JPH0610106B2 - Variable conductivity ZrB2 composite sintered body - Google Patents

Variable conductivity ZrB2 composite sintered body

Info

Publication number
JPH0610106B2
JPH0610106B2 JP60128216A JP12821685A JPH0610106B2 JP H0610106 B2 JPH0610106 B2 JP H0610106B2 JP 60128216 A JP60128216 A JP 60128216A JP 12821685 A JP12821685 A JP 12821685A JP H0610106 B2 JPH0610106 B2 JP H0610106B2
Authority
JP
Japan
Prior art keywords
sintered body
sic
zrb
resistance
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60128216A
Other languages
Japanese (ja)
Other versions
JPS61286268A (en
Inventor
音次郎 木田
篤 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60128216A priority Critical patent/JPH0610106B2/en
Publication of JPS61286268A publication Critical patent/JPS61286268A/en
Publication of JPH0610106B2 publication Critical patent/JPH0610106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はZrB2(2硼化ジルコニウム)質焼結体に関する
ものである。一般的に金属硼化物セラミックは高融点で
高強度、高硬度、高耐食の特徴を有し、従来から切削工
具熱機械部品材料となどとして用いられているが、実際
に実用化されているものは、チタンの硼化物であって、
ジルコニウムの硼化物は殆ど実用化されていないのが実
状である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a ZrB 2 (zirconium diboride) -based sintered body. Generally, metal boride ceramics have the characteristics of high melting point, high strength, high hardness, and high corrosion resistance, and have been used as cutting tool thermo-mechanical parts materials, etc., but have actually been put to practical use. Is a boride of titanium,
The reality is that borides of zirconium have hardly been put to practical use.

本発明のZrB2質複合焼結体は、高融点、高強度、高硬
度、導電性、耐酸化性等の優れた特徴を有するもので、
発熱体電極、蒸着ヒーター、接点材料等に広く使用でき
る材料である。
The ZrB 2 composite sintered body of the present invention has excellent characteristics such as high melting point, high strength, high hardness, conductivity, and oxidation resistance.
It is a material that can be widely used for heating element electrodes, vapor deposition heaters, contact materials, etc.

[従来の技術] ZrB2質複合焼結体として現在広く実用化されているもの
は殆どないが特許などに種々のものが提案されている。
[Prior Art] Few ZrB two- material composite sintered bodies have been widely put into practical use at present, but various types have been proposed in patents and the like.

即ち、焼結助剤又は複合材などのZrB2焼結体のける副成
分としてはMoSi2,ZrSi2などの珪化物、BN,TaN,HfN等
の窒化物、ZrO2などの酸化物MoSi2,SiC,B4C質の炭化
物、種々の金属等が知られている。
That is, silicide such as MoSi 2, ZrSi 2 as auxiliary component takes the ZrB 2 sintered body such as a sintering aid or a composite material, BN, TaN, nitride such as HfN, oxide such as ZrO 2 MoSi 2 , SiC, B 4 C-based carbides and various metals are known.

[発明の解決しようとする問題点] 例えば、珪化物については、特公昭38-6098にZrSi2等が
又米国特許第3705112号にMoSi2等が開示されているが、
これらのSi系化合物は高温雰囲気下での焼結で溶融又は
分解するため組織が多孔質で結晶が粒成長することが多
く、そのため強度、耐食性も十分でなく、耐酸化性もSi
O2の皮膜としての効率が予測されるがこれらの副成分の
みでは空気中の使用には十分でない。
[Problems to be Solved by the Invention] For example, regarding silicides, Japanese Patent Publication No. 38-6098 discloses ZrSi 2 and the like and US Pat. No. 3,705,112 discloses MoSi 2 and the like.
Since these Si-based compounds are melted or decomposed by sintering in a high-temperature atmosphere, the structure is often porous and crystal grains grow, so the strength and corrosion resistance are not sufficient, and the oxidation resistance is Si.
The efficiency of O 2 as a film is expected, but these subcomponents alone are not sufficient for use in air.

次に窒化物については、米国特許第3305374に開示され
ているTaNは高強度材料としてZrB2,TiB2等に添加で
き、工具材料装飾材に応用されているが高硬度、高強度
の点では優れているが、高温耐食部材、発熱体電極、蒸
着ヒーター、接点材料等に使用する場合耐酸化性、耐ス
ポール性、耐食性の点で十分でない。
Next, regarding nitrides, TaN disclosed in U.S. Pat. No. 3,305,374 can be added to ZrB 2 , TiB 2 etc. as a high-strength material, and is applied to a tool material decoration material, but in terms of high hardness and high strength. Although excellent, it is not sufficient in terms of oxidation resistance, spall resistance, and corrosion resistance when used for high temperature corrosion resistant members, heating element electrodes, vapor deposition heaters, contact materials, etc.

次に炭化物については、米国特許第3775137号にSiC、米
国特許第3325300号にB4CやSiCが開示されているが、米
国特許第3375137号のSiCのみの添加では耐酸化性の点で
不十分であり、又、第3325300号のMoSi2+B4C、MoSi2
SiC+B4Cの添加ではMoSi2が焼結温度によっては低融点
であり、焼結中に溶けて分解したり、粒成長を促進する
など組織を多孔質化するため、高密度化しにくく耐酸化
性、強度も十分ではない。
Next, regarding carbides, U.S. Pat.No. 3,775,137 discloses SiC, and U.S. Pat.No. 3,325,300 discloses B 4 C and SiC.However, addition of only SiC in U.S. Pat.No.3375137 is unsatisfactory in terms of oxidation resistance. Sufficient, and MoSi 2 + B 4 C, MoSi 2 + of No. 3325300
With the addition of SiC + B 4 C, MoSi 2 has a low melting point depending on the sintering temperature, and it decomposes during sintering and decomposes, or it promotes grain growth and makes the structure porous, making it difficult to achieve high density and oxidation resistance. , The strength is not enough.

最近では特開昭58-209084、59-78973、60-29518等にSiC
に導電性セラミックス粉末としてZrB2等を添加し、SiC
の焼結助剤としてAl2O3を少量添加する組成が開示され
ているが、2000℃以上の焼結温度ではAl2O3が蒸発し、
組織が多孔質化し高密度化しにくく又そのため、強度耐
酸化性も低く十分でない。
Recently, in JP-A-58-209084, 59-78973, 60-29518, etc., SiC
ZrB 2 etc. as conductive ceramic powder was added to
Although a composition in which a small amount of Al 2 O 3 is added as a sintering aid of is disclosed, Al 2 O 3 evaporates at a sintering temperature of 2000 ° C. or higher,
Since the structure is porous and it is difficult to increase the density, the strength and oxidation resistance are low and not sufficient.

さらに、これらの提案においてより重要な点は、空気中
で使用される発熱体電極接点材料等に用いる接合耐酸化
性、強度が十分満足しうるものが得られてないというこ
とである。
Furthermore, a more important point in these proposals is that a material having sufficient joint oxidation resistance and strength, which is used as a contact material for a heating element electrode used in the air, has not been obtained.

又、発熱体は加熱時における電流の暴走を防ぎ、かつそ
の抵抗温度係数を利用して、ヒーター表面温度を一定に
保持する電流制御がしやすくするため、正の抵抗温度係
数を有することが必要である。
In addition, the heating element must have a positive resistance temperature coefficient in order to prevent runaway of the current during heating and to facilitate the current control to keep the heater surface temperature constant by utilizing its resistance temperature coefficient. Is.

このような点に鑑み、優れた特質を備えていながらその
特質を生かしきれず、極めて限られた用途にしか実際に
使われていないZrB2焼結体について、従来の問題点を克
服すべく研究を進めた結果、優れた高密度、高強度、高
硬度、耐酸化性、特に可変導電性(電気抵抗)、などの
諸性能を兼ね備え、かついくつかについてはその特質を
著しく向上せしめた焼結体の開発に成功したものであ
る。
In view of these points, ZrB 2 sintered bodies, which have excellent characteristics but cannot make full use of the characteristics and are actually used only for extremely limited applications, have been studied to overcome the conventional problems. As a result, sintering has various properties such as excellent high density, high strength, high hardness, oxidation resistance, especially variable conductivity (electrical resistance), and some of them have significantly improved characteristics. It was a successful development of the body.

[問題を解決する為の手段] 即ち、本発明はZrB2を主成分とし重量%で5〜60%のSi
C5〜30%のB4C及び2〜20%のAl2O3を含むことで特徴
づけられた導電性可変のZrB2質複合焼結体を要旨とする
ものである。
[Means for Solving the Problem] That is, the present invention is based on ZrB 2 as a main component and contains 5 to 60% by weight of Si.
The subject matter is a ZrB 2 -based composite sintered body with variable conductivity, which is characterized by containing C 5 to 30% B 4 C and 2 to 20% Al 2 O 3 .

本発明に用いるZrB2は例えば酸化ジルコニウム、酸化硼
素及びカーボンの混合物を高温で反応させることにより
得られ本焼結体の製造には可及的に純度の高いものを用
いるのが好ましく、又粒径も可及的に小さい粉末が好ま
しい。
ZrB 2 used in the present invention is obtained, for example, by reacting a mixture of zirconium oxide, boron oxide and carbon at a high temperature, and it is preferable to use as high purity as possible for the production of the present sintered body. A powder whose diameter is as small as possible is preferable.

具体的には純度99%以上、平均粒径10μm特には1μm
以下のものがそれである。
Specifically, purity is 99% or more, average particle size is 10 μm, especially 1 μm
The following is it.

又、副成分として存在せしめるSiC,B4C,Al2O3につい
ては、焼結体としてそのような化合物として、所定料が
存在していればよいので、出発原料としてはどのような
形態のものとして配合してもよいが、SiC,B4C,Al2O3
以外の原料を使用した場合には、焼結段階で特別な配慮
が必要となるため通常配合原料としてSiC,B4C,Al2O3
として調整しておくのがよい。
Regarding SiC, B 4 C, and Al 2 O 3 which are allowed to be present as an accessory component, it is sufficient that a predetermined material is present as such a compound as a sintered body, and therefore, any form of starting material can be used. Although it may be blended as a material, SiC, B 4 C, Al 2 O 3
If other raw materials are used, special consideration is required at the sintering stage, so SiC, B 4 C, Al 2 O 3
It is good to adjust as.

このSiC,B4C,Al2O3原料についても可及的に純度の高
いものが好ましく通常99%以上ものがよい。
This SiC, B 4 C, Al 2 O 3 raw material is also preferably as pure as possible, and usually 99% or more.

原料混合物は通常これら4種の微粉末を均一に混合する
ことにより調整するが粉砕混合を目的として超微粉砕し
ても同様である。一般に混合原料の粒度は10μm以下が
よく好ましくは、平均粒径1μm以下にまで十分調整し
ておくことである。これらの粉砕にはSiCボール又はAl2
O3を用いることが適当である。
The raw material mixture is usually prepared by uniformly mixing these four kinds of fine powders, but the same applies even if ultrafine pulverization is performed for the purpose of pulverization and mixing. Generally, the particle size of the mixed raw material is preferably 10 μm or less, and preferably, the average particle size is sufficiently adjusted to 1 μm or less. SiC balls or Al 2
It is appropriate to use O 3 .

本発明焼結体はこれらの混合物を例えば黒鉛型に充填
し、真空中又はアルゴン、ヘリウム、一酸化炭素等の中
性あるいは還元性の雰囲気下でホットプレスするか上記
混合物をラバープレス成形してから常圧焼成、加圧焼成
するなどにより得ることができる。尚、焼成温度は1700
〜2300℃焼成時間は試料の大きさにもよるが、通常0.5
〜5時間程度が適当である。
For the sintered body of the present invention, these mixtures are filled in, for example, a graphite mold and hot-pressed in a vacuum or in a neutral or reducing atmosphere such as argon, helium, carbon monoxide, or by rubber-press molding the above mixture. It can be obtained by baking from normal pressure or pressure. The firing temperature is 1700
~ 2300 ℃ firing time is usually 0.5, although it depends on the size of the sample.
About 5 hours is suitable.

本発明において、SiC(シリコンカーバイト)は少なく
とも重量%(以下同じ)で5%は必要であるが、これは
それ以下では耐酸化性が十分でなく、又発熱体等として
の導電性(電気抵抗)が低く、一方、多すぎてもSiCが
難焼結性のため高密度化しにくく、又蒸着ヒーター等に
用いる場合、耐食性の効果が発揮されないことや、発熱
体としての電気抵抗が高くなるなどのため好ましくな
く、最大60%にとどめることが必要であり、望ましくは
10〜55%である。
In the present invention, at least 5% by weight (the same applies below) of SiC (silicon carbide) is necessary, but if it is less than that, the oxidation resistance is not sufficient, and the conductivity (electricity) as a heating element is low. Resistance) is low, on the other hand, if too much SiC is hard to sinter, it is difficult to densify it, and when it is used for vapor deposition heaters, the effect of corrosion resistance is not exhibited and the electric resistance as a heating element becomes high. It is not preferable because of such reasons, and it is necessary to keep it at a maximum of 60%, preferably
10-55%.

B4C(ボロンカーバイト)は少なくとも5%は必要であ
るが、これはそれ以下だと、耐酸化性、高強度化、高密
度化が困難となるからであり、一方、多すぎても耐熱性
が低下したり、耐食性が悪くなるなどのため好ましくな
く、最大30%にとどめることが必要であり望ましくは7
〜25%である。
At least 5% of B 4 C (boron carbide) is necessary, but if it is less than 5%, it becomes difficult to achieve oxidation resistance, high strength, and high density. It is not preferable because it lowers the heat resistance and the corrosion resistance.
~ 25%.

B4Cの存在が何故に耐酸化性の向上を本焼結体にもたら
されるかについては明らかでないが、使用下において高
粘性のSiO2−B203系の皮膜が形成されるためであろうと
考えられ、このようなことは本焼結体が発熱体のような
用途にも十分耐用しうることを示している。
Although it is not clear why the presence of B 4 C improves the oxidation resistance of the sintered body, it is because a highly viscous SiO 2 -B 2 0 3 -based film is formed during use. It is considered that the sintered body can sufficiently withstand applications such as a heating element.

Al2O3(酸化アルミニウム)は少なくとも2%以上は必
要であるが、それ以下だと高密度化、高強度化が困難と
なるからであり、一方、多すぎてもAl2O3の蒸発により
多孔質化し、高密度化しにくい等のため好ましくなく、
最大20%にとどめることが必要であり、望ましくは5〜
15%である。
This is because at least 2% or more of Al 2 O 3 (aluminum oxide) is necessary, but if it is less than that, it becomes difficult to achieve high density and high strength. On the other hand, if too much, evaporation of Al 2 O 3 occurs. It is not preferable because it becomes porous due to
It is necessary to keep the maximum 20%, preferably 5
15%.

Al2O3の存在が何故必要かについては明らかでないが、
焼結体の緻密化、電気抵抗のコントロールに有効となる
と考えられる。
It is not clear why the presence of Al 2 O 3 is necessary,
It is considered to be effective for densification of the sintered body and control of electric resistance.

又、これらのSiC,B4C,Al2O3はその合量として少なく
とも12%は必要で、最大80%程度まで存在せしめること
も可能であるが、合量が多すぎるとそれに伴なってZrB2
の特性を損ってくることになるので通常は合量として22
〜70%が適切である。
Further, these SiC, B 4 C, and Al 2 O 3 must have a total amount of at least 12%, and it is possible to make them exist up to a maximum of about 80%, but if the total amount is too large, it will be accompanied. ZrB 2
Since it will impair the characteristics of, the total amount is usually 22
~ 70% is appropriate.

本発明焼結体は発熱体等の用途に用いる場合、低抵抗率
で正の温度係数を有する耐熱性の高い焼結体であること
が判明した。
It has been found that the sintered body of the present invention is a sintered body having a low resistivity and a positive temperature coefficient and a high heat resistance when used for a heating element or the like.

尚、本発明焼結体は、これらの別成分以外の成分即ち残
部は実質的にZrB2からなるものであるが、ZrB2の特質を
損わない範囲でZrB2以外の成分例えばTiB2等が少量含ま
れていても勿論差し支えないが、可及的少量にとどめる
ことが望ましい。
The present invention sintered body, although component or the remainder other than these other components are substantially made of ZrB 2, ZrB 2 other ingredients such as TiB 2 and the like in a range not impaired the characteristics of ZrB 2 Of course, it does not matter if a small amount is included, but it is desirable to keep it as small as possible.

又、副成分としても本発明焼結体の目的効果を本質的に
損なわない範囲において、他の成分が含まれていても勿
論差し支えはないが、不可避的不純物を含めて、可及的
少量にとどめることが必要である。
Further, as a sub-component, other components may of course be contained as long as the intended effect of the sintered body of the present invention is not essentially impaired. It is necessary to stay.

本発明焼結体の組成はZrB2を主成分としこの間をSiC,B
4C,ZrB2が強固に結合している緻密なものであって、Zr
B2結晶は極めて微細な結晶で存在し、その特質を存分に
発揮せしめるに至っている。具体的に言えば、本発明焼
結体におけるZrB2結晶はその大部分が粒径10μm以下と
して存在しているものであり、SiC,B4C,及びZrB2につ
いてはその大部分が5μm以下として存在している。
The composition of the sintered body of the present invention contains ZrB 2 as a main component and SiC and B
4 C, there is dense the ZrB 2 is tightly bound, Zr
The B 2 crystal exists as an extremely fine crystal, and it has come to fully exhibit its characteristics. Specifically, most of the ZrB 2 crystals in the sintered body of the present invention exist with a grain size of 10 μm or less, and most of SiC, B 4 C, and ZrB 2 have a grain size of 5 μm or less. Exists as.

[発明の効果] このようにして得られた本発明焼結体は高密度、高強
度、高硬度であってかつ耐酸化性に優れた導電性の可変
できる焼結体であるため、発熱体電極、蒸着ヒーター接
点材料等の電気部材に好ましく適用可能である。その
他、ZrB2質複合焼結体の特質を発揮した高温耐食部材、
構造部材、産業用機械部材等の種々の用途に使用できる
ものであってその実用的価値は多大である。
[Effects of the Invention] Since the sintered body of the present invention thus obtained is a sintered body having high density, high strength, high hardness, and excellent resistance to oxidation and which can be varied in conductivity, It is preferably applicable to electric members such as electrodes and contact materials for vapor deposition heaters. In addition, a high temperature corrosion resistant member that exhibits the characteristics of ZrB 2 composite sintered body,
It can be used for various purposes such as structural members and industrial machine members, and its practical value is great.

(実施例) 実施例1 ZrB2粉末(純度99%以上)、SiC粉末(純度99%以
上)、B4C粉末(純度99%以上)及びAl2O3粉末(純度99
%以上)を十分に混合粉砕すべくポットミルを使用し、
エタノール溶媒中でSiCボールを用い3日間粉砕混合し
た。得られた粉末をエバポレーターでアルコールを除去
して十分乾燥し、平均粒径0.15μmの粉末を得た。この
粉末を黒鉛型に充填し、アルゴン雰囲気下で350kg/cm2
に加圧しながら、1800℃で30分間加熱した。このように
して得られた焼結体の特性を第1表に示す。
(Example) Example 1 ZrB 2 powder (purity 99% or more), SiC powder (purity 99% or more), B 4 C powder (purity 99% or more) and Al 2 O 3 powder (purity 99)
Use a pot mill to thoroughly mix and pulverize
It was crushed and mixed for 3 days using a SiC ball in an ethanol solvent. Alcohol was removed from the obtained powder by using an evaporator and sufficiently dried to obtain a powder having an average particle size of 0.15 μm. This powder was filled in a graphite mold and 350 kg / cm 2 under an argon atmosphere.
The mixture was heated at 1800 ° C. for 30 minutes while being pressurized. The characteristics of the sintered body thus obtained are shown in Table 1.

実施例6 実施例1と同様のZrB2,SiC,B4C,Al2O3粉末をポット
ミルを使用しエタノール溶媒下でSiCボールを用い、3
日間粉砕混合した。この粉末をエバポレーターでアルコ
ール除去して十分乾燥し、平均粒径0.15μmの粉末を得
た。この粉末をラバープレスを用い2000kg/cm2で成形
し、アルゴン雰囲気下2100℃で2時間焼成した。このよ
うにして得られた焼結体の特性を第1表に示す。
Example 6 The same ZrB 2 , SiC, B 4 C, and Al 2 O 3 powders as in Example 1 were used in a pot mill using SiC balls in an ethanol solvent.
Milled and mixed for days. Alcohol was removed from this powder by an evaporator and sufficiently dried to obtain a powder having an average particle size of 0.15 μm. This powder was molded with a rubber press at 2000 kg / cm 2 and was fired at 2100 ° C. for 2 hours in an argon atmosphere. The characteristics of the sintered body thus obtained are shown in Table 1.

実施例2乃至5及び7乃至10ならびに比較例1乃至5 所定の配合原料を実施例1及び6に準じて調整し所定の
焼成条件で処理して得た各試料についての効果を第1表
に示す。
Examples 2 to 5 and 7 to 10 and Comparative Examples 1 to 5 Table 1 shows the effect of each sample obtained by adjusting the prescribed raw materials according to Examples 1 and 6 and treating them under the prescribed firing conditions. Show.

注1)耐酸化性は酸素雰囲気下1500℃×24hrの条件下で
の重量増加率の程度 注2)電気抵抗は4端子法で測定した値を示す。
Note 1) Oxidation resistance is the degree of weight increase rate under the condition of 1500 ° C x 24hr in oxygen atmosphere Note 2) Electrical resistance is the value measured by the 4-terminal method.

(25℃) (25 ° C)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ZrB2を主成分とし、重量%で、5〜60%のS
iC,5〜30%のB4C及び2〜20%のAl2O3を含むことで特
徴づけられた導電性可変ZrB2質複合焼結体。
1. A main component of ZrB 2 is 5% to 60% by weight of S.
A variable conductivity ZrB 2 composite sintered body characterized by containing iC, 5 to 30% B 4 C and 2 to 20% Al 2 O 3 .
【請求項2】SiCとB4CとAl2O3の合量が12〜80%である
特許請求の範囲第1項記載の焼結体。
2. The sintered body according to claim 1, wherein the total amount of SiC, B 4 C and Al 2 O 3 is 12 to 80%.
【請求項3】SiCとB4CとAl2O3の合量が22〜70%である
特許請求の範囲第2項記載の焼結体。
3. The sintered body according to claim 2, wherein the total content of SiC, B 4 C and Al 2 O 3 is 22 to 70%.
【請求項4】SiCが10〜55%,B4Cが7〜25%,Al2O3
5〜15%である特許請求の範囲第3項記載の焼結体。
4. A sintered body according to claim 3 , wherein SiC is 10 to 55%, B 4 C is 7 to 25%, and Al 2 O 3 is 5 to 15%.
JP60128216A 1985-06-14 1985-06-14 Variable conductivity ZrB2 composite sintered body Expired - Fee Related JPH0610106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128216A JPH0610106B2 (en) 1985-06-14 1985-06-14 Variable conductivity ZrB2 composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128216A JPH0610106B2 (en) 1985-06-14 1985-06-14 Variable conductivity ZrB2 composite sintered body

Publications (2)

Publication Number Publication Date
JPS61286268A JPS61286268A (en) 1986-12-16
JPH0610106B2 true JPH0610106B2 (en) 1994-02-09

Family

ID=14979364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128216A Expired - Fee Related JPH0610106B2 (en) 1985-06-14 1985-06-14 Variable conductivity ZrB2 composite sintered body

Country Status (1)

Country Link
JP (1) JPH0610106B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230674A (en) * 1986-03-29 1987-10-09 黒崎窯業株式会社 Zrb2 composite sintered body
DE102006013746A1 (en) * 2006-03-24 2007-09-27 Esk Ceramics Gmbh & Co. Kg Sintered wear-resistant material used in the production of wear components comprises finely ground transition metal diboride or mixed crystal, oxygen-containing grain boundary phase and particulate boron and/or silicon carbide

Also Published As

Publication number Publication date
JPS61286268A (en) 1986-12-16

Similar Documents

Publication Publication Date Title
JP3501317B2 (en) High thermal conductivity silicon nitride sintered body and insulating substrate made of silicon nitride sintered body
JPH10500766A (en) High voltage ceramic igniter
EP0170864B1 (en) Zrb2 composite sintered material
EP0170889B1 (en) Zrb2 composite sintered material
JPH0610106B2 (en) Variable conductivity ZrB2 composite sintered body
JPS644983B2 (en)
JPS6337069B2 (en)
JPS6339542B2 (en)
JPS6337068B2 (en)
JPS6337070B2 (en)
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JPS6339543B2 (en)
JP4284756B2 (en) Thermistor material for wide range
JPH0742168B2 (en) Composite ceramics sintered body
JPS62119168A (en) High anticorrosion high thermal shock resistance zrb2 base composite sintered body
JP3898346B2 (en) Conductive ceramic materials
JPS6339544B2 (en)
JPS6144769A (en) High strength zrb2 composite sintered body
JPH0224783B2 (en)
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JPS62288171A (en) Zrb2 base composite sintered body
JPH05279128A (en) Zirconium diboride multiple sintered compact
JP2742621B2 (en) High toughness silicon nitride sintered body
JPH0460070B2 (en)
Kida et al. ZrB2 Composite Sintered Material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees