JPH06103204B2 - Semiconductor type electromagnetic flow meter - Google Patents

Semiconductor type electromagnetic flow meter

Info

Publication number
JPH06103204B2
JPH06103204B2 JP199488A JP199488A JPH06103204B2 JP H06103204 B2 JPH06103204 B2 JP H06103204B2 JP 199488 A JP199488 A JP 199488A JP 199488 A JP199488 A JP 199488A JP H06103204 B2 JPH06103204 B2 JP H06103204B2
Authority
JP
Japan
Prior art keywords
electrode
type
substrate
semiconductor
exciting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP199488A
Other languages
Japanese (ja)
Other versions
JPH01178822A (en
Inventor
敏夫 阿賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP199488A priority Critical patent/JPH06103204B2/en
Publication of JPH01178822A publication Critical patent/JPH01178822A/en
Publication of JPH06103204B2 publication Critical patent/JPH06103204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体形電磁流量計に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a semiconductor type electromagnetic flowmeter.

更に詳述すれば、ソリッドステート形の電磁流量計に関
するものである。
More specifically, it relates to a solid-state type electromagnetic flowmeter.

〈従来の技術〉 第8図は従来より一般に使用されている従来例の構成説
明図である。
<Prior Art> FIG. 8 is an explanatory view of a configuration of a conventional example which is generally used in the past.

図において、1は測定流体の流れる流路を構成する測定
管である。11は測定管1に設けられた測定電極である。
2は励磁コイルである。
In the figure, reference numeral 1 is a measuring tube constituting a flow path of a measuring fluid. Reference numeral 11 is a measuring electrode provided in the measuring tube 1.
Reference numeral 2 is an exciting coil.

以上の構成において、励磁コイル2に励磁電流が流さ
れ、これにより発生した磁束の変動を測定電極11により
測定することにより測定流体の流量を測定することが出
来る。
In the above structure, an exciting current is passed through the exciting coil 2, and the fluctuation of the magnetic flux generated thereby is measured by the measuring electrode 11, so that the flow rate of the measuring fluid can be measured.

〈発明が解決しようとする問題点〉 しかしながら、この様な装置においては、第9図に示す
ごとく、 (1)励磁コイル2はエナメル線等からなり、この励磁
コイル2は容積が大きく、測定管1の測定流体の流れる
管路の直径が小さくなっても、ある程度の大きさが必要
で、流量計全体の大きさは小さくできず、測定管1の測
定流体の流れる管路の直径が小さくなるのに比例してコ
ストが低下しない。
<Problems to be Solved by the Invention> However, in such a device, as shown in FIG. 9, (1) the exciting coil 2 is made of an enameled wire or the like, and the exciting coil 2 has a large volume and a measuring tube. Even if the diameter of the pipe for flowing the measurement fluid of No. 1 is small, a certain size is required, the size of the entire flow meter cannot be made small, and the diameter of the pipe for the measurement fluid of measurement pipe 1 becomes small. The cost does not decrease in proportion to.

(2)同様に、測定電極や測定電極の支持機構も、測定
管1の測定流体の流れる管路の直径が小さくなるのに比
例して、小さくならず、コストが低下しない。
(2) Similarly, the measuring electrode and the supporting mechanism for the measuring electrode do not become smaller in proportion to the smaller diameter of the conduit of the measuring tube 1 through which the measuring fluid flows, and the cost does not decrease.

本発明は、この問題点を解決するものである。The present invention solves this problem.

本発明の目的は、小形化、低価格、高信頼性の半導体形
電磁流量計を提供するにある。
An object of the present invention is to provide a miniaturized, low cost, highly reliable semiconductor type electromagnetic flowmeter.

〈問題点を解決するための手段〉 この目的を達成するために、本発明は、励磁コイルと測
定電極とを具備する半導体形電磁流量計において、N形
またはP形の一方の伝導形のシリコン半導体基板に他方
の伝導形の半導体よりなる測定電極が形成されてなり互
いに対向して配置されてなる2個の電極基板と、該電極
基板と共に測定流体が流れる流路を形成し表面上にエッ
チングによりアルミパターンの励磁コイルが形成されて
なる励磁コイル基板とを具備してなる半導体形電磁流量
計を構成したものである。
<Means for Solving the Problems> In order to achieve this object, the present invention provides a semiconductor type electromagnetic flowmeter including an exciting coil and a measuring electrode, which is one of N-type and P-type conductive silicon. Two electrode substrates, each having a measuring electrode made of the other conductivity type semiconductor formed on a semiconductor substrate and arranged to face each other, and a flow path through which a measuring fluid flows are formed together with the electrode substrates, and are etched on the surface. According to the present invention, there is provided a semiconductor type electromagnetic flowmeter comprising an exciting coil substrate having an aluminum pattern exciting coil formed thereon.

〈作用〉 以上の構成において、励磁コイルに励磁電流が流され、
これにより発生した磁束の変動を測定電極により測定す
ることにより測定流体の流量を測定することが出来る。
<Operation> In the above configuration, an exciting current is applied to the exciting coil,
The flow rate of the measurement fluid can be measured by measuring the fluctuation of the generated magnetic flux with the measurement electrode.

以下、実施例に基づき詳細に説明する。Hereinafter, detailed description will be given based on examples.

〈実施例〉 第1図は本発明の一実施例の構成説明図、第2図は第1
図の要部構成説明図である。
<Embodiment> FIG. 1 is a structural explanatory view of an embodiment of the present invention, and FIG.
It is a principal part structure explanatory drawing of a figure.

図において、3はN形またはP形の一方の伝導形のシリ
コン半導体基板に他方の伝導形の半導体よりなる測定電
極31が形成されてなり互いに対向して配置されてなる2
個の電極基板である。
In the figure, 3 is a silicon semiconductor substrate of one conductivity type of N-type or P-type, on which a measuring electrode 31 made of a semiconductor of the other conductivity type is formed, and the measurement electrodes 31 are arranged to face each other.
This is an electrode substrate.

この場合は、P形のシリコン半導体基板32の測定流体接
触面側に、N形エピタキシャル層33を形成後測定電極31
となるP形不純物を拡散して形成する。
In this case, after the N-type epitaxial layer 33 is formed on the measurement fluid contact surface side of the P-type silicon semiconductor substrate 32, the measurement electrode 31 is formed.
Is formed by diffusing P-type impurities.

4は電極基板3と共に測定流体Aが流れる流路5を形成
し表面上にエッチングによりアルミパターンの励磁コイ
ル41が形成されてなる励磁コイル基板である。
Reference numeral 4 denotes an exciting coil substrate which is formed with the electrode substrate 3 and a flow path 5 through which the measurement fluid A flows, and on which an exciting coil 41 of aluminum pattern is formed by etching.

この場合は、ガラス材よりなる励磁コイル基板4上にア
ルミパターンコイルを蒸着、スパッタ等で形成し、エッ
チングにより整形する。
In this case, an aluminum pattern coil is formed on the exciting coil substrate 4 made of a glass material by vapor deposition, sputtering or the like, and is shaped by etching.

しかして、電極基板3と励磁コイル基板4とは、第3図
にしめすごとく、陽極接合Bにより接合され流路5が形
成される。
Then, the electrode substrate 3 and the exciting coil substrate 4 are joined by the anodic joining B as shown in FIG.

6は保護部で、プラスチック材よりなり、モールド等に
より作る。
Reference numeral 6 is a protective portion, which is made of a plastic material and is made by molding or the like.

61は測定流体接触面側の電極基板3と励磁コイル基板4
とに設けられたパシベーション膜である。
61 is the electrode substrate 3 and the excitation coil substrate 4 on the side of the contact surface of the measurement fluid.
It is a passivation film provided in and.

以上の構成において、励磁コイル41に励磁電流が流さ
れ、これにより発生した磁束の変動を測定電極31により
測定することにより測定流体の流量を測定することが出
来る。
In the above configuration, an exciting current is passed through the exciting coil 41, and the fluctuation of the magnetic flux generated thereby is measured by the measuring electrode 31, whereby the flow rate of the measurement fluid can be measured.

この場合、 (1)測定電極31は、電極基板3に半導体技術を利用し
て形成されている。
In this case, (1) the measurement electrode 31 is formed on the electrode substrate 3 by using a semiconductor technique.

(2)励磁コイル41が励磁コイル基板4に蒸着等による
アルミ等で形成されており、半導体技術で作られてお
り、ソリッドステート化されている。
(2) The exciting coil 41 is formed of aluminum or the like on the exciting coil substrate 4 by vapor deposition or the like, is made by the semiconductor technology, and is in a solid state.

(3)流路5は陽極接合で作られており、接着剤は使用
されていない。
(3) The flow path 5 is made by anodic bonding, and no adhesive is used.

この結果、 (1)励磁コイル41が平面上にある為め、小型となる。As a result, (1) Since the exciting coil 41 is on the plane, the size is reduced.

(2)測定電極31が電極基板3中に一体で作られるの
で、小型となる。
(2) Since the measurement electrode 31 is integrally formed in the electrode substrate 3, the size is reduced.

(3)ソリッドステートで、頑丈で、信頼性が高い。(3) Solid state, sturdy and highly reliable.

(4)半導体技術で作ることができ、大量生産出来、コ
ストが安くなる。
(4) It can be manufactured with semiconductor technology, can be mass-produced, and the cost can be reduced.

(5)電極位置を容易に正確に設けることができ、高精
度な装置が構成できる。
(5) Electrode positions can be easily and accurately provided, and a highly accurate device can be configured.

(6)部品数が少なく、コストが安くなる。(6) The number of parts is small and the cost is low.

第4図は本発明の他の実施例の要部構成説明図である。FIG. 4 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

本実施例では、P形のシリコン半導体基板32面に、N形
エピタキシャル層33を形成後、測定電極31と外部へのリ
ードの取出し端子となる部分34に、P形不純物を拡散し
て形成したものである。
In this embodiment, after the N type epitaxial layer 33 is formed on the surface of the P type silicon semiconductor substrate 32, the P type impurities are diffused and formed in the measurement electrode 31 and the portion 34 which will be a lead lead terminal to the outside. It is a thing.

必要部分のみが電極あるいは端子として露出することに
なり、耐汚染、耐ノイズの良好なものが得られる。
Only the necessary portion is exposed as an electrode or a terminal, so that it is possible to obtain a product with good pollution resistance and noise resistance.

第5図は本発明の他の実施例の要部構成説明図である。FIG. 5 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

本実施例では、電極基板3のリードの取出し側に、信号
処理回路35を設けたもので、いわゆる、集積型が構成さ
れている。
In this embodiment, the signal processing circuit 35 is provided on the lead-out side of the electrode substrate 3 to form a so-called integrated type.

第6図は本発明の他の実施例の要部構成説明図である。FIG. 6 is an explanatory view of a main part configuration of another embodiment of the present invention.

本実施例では、測定電極31を多数設けたものである。い
わゆる、他電極電磁流量計が容易に構成でき、精度の高
いものが得られる。
In this embodiment, a large number of measurement electrodes 31 are provided. A so-called other-electrode electromagnetic flowmeter can be easily constructed and a highly accurate one can be obtained.

本実施例では、P形のシリコン半導体基板の両面に、N
形エピタキシャル層33を形成後、測定電極31と外部への
リードの取出し端子となる部分34をP形不純物を拡散し
て形成したものである。
In this embodiment, the P-type silicon semiconductor substrate is provided with N
After the formation of the epitaxial layer 33, the measurement electrode 31 and the portion 34 serving as the lead-out terminal of the lead to the outside are formed by diffusing P-type impurities.

第7図は本発明の他の実施例の要部構成説明図である。FIG. 7 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

本実施例では、電極基板3と励磁コイル基板4の、測定
流体接触側の面を球面状にしたものである。
In the present embodiment, the surfaces of the electrode substrate 3 and the excitation coil substrate 4 on the measurement fluid contact side are spherical.

なお、電極基板3と励磁コイル基板4の測定流体接触側
の面は、平面状、あるいは、球面状に限ることはないの
は勿論である。
Of course, the surfaces of the electrode substrate 3 and the exciting coil substrate 4 on the measurement fluid contact side are not limited to flat surfaces or spherical surfaces.

また、P形不純物による測定電極31の形成は、イオン注
入でもよい。
The measurement electrode 31 may be formed of P-type impurities by ion implantation.

また、電極基板3は、N形のシリコン半導体基板の測定
流体接触面側に、P形エピタキシャル層を形成後、測定
電極31となるN形不純物を拡散して形成してもよい。
The electrode substrate 3 may be formed by forming a P-type epitaxial layer on the measurement fluid contact surface side of an N-type silicon semiconductor substrate and then diffusing N-type impurities to be the measurement electrode 31.

また、励磁コイル基板4はガラス材の代りに、セラミッ
クス、あるいは、シリコン等でもよく、要するに、絶縁
材であればよい。
Further, the exciting coil substrate 4 may be made of ceramics, silicon, or the like instead of the glass material, in short, any insulating material may be used.

〈発明の効果〉 以上説明したように、本発明は、励磁コイルと測定電極
とを具備する半導体形電磁流量計において、 N形またはP形の一方の伝導形のシリコン半導体基板に
他方の伝導形の半導体よりなる測定電極が形成されてな
り互いに対向して配置されてなる2個の電極基板と、該
電極基板と共に測定流体が流れる流路を形成し表面上に
エッチングによりアルミパターンの励磁コイルが形成さ
れてなる励磁コイル基板とを具備してなる半導体形電磁
流量計を構成したので、 この結果、 (1)励磁コイルが平面上にある為め、小型となる。
<Effects of the Invention> As described above, according to the present invention, in a semiconductor type electromagnetic flowmeter including an exciting coil and a measuring electrode, one conductivity type silicon semiconductor substrate of N type or P type and the other conductivity type are provided. Measuring electrodes made of a semiconductor of 2 are arranged to face each other, and a flow path through which a measuring fluid flows is formed together with the electrode substrates, and an exciting coil having an aluminum pattern is formed on the surface by etching. Since the semiconductor type electromagnetic flowmeter including the formed excitation coil substrate is configured, as a result, (1) since the excitation coil is on the plane, the size is reduced.

(2)測定電極が電極基板中に一体で作られるので、小
型となる。
(2) Since the measurement electrode is integrally formed in the electrode substrate, the size is reduced.

(3)ソリッドステートで、頑丈で、信頼性が高い。(3) Solid state, sturdy and highly reliable.

(4)半導体技術で作ることができ、大量生産出来、コ
ストが安くなる。
(4) It can be manufactured with semiconductor technology, can be mass-produced, and the cost can be reduced.

(5)電極位置を容易に正確に設けることができ、高精
度な装置が構成できる。
(5) Electrode positions can be easily and accurately provided, and a highly accurate device can be configured.

(6)部品数が少なく、コストが安くなる。(6) The number of parts is small and the cost is low.

(7)増幅回路部を集積化でき、小形化が出来る。(7) The amplification circuit unit can be integrated and miniaturized.

従って、本発明によれば、小形化、低価格、高信頼性の
半導体形電磁流量計を実現することが出来る。
Therefore, according to the present invention, it is possible to realize a miniaturized, low cost, highly reliable semiconductor type electromagnetic flowmeter.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成説明図、第2図は第1
図の要部構成説明図、第3図は第1図の要部断面図、第
4図は本発明の他の実施例の要部構成説明図、第5図は
本発明の他の実施例の要部構成説明図、第6図は本発明
の他の実施例の要部構成説明図、第7図は本発明の他の
実施例の要部構成説明図、第8図,第9図は従来より一
般に使用されている従来例の構成説明図である。 1…測定管、3…電極基板、31…測定電極、32…基板、
33…Nエピタキシャル層、34…リード取出し端子、35…
信号処理回路、4…励磁コイル基板、41…励磁コイル、
5…流路、6…保護部、61…パシベーション膜。
FIG. 1 is a structural explanatory view of an embodiment of the present invention, and FIG.
FIG. 3 is a cross-sectional view of the main part of FIG. 1, FIG. 3 is a cross-sectional view of the main part of FIG. 1, FIG. 4 is an explanatory view of the main part of another embodiment of the present invention, and FIG. 5 is another embodiment of the present invention. FIG. 6 is an explanatory view of the essential parts of another embodiment of the present invention, and FIG. 7 is an explanatory view of the essential parts of another embodiment of the present invention. [Fig. 3] is an explanatory view of a configuration of a conventional example which is generally used in the past. 1 ... Measuring tube, 3 ... Electrode substrate, 31 ... Measuring electrode, 32 ... Substrate,
33 ... N epitaxial layer, 34 ... Lead lead terminal, 35 ...
Signal processing circuit, 4 ... Excitation coil substrate, 41 ... Excitation coil,
5 ... flow path, 6 ... protective part, 61 ... passivation film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】励磁コイルと測定電極とを具備する半導体
形電磁流量計において、 N形またはP形の一方の伝導形のシリコン半導体基板に
他方の伝導形の半導体よりなる測定電極が形成されてな
り互いに対向して配置されてなる2個の電極基板と、該
電極基板と共に測定流体が流れる流路を形成し表面上に
エッチングによりアルミパターンの励磁コイルが形成さ
れてなる励磁コイル基板とを具備してなる半導体形電磁
流量計。
1. A semiconductor type electromagnetic flowmeter comprising an exciting coil and a measuring electrode, wherein a measuring electrode made of a semiconductor of the other conducting type is formed on a silicon semiconductor substrate of one conducting type of N type or P type. A pair of electrode substrates arranged opposite to each other, and an excitation coil substrate formed with the electrode substrate to form a flow path through which a measurement fluid flows and an excitation coil having an aluminum pattern is formed on the surface by etching. A semiconductor type electromagnetic flow meter.
JP199488A 1988-01-08 1988-01-08 Semiconductor type electromagnetic flow meter Expired - Lifetime JPH06103204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP199488A JPH06103204B2 (en) 1988-01-08 1988-01-08 Semiconductor type electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP199488A JPH06103204B2 (en) 1988-01-08 1988-01-08 Semiconductor type electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPH01178822A JPH01178822A (en) 1989-07-17
JPH06103204B2 true JPH06103204B2 (en) 1994-12-14

Family

ID=11517013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP199488A Expired - Lifetime JPH06103204B2 (en) 1988-01-08 1988-01-08 Semiconductor type electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JPH06103204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315763A (en) * 2006-05-23 2007-12-06 Aichi Tokei Denki Co Ltd Electromagnetic flow measuring apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19604004C1 (en) 1996-02-05 1997-06-05 Elsag Int Nv Magnetic-inductive flow meter esp. for pastes, muds
DE102005043718B3 (en) * 2005-09-13 2007-04-19 Fachhochschule Kiel Method for measuring the flow rate of a medium
GB2575253B (en) * 2018-06-29 2021-12-08 Flodatix Ltd Magnetic induction tomography apparatus with tubular member having outer surface of polygonal cross-section for monitoring a multiphase flow in a pipe
GB2575104B (en) * 2018-06-29 2022-11-30 Flodatix Ltd Method and apparatus for monitoring a multiphase flow in a pipe using magnetic induction tomography apparatus comprising planar coils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315763A (en) * 2006-05-23 2007-12-06 Aichi Tokei Denki Co Ltd Electromagnetic flow measuring apparatus

Also Published As

Publication number Publication date
JPH01178822A (en) 1989-07-17

Similar Documents

Publication Publication Date Title
JP3542614B2 (en) Temperature sensor and method for manufacturing the temperature sensor
JP3379736B2 (en) Heat propagation time measurement type flow sensor and its manufacturing method
EP0300635A1 (en) Current detecting device using ferromagnetic magnetoresistance element
EP0050136A1 (en) Silicon pressure sensor
EP1865295A1 (en) Flow sensor transducer with dual spiral wheatstone bridge elements
US10062836B2 (en) Magnetic sensor and method of manufacturing the same
US4561303A (en) Mass airflow sensor with backflow detection
US4930347A (en) Solid state microanemometer with improved sensitivity and response time
JPH06103204B2 (en) Semiconductor type electromagnetic flow meter
JPH06130088A (en) Current sensor
JP3683868B2 (en) Thermal flow sensor
JP3471986B2 (en) Hall element and watt hour meter using the same
JP2001165731A (en) Flow sensor and flowmeter using the same
JP2003302428A (en) Substrate mounting type current sensor and current measuring method
JP3763225B2 (en) Ion drift type flow meter
JP2619003B2 (en) Oxygen detecting element and method for manufacturing the same
JP2008157892A (en) Electric current detector, current detection tool, and current detection method
JPH0399230A (en) Mass flow rate sensor
JP2003106884A (en) Airflow sensor
JPH034568A (en) Semiconductor pressure sensor
JPH07162018A (en) Semiconductor pressure sensor
JPS59105522A (en) Flow rate sensor and manufacture thereof
JPH054037U (en) Current detection sensor
JPH0593732A (en) Flow sensor
JP3423083B2 (en) Flow meter sensor