table 20, and a feed screw 25 fixed to a rotary shaft 24a of a DC servo motor 24 is screwed into the feed nut 23, and the DC servo motor 24 is moved in the direction of the arrow. By rotating the work moving table 20 in the E or F direction in the reverse direction, the work moving table 20 is moved to the arrow G or H direction.
The semiconductor wafer 14 by reciprocating in the direction
It is configured to approach or leave 1.

【0027】電動モータ19及びDCサーボモータ2
2,24は、夫々電子制御装置の一例たるコンピュータ
13に電線26,28,29により電気的に接続されて
いる。
Electric motor 19 and DC servo motor 2
The wires 2 and 24 are electrically connected to the computer 13, which is an example of an electronic control unit, by wires 26, 28, and 29.

【0028】コンピュータ13は、電動モータ19及び
DCサーボモータ22,24を制御して半導体ウェーハ
14を矢印D方向に回転させながら矢印G又はH方向に
往復動させて円筒状砥石11を半導体ウェーハ14のノ
ッチ部14bの形状に沿って移動させ、エッジ部14c
をアール面取りするためのものであって、中央演算装置
30、外部記憶装置31、入出力ポート32及び入出力
装置33とからなる公知のコンピュータである。
The computer 13 controls the electric motor 19 and the DC servomotors 22 and 24 to rotate the semiconductor wafer 14 in the direction of arrow D and reciprocate in the direction of arrow G or H to move the cylindrical grindstone 11 to the semiconductor wafer 14. Move along the shape of the notch portion 14b of the
Is a well-known computer for centrally chamfering a computer, which includes a central processing unit 30, an external storage device 31, an input / output port 32 and an input / output device 33.

【0029】そして本発明に係る方法(請求項1)は、
ノッチ部14bが形成された半導体ウェーハ14の該ノ
ッチ部周縁部を面取りするにあたり、直進移送可能とし
たワーク取付け台12に面取り加工すべき半導体ウェー
ハ14を水平状に支持して固定し、外周面に断面台形の
溝部11aを形成しかつ該溝部の底部11cの両隅部1
1bに丸みを形成した円筒状砥石11を垂直状に配置す
ると共に前記半導体ウェーハ14のノッチ部14b周縁
部が該円筒状砥石11の断面台形の溝部11aの内面部
と接触するように配置して該円筒状砥石11をその中心
軸回りに高速回転させる一方、ワーク取付け台12に固
定された半導体ウェーハ14をその中心軸回り(D方
向)に低速度で回転させながら該半導体ウェーハ14を
円筒状砥石11に対し接近し又は離脱する方向(H−G
方向)に直進移送し、これにより半導体ウェーハ14の
ノッチ部14b周縁部及び該半導体ウェーハ14のノッ
チ部14bと外周部14aとの両側境界部の板厚方向の
アール面取りを行う方法である。
The method according to the present invention (claim 1) comprises
When chamfering the peripheral edge of the notch portion of the semiconductor wafer 14 having the notch portion 14b formed thereon, the semiconductor wafer 14 to be chamfered is horizontally supported and fixed to the work mount 12 which is capable of straight transfer, and the outer peripheral surface A groove portion 11a having a trapezoidal cross section is formed in each of the two corner portions 1 of a bottom portion 11c of the groove portion.
A cylindrical grindstone 11 having a rounded shape is arranged vertically in 1b, and the peripheral edge of the notch portion 14b of the semiconductor wafer 14 is arranged so as to come into contact with the inner surface of the groove 11a having a trapezoidal cross section of the cylindrical grindstone 11. While rotating the cylindrical grindstone 11 around its central axis at a high speed, while rotating the semiconductor wafer 14 fixed to the work mount 12 around its central axis (D direction) at a low speed, the semiconductor wafer 14 is cylindrical. Direction toward or away from the grindstone 11 (HG
Direction), and thereby round chamfering in the plate thickness direction of the peripheral edge portion of the notch portion 14b of the semiconductor wafer 14 and both side boundary portions of the notch portion 14b of the semiconductor wafer 14 and the outer peripheral portion 14a.

【0030】本発明は、上記のように構成されており、
以下その作用について説明する。図1において、半導体
ウェーハ14をワーク取付け台12に載せ、図示しない
真空ポンプを作動させてエア吸引穴12bから空気を吸
引して半導体ウェーハ14を吸着してワーク取付け台1
2に固定する。
The present invention is configured as described above,
The operation will be described below. In FIG. 1, a semiconductor wafer 14 is placed on the work mount 12, and a vacuum pump (not shown) is operated to suck air from the air suction holes 12b to suck the semiconductor wafer 14 and suck the semiconductor mount 14 onto the work mount 1.
Fix to 2.

【0031】そして図示しない芯出し機構により半導体
ウェーハ14の回転中心とワーク取付け台12の回転中
心とを合わせて芯出しし、半導体ウェーハ14の取付け
が完了する。
Then, the center of rotation of the semiconductor wafer 14 and the center of rotation of the work mounting base 12 are aligned by a centering mechanism (not shown), and the mounting of the semiconductor wafer 14 is completed.

【0032】次いで電動モータ19を回転させて円筒状
砥石11を矢印B又はC方向に移動させて半導体ウェー
ハ14と円筒状砥石11の上下方向の芯出しを行い(図
2参照)、アール面取り加工の準備を終わる。
Next, the electric motor 19 is rotated to move the cylindrical grindstone 11 in the direction of arrow B or C to center the semiconductor wafer 14 and the cylindrical grindstone 11 in the up-down direction (see FIG. 2), and then round chamfering. The preparation of is finished.

【0033】そこで電動モータ15を回転させて円筒状
砥石11を矢印A方向に30,000乃至50,000
rpmの高速で回転させる。
Then, the electric motor 15 is rotated to move the cylindrical grindstone 11 in the direction of arrow A from 30,000 to 50,000.
Rotate at high speed of rpm.

【0034】コンピュータ13からの制御信号によりD
Cサーボモータ22が低速で回転を開始し、回転軸22
aを介してワーク取付け台12及び半導体ウェーハ14
を矢印D方向に回転させる。
D by a control signal from the computer 13
The C servo motor 22 starts to rotate at a low speed,
Work mounting base 12 and semiconductor wafer 14 via a
Is rotated in the direction of arrow D.

【0035】DCサーボモータ22により回転させるワ
ーク取付け台12に固定された半導体ウェーハ14の回
転角度θ1 が逐次コンピュータ13に入力され、コンピ
ュータ13の図示しないメモリに予め記憶された演算式
L=f(θ)に従って半導体ウェーハ14の回転角度θ
1 に対するG−H方向における半導体ウェーハ14と円
筒状砥石11間の相対的直線移動量Lが演算される。
The rotation angle θ 1 of the semiconductor wafer 14 fixed to the work mount 12 rotated by the DC servo motor 22 is sequentially input to the computer 13, and the arithmetic expression L = f stored in advance in a memory (not shown) of the computer 13 is stored. The rotation angle θ of the semiconductor wafer 14 according to (θ)
The relative linear movement amount L between the semiconductor wafer 14 and the cylindrical grindstone 11 in the GH direction with respect to 1 is calculated.

【0036】このようにして逐次演算された相対的直線
移動量Lの値をもってワーク取付け台12、従って半導
体ウェーハ14がG−H方向に円筒状砥石11の溝11
aの内面部に対して相対的に移動させられる。
With the value of the relative linear movement amount L successively calculated in this way, the workpiece mounting table 12, and thus the semiconductor wafer 14, is moved in the GH direction by the groove 11 of the cylindrical grindstone 11.
It is moved relative to the inner surface of a.

【0037】この場合、関数f(θ)は半導体ウェーハ
14の中心点と研削仕上げ外形を表す曲線、即ち円筒状
砥石11の中心の移動軌跡上の点間の距離を示す。
In this case, the function f (θ) indicates the distance between the center point of the semiconductor wafer 14 and the curve representing the ground finish contour, that is, the point on the movement locus of the center of the cylindrical grindstone 11.

【0038】このようにして、円筒状砥石11の研削
面、即ち溝部11aの内面部により半導体ウェーハ14
のノッチ部14bの周縁部及び該ノッチ部14bと外周
部14aとの両境界部が所望の仕上げ輪郭通りにアール
面取りされる。
In this way, the semiconductor wafer 14 is formed by the grinding surface of the cylindrical grindstone 11, that is, the inner surface of the groove 11a.
The peripheral portion of the notch portion 14b and the boundary portion between the notch portion 14b and the outer peripheral portion 14a are rounded to have a desired finished contour.

【0039】ここで円筒状砥石11は、隅部11bに丸
みを持つ断面台形溝部11aが形成された総形カッタと
して成形されているので、半導体ウェーハ14のノッチ
部14bの断面は、円筒状砥石11の形状そのままに加
工され、先端角部14cは円筒状砥石11の隅部11b
の半径r(例えば0.03mm)と同じ大きさの丸みが
付けられた板厚方向のアール面取りが行われる。
Since the cylindrical grindstone 11 is formed as a general-purpose cutter having a rounded trapezoidal groove 11a at the corner 11b, the cross section of the notch 14b of the semiconductor wafer 14 has a cylindrical grindstone. 11 is processed as it is, and the tip corner portion 14c is the corner portion 11b of the cylindrical grindstone 11.
R chamfering is performed in the plate thickness direction in which a radius equal to the radius r (for example, 0.03 mm) of R is added.

【0040】また円筒状砥石11は総形カッタとして成
形されているので、半導体ウェーハ14の上下の先端角
部14cを一度の加工作業により同時にアール面取り
し、効率よく加工することができる。
Further, since the cylindrical grindstone 11 is formed as a general-purpose cutter, the upper and lower tip corners 14c of the semiconductor wafer 14 can be chamfered at the same time by a single working operation and efficiently processed.

【0041】また上記実施例においては、円筒状砥石1
1を所定位置に停止させる一方、ワーク取付け台12に
固定された半導体ウェーハ14をD方向に低速回転させ
ながらG−H方向に直進移送するようにしたが、これに
代えて、ワーク取付け台12に固定された半導体ウェー
ハ14を所定位置に固定したまま上記のように逐次演算
された相対移動距離Lをもって円筒状砥石11をG−H
方向に直進移送するようにしてもよい。
In the above embodiment, the cylindrical grindstone 1
While 1 is stopped at a predetermined position, the semiconductor wafer 14 fixed to the work mounting base 12 is linearly transferred in the GH direction while being rotated at a low speed in the D direction. Instead of this, the work mounting base 12 is replaced. The cylindrical grindstone 11 is moved to GH with the relative movement distance L sequentially calculated as described above while the semiconductor wafer 14 fixed to the predetermined position is fixed at a predetermined position.
You may make it carry out linear transfer in the direction.

【0042】[0042]

【発明の効果】本発明は、上記のように隅部に丸みを持
つ断面台形の溝が形成された円筒状砥石を半導体ウェー
ハの軸芯と平行に配設された軸を回転中心として回転さ
せながら半導体ウェーハの外周部に形成されたノッチ部
に当接させ、該ノッチ部の平面形状に沿って移動させる
ようにしたので、ノッチ部の上下2つの先端角部の板厚
方向のアール(R)面取りを1回の加工によって同時に
行うことができる効果があり、またこの結果複雑な3軸
制御を必要とせず、また装置を大型のものとすることな
く短時間の加工によってエッジに板厚方向の丸みが付け
られた理想的なアール面取り加工のエッジ処理を行うこ
とができるという効果がある。
As described above, according to the present invention, a cylindrical grindstone in which a groove having a trapezoidal cross section having a rounded corner is formed as described above is rotated about an axis arranged parallel to the axis of a semiconductor wafer. However, since the notch portion formed on the outer peripheral portion of the semiconductor wafer is brought into contact with the notch portion and moved along the planar shape of the notch portion, the radius (R ) There is an effect that chamfering can be performed at the same time by one machining, and as a result, complicated three-axis control is not required, and the plate thickness direction is applied to the edge by machining in a short time without increasing the size of the device. There is an effect that it is possible to perform an ideal rounded chamfering edge treatment.

【0043】またノッチ部のエッジに板厚方向のアール
面取りを施すことができるため、ノッチ部に位置決めピ
ンを当接させたときノッチ部先端角部の欠けを防止して
塵埃の発生をなくすことができる効果があり、またこの
結果半導体ウェーハへの塵埃の付着を防止でき、ひいて
は半導体素子の製作歩留りを大幅に向上させることがで
きる効果がある。
Since the edge of the notch can be chamfered in the plate thickness direction, when the positioning pin is brought into contact with the notch, the tip of the notch is prevented from being chipped and dust is eliminated. As a result, the adhesion of dust to the semiconductor wafer can be prevented, and as a result, the production yield of semiconductor elements can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1から図4は本発明の実施例に係り、図1は
半導体ウェーハのノッチ部のアール面取り装置の全体斜
視図である。
1 to 4 relate to an embodiment of the present invention, and FIG. 1 is an overall perspective view of a round chamfering device for a notch portion of a semiconductor wafer.

【図2】円筒状砥石によりノッチ部を加工する状態を示
す要部拡大縦断面図である。
FIG. 2 is an enlarged longitudinal sectional view of an essential part showing a state in which a notch portion is processed by a cylindrical grindstone.

【図3】円筒状砥石によりノッチ部を加工する状態を示
す要部平面図である。
FIG. 3 is a plan view of relevant parts showing a state in which a notch portion is processed by a cylindrical grindstone.

【図4】円筒状砥石の包絡線によりノッチ部が加工され
る状態を示す平面図である。
FIG. 4 is a plan view showing a state in which a notch portion is processed by the envelope of a cylindrical grindstone.

【図5】従来例におけるノッチ部の加工状態を示す要部
拡大縦断面図である。
FIG. 5 is an enlarged vertical cross-sectional view of a main portion showing a processed state of a notch portion in a conventional example.

【符号の説明】[Explanation of symbols]

10 半導体ウェーハのノッチ部のアール面取り装置 11 円筒状砥石 11a 断面台形の溝 11b 隅部 11c 底部 12 ワーク取付け台 13 制御装置の一例たるコンピュータ 14 半導体ウェーハ 14a 外周部 14b ノッチ部 14c 先端角部 14d 底部 15 駆動装置の一例たる電動モータ 10 semiconductor wafer notch rounding chamfering device 11 cylindrical grindstone 11a cross-section trapezoidal groove 11b corner 11c bottom 12 work mounting base 13 computer as an example of control device 14 semiconductor wafer 14a outer periphery 14b notch 14c tip corner 14d bottom 15 Electric motor as an example of drive device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ノッチ部が形成された半導体ウェーハの
該ノッチ部周縁部を面取りするにあたり、直進移送可能
としたワーク取付け台に面取り加工すべき半導体ウェー
ハを水平状に支持して固定し、外周面に断面台形の溝部
を形成しかつ該溝部の底部の両隅部に丸みを形成した円
筒状砥石を垂直状に配置すると共に前記半導体ウェーハ
のノッチ部周縁部が該円筒状砥石の溝内面部と接触する
ように配置して該円筒状砥石をその中心軸回りに高速回
転させる一方、前記ワーク取付け台に固定された前記半
導体ウェーハをその中心軸回り(D方向)に低速度で回
転させながら該半導体ウェーハを前記円筒状砥石に対し
接近し又は離脱する方向(H−G方向)に直進移送し、
これにより前記半導体ウェーハのノッチ部周縁部及び該
半導体ウェーハのノッチ部と外周部との両側境界部のア
ール面取りを行うことを特徴とする半導体ウェーハのノ
ッチ部のアール面取り方法。
1. When chamfering a peripheral edge portion of a notch portion of a semiconductor wafer having a notch portion, a semiconductor wafer to be chamfered is horizontally supported and fixed on a work mount capable of linear transfer, and an outer periphery is provided. A cylindrical grindstone in which a groove having a trapezoidal cross section is formed on the surface and rounded corners at the bottom of the groove is arranged vertically, and the notch peripheral edge of the semiconductor wafer is the groove inner surface of the cylindrical grindstone. While arranging so as to contact with the cylindrical grindstone at high speed around its central axis, while rotating the semiconductor wafer fixed to the work mounting table around its central axis (D direction) at a low speed. The semiconductor wafer is linearly transferred in a direction (H-G direction) toward or away from the cylindrical grindstone,
Thereby, a round chamfering method of the notch portion of the semiconductor wafer and the round chamfering of both side boundaries of the notch portion and the outer peripheral portion of the semiconductor wafer are performed.
【請求項2】 ノッチ部が形成された半導体ウェーハの
該ノッチ部周縁部を面取りする面取り装置において、外
周面に断面台形の溝部を形成しかつ該溝部の底部の両隅
部に丸み部を形成した円筒状砥石と、該円筒状砥石を垂
直状に回転可能に支持する支持台と、該円筒状砥石をそ
の中心軸回りに高速回転させる第1回転駆動手段と、前
記半導体ウェーハを水平状に固定する台座を有すると共
に該台座の高さを調整可能としたワーク取付け台と、該
ワーク取付け台に固定された半導体ウェーハの周縁部を
前記円筒状砥石の溝部の内部に接近し又は離脱する方向
(H−G方向)に直進移送する直進移送手段と、前記ワ
ーク取付け台に固定された半導体ウェーハをその中心軸
回り(D方向)に低速回転させる第2回転駆動手段と、
前記第1回転駆動手段、前記第2回転駆動手段及び前記
直進移送手段と接続され、前記半導体ウェーハの回転角
度を逐次検出すると共に逐次検出された該回転角度に対
応するH−G方向の直進移動距離を演算し、該各演算値
に基いて前記円筒状砥石と半導体ウェーハとを逐次H−
G方向に移動させることにより前記半導体ウェーハのノ
ッチ部周縁部及び該半導体ウェーハの円周部と該ノッチ
部周縁部との境界部の面取り動作を制御する電子制御装
置とを備えたことを特徴とする半導体ウェーハのノッチ
部のアール面取り装置。
2. A chamfering device for chamfering a peripheral portion of a notch portion of a semiconductor wafer having a notch portion, wherein a groove having a trapezoidal cross section is formed on an outer peripheral surface, and rounded portions are formed at both corners of a bottom portion of the groove portion. Cylindrical grindstone, a support for vertically rotatably supporting the cylindrical grindstone, a first rotation drive means for rotating the cylindrical grindstone at high speed around its central axis, and the semiconductor wafer in a horizontal shape. A work mounting base having a mounting base for fixing the height of the mounting base, and a direction in which a peripheral edge of a semiconductor wafer fixed to the work mounting base approaches or departs from the inside of the groove portion of the cylindrical grindstone. A linearly moving means for linearly moving in the (H-G direction), and a second rotation driving means for rotating the semiconductor wafer fixed to the work mounting table around its central axis (D direction) at a low speed.
It is connected to the first rotation driving means, the second rotation driving means, and the rectilinear transfer means, and sequentially detects the rotation angle of the semiconductor wafer and moves straight in the H-G direction corresponding to the rotation angle that is sequentially detected. The distance is calculated, and the cylindrical grindstone and the semiconductor wafer are sequentially H-based on the calculated values.
An electronic control device for controlling the chamfering operation of the peripheral portion of the notch portion of the semiconductor wafer and the boundary portion between the peripheral portion of the semiconductor wafer and the peripheral portion of the notch portion by moving in the G direction. R chamfering device for notch of semiconductor wafer.
JP27541892A 1992-09-19 1992-09-19 Method and apparatus for rounding notch part in semiconductor wafer Withdrawn JPH06104228A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27541892A JPH06104228A (en) 1992-09-19 1992-09-19 Method and apparatus for rounding notch part in semiconductor wafer
DE19934331727 DE4331727A1 (en) 1992-09-19 1993-09-17 Grinding of rim of indented circular semiconductor wafer - using abrasive wheel having annular peripheral groove of trapezoidal cross-section with rounded edges at base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27541892A JPH06104228A (en) 1992-09-19 1992-09-19 Method and apparatus for rounding notch part in semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH06104228A true JPH06104228A (en) 1994-04-15

Family

ID=17555232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27541892A Withdrawn JPH06104228A (en) 1992-09-19 1992-09-19 Method and apparatus for rounding notch part in semiconductor wafer

Country Status (2)

Country Link
JP (1) JPH06104228A (en)
DE (1) DE4331727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123420A1 (en) * 2016-12-27 2018-07-05 日本電気硝子株式会社 Glass plate end face processing method, production method, and glass plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249689A (en) * 1997-03-10 1998-09-22 Tokyo Seimitsu Co Ltd Wafer chamfering method and device
DE69817771T2 (en) * 1998-06-05 2004-03-11 Tokyo Seimitsu Co. Ltd., Mitaka Method and device for chamfering semiconductor wafers
US7102206B2 (en) 2003-01-20 2006-09-05 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate, method for fabricating the same, and method for fabricating semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638601A (en) * 1985-11-04 1987-01-27 Silicon Technology Corporation Automatic edge grinder
JPH0637024B2 (en) * 1987-08-23 1994-05-18 エムテック株式会社 Orientation flat grinding method and device
JP2541844B2 (en) * 1988-09-26 1996-10-09 信越半導体株式会社 Semiconductor wafer, notch chamfering method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123420A1 (en) * 2016-12-27 2018-07-05 日本電気硝子株式会社 Glass plate end face processing method, production method, and glass plate

Also Published As

Publication number Publication date
DE4331727A1 (en) 1994-03-24

Similar Documents

Publication Publication Date Title
US5185965A (en) Method and apparatus for grinding notches of semiconductor wafer
US7758402B2 (en) Wafer grinding method
JP2613504B2 (en) Wafer notch chamfering method and apparatus
US5295331A (en) Method of chamfering semiconductor wafer
US4896459A (en) Apparatus for manufacturing thin wafers of hard, non-metallic material such as for use as semiconductor substrates
JPH0637024B2 (en) Orientation flat grinding method and device
JPH07205001A (en) Wafer chamfering machine
JP2571477B2 (en) Wafer notch chamfering device
JP7481518B2 (en) Truing method and chamfering device
JPH10249689A (en) Wafer chamfering method and device
JP3459058B2 (en) Wafer chamfering method
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JP2000167753A (en) Method and device for polishing and manufacture of grinding wheel
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JP2021094693A (en) Manufacturing method of chamfered baseboard and chamfering device used in the same
JPH06104228A (en) Method and apparatus for rounding notch part in semiconductor wafer
JP2007044853A (en) Method and apparatus for chamfering wafer
JP2007061978A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JP2611829B2 (en) Notch grinding method and apparatus for semiconductor wafer
JP4144834B2 (en) Semiconductor wafer notch grinding equipment
JPH0590234A (en) Polishing method and device for end face of semiconductor wafer
JPS6315100B2 (en)
JP2002052447A (en) Notch grinding device for semiconductor wafer and notched groove chamfering method
JPH07156050A (en) Wafer chamfering machine
JPH08336741A (en) Method of grinding surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130