JPS644983B2 - - Google Patents

Info

Publication number
JPS644983B2
JPS644983B2 JP60293069A JP29306985A JPS644983B2 JP S644983 B2 JPS644983 B2 JP S644983B2 JP 60293069 A JP60293069 A JP 60293069A JP 29306985 A JP29306985 A JP 29306985A JP S644983 B2 JPS644983 B2 JP S644983B2
Authority
JP
Japan
Prior art keywords
sintered body
sic
tin
high hardness
zrb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60293069A
Other languages
Japanese (ja)
Other versions
JPS62153166A (en
Inventor
Otojiro Kida
Kazuo Mannami
Atsushi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60293069A priority Critical patent/JPS62153166A/en
Publication of JPS62153166A publication Critical patent/JPS62153166A/en
Publication of JPS644983B2 publication Critical patent/JPS644983B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はB4C(炭化硼素)質複合焼結体に関す
るものである。一般的に炭化硼素は高融点、高硬
度、中性子吸収性等の特徴を有し、従来からサン
ドヴラストノズル、線引きダイス、押し出しダイ
スや研摩材として、又、原子炉用材料として制御
材や遮蔽材等に実用化されている。 本発明のB4C系複合焼結体は高融点、高硬度耐
摩耗性、高強度、導電性、耐酸化性等の優れた特
徴を有するので、産業用機械部材、耐摩耗材、発
熱体、電極高温耐食部材等に広く使用出来る材料
である。 〔従来の技術〕 B4Cの焼結体は高硬度耐摩耗性の特徴からサン
ドブラストノズル、線引きダイス、押出しダイス
や研摩材として、又、中性子吸引性の為、原子炉
用材料として広く実用化されている。特許には
種々のものが提案されている。 即ち、焼結助剤又は複合材等のB4C焼結体にお
ける副成分としては、TiB2、ZrB2、CrB6等の硼
化物、WC等の炭化物、Ni、MO等の金属が知ら
れている。 又、フアインセラミツクス、昭59(1984年)第
5巻に炭素−B4CSiC系複合材料等が報告されて
いる。 〔発明の解決しようとする問題点〕 例えば、硼化物や炭化物については特開昭46−
77940にTiB2又はCrB6が、又特開昭50−111111
にTiB2、ZrB2、WC等が開示されているが、B4C
は酸化雰囲気では1000℃以上で分解し、著るしく
耐酸化性が劣り、又、強度、硬度も十分でない。
WCも同様に耐酸化性が不十分である。 Ni、Mo等の金属の添加は焼結助剤として、特
開昭50−111111、特開昭50−21014等に開示され
ているが特に耐酸化性を向上させるには不十分で
硬度、強度も十分でない。 このような点に鑑み、優れた高硬度耐摩耗性を
備えていながら極めて限られた用途にしか使われ
ていないB4C質焼結体について研究を進めた結
果、優れた高融点、高硬度、高強度、耐酸化性、
可変導電性(電気抵抗)等の諸性能を兼ね備え、
かつ、いくつかについてはその特質を著るしく向
上せしめた焼結体の開発に成功したものである。 〔問題を解決するための手段〕 即ち、本発明はB4Cを主成分とし重量%で1〜
15%のSiC及びTiB2、ZrB2、TiC、TiN、Ti
(CN)のいずれか1種又は2種以上を4〜50%
含む事で特徴づけられた導電性のB4C複合焼結体
を要旨するものである。 本発明に用いる副成分としてのZrB2又はTiB2
は、酸化ジルコニウム酸化硼素カーボン又は酸化
チタニウム酸化硼素カーボンの混合物を適温で反
応させる事により得られ、本焼結体の製造には可
及的に純度の高いものを用いるのが好ましく、
又、粒径も可及的に小さい粉末が好ましい。具体
的には純度99%以上、平均粒径10μm、特には1μ
m以下のものがそれである。 主成分のB4C及び副成分として存在せしめる
TiC、TiN、Ti(CN)、SiCについては焼結体と
してそのような化合物として所定量存在していれ
ばよいので出発原料としてどのような形態のもの
として配合してもよいが、B4C、TiC、TiN、Ti
(CN)、SiC以外の原料を使用した場合は焼結段
階で特別な配慮が必要となるので通常配合原料と
して調整しておくのがよい。 このB4C、TiC、TiN、Ti(CN)、SiC原料につ
いても可及的に純度の高いものが好ましく、通常
99%以上のものがよい。 なお、Ti(CN)はTiNに炭素が固溶したもの
であり、炭素と窒素の割合は10:90から90:10ま
での範囲のものがある。 原料混合物は通常これらの1種又は2種以上の
微粉末を均一に混合する事によつて調整するが、
粉砕混合を目的として超微粉砕しても同様であ
る。一般に混合原料の粒度は10μm以下がよく、
好ましくは平均粒径1μm以下にまで十分調整し
ておく事である。これらの粉砕にはSiCボールを
用いる事が適当である。 本焼結体はこれらの混合物を例えば黒鉛型に充
填し、真空中又はアルゴン、ヘリウム、一酸化炭
素などの中性或は還元性の雰囲気下でホツトプレ
スするか、上記混合物をラバープレス成形してか
ら常圧焼成する事などにより得る事が出来る。な
お、焼成温度は1700〜2200℃、焼成時間は試料の
大きさにもよるが通常0.5〜5時間が適当である。 この焼結体は導電性を有するため、従来のB4C
系焼結体はダイヤモンド加工しか出来なかつたも
のが放電加工が可能となり、高精度、表面粗度良
好な焼結体の加工品が得られる。 本発明焼結体において、ZrB2又はTiB2は少な
くとも重量%で4%は必要であるがそれ以下だ
と、高硬度、高強度、導電性が得られないからで
あり、一方、多すぎてもB4Cの特性である高硬度
が損なわれるため好ましくなく、最大50%にとど
める事が必要であり、望ましくは7〜45%であ
る。 TiCも少なくとも4%は必要であるが、それ以
下だと、導電性、高強度、高硬度化が得られない
からであり、一方、多すぎてもB4Cの高硬度の特
性が損なわれるため好ましくなく、最大50%にと
どめる事が必要であり、望ましくは7〜45%であ
る。 TiNも少なくとも4%は必要であるが、それ
以下だと高強度、高硬度、導電性が得られないか
らであり、一方、多すぎてもB4Cの高硬度の特性
が損なわれるため好ましくなく、最大50%にとど
める事が必要であり、望ましくは7〜45%であ
る。 Ti(CN)の場合でも、少なくとも4%は必要
であるが、それ以下だと高強度、高硬度、導電性
が得られないからであり、一方、多すぎてもB4C
の高硬度の特性が損なわれるため好ましくなく、
最大50%にとどめる事が必要であり、望ましくは
7〜45%である。なお、SiC以外の副成分の最適
範囲は20〜45%である。 SiCは副成分としてのいずれの場合でも、少な
くとも1%以上必要であるが、これはそれ以下だ
と、耐酸化性、高密度化が難しくなるからであ
り、一方、多すぎてもB4C特有の高硬度が損わ
れ、また、導電性(電気抵抗)が大となり放電加
工がしにくくなるなど好ましくなく、最大15%に
とどめる事が必要であり、望ましくは3〜12%で
ある。 又、これら副成分としてのSiCとTiB2、ZrB2
TiC、TiN、Ti(CN)のいずれかを1種又は2
種以上含んだ合量として少なくとも5%は必要で
あるが、最大65%まで存在せしめる事も可能であ
るが、合量が多すぎるとそれに伴つてB4Cの特性
を損つてくる事になるので、通常は合量として10
〜60%が適切であり、望ましくは30〜55%であ
る。 また、副成分として本発明焼結体の目的効果を
本質的に損わない範囲において他の成分が含まれ
ていても勿論差支えはないが、不可避的不純物を
含めて可及的少量にとどめる事が必要である。 本発明焼結体の組織はB4Cの微細結晶が均一に
分散している極めて緻密なものであり、副成分は
B4Cの微細結晶粒間に分布している良好な組織か
ら成つている。具体的に云えば、本発明における
B4Cの結晶はその大部分が粒径5μm以下として存
在している。 〔実施例〕 実施例 1 B4C粉末(純度99%以上)、SiC粉末(純度99%
以上)、ZrB2粉末(純度99%以上)を十分に混合
粉砕すべくポツトミルを使用し、エタノール溶媒
中でSiCボールを用いて3日間粉砕混合した。得
られた粉末をエバポレータでアルコールを除去し
て十分乾燥し、平均粒径0.15μmの粉末を得た。
この粉末を黒鉛型に充填し、アルゴン雰囲気下で
350Kg/cm2に加圧しながら2000℃で30分間加熱し
た。このようにして得られた焼結体の特性(耐酸
化性以外はいずれも常温値)を第1表に示す。 実施例2乃至14及び比較例1〜4 所定の配合量を実施例1とほぼ同様な方法で調
整し、所定の条件で処理して得た各試料について
の結果を第1表に示す。 注(1) 電気抵抗は4端子法で測定した値を示す。 注(2) 耐酸化性は酸化雰囲気下1300℃、12時間の
条件下での酸化状況を示す。 〔発明の効果〕 このようにして得られた本発明のB4C導電性焼
結体は優れた高密度、高硬度、高強度、耐摩耗
性、導電性、耐酸化性を有するので、産業用機械
部材、耐摩耗材、発熱体、電極、高湿耐食部材等
に好ましく適用可能であり、そのほか、導電性を
利用した加工法(放電加工)が出来るため、高精
度の加工が可能であるため、種々の用途に使用出
来るものであつてその実用的価値は多大である。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a B 4 C (boron carbide) composite sintered body. In general, boron carbide has characteristics such as high melting point, high hardness, and neutron absorption, and has traditionally been used as a sand blast nozzle, wire drawing die, extrusion die, and abrasive material, and as a material for nuclear reactors as a control material and shielding material. It has been put to practical use in materials such as materials. The B 4 C-based composite sintered body of the present invention has excellent characteristics such as high melting point, high hardness and wear resistance, high strength, electrical conductivity, and oxidation resistance, so it can be used as industrial machine parts, wear-resistant materials, heating elements, etc. It is a material that can be widely used for electrodes, high temperature corrosion resistant parts, etc. [Prior technology] B 4 C sintered bodies are widely used as sandblasting nozzles, wire drawing dies, extrusion dies, and abrasive materials due to their high hardness and wear resistance, and as materials for nuclear reactors due to their neutron-absorbing properties. has been done. Various types of patents have been proposed. That is, borides such as TiB 2 , ZrB 2 , and CrB 6 , carbides such as WC, and metals such as Ni and MO are known as subcomponents in B 4 C sintered bodies such as sintering aids or composite materials. ing. Further, carbon-B 4 CSiC-based composite materials and the like are reported in Fine Ceramics, Volume 5, 1984. [Problems to be solved by the invention] For example, regarding borides and carbides, JP-A-46-
TiB 2 or CrB 6 is added to 77940, and JP-A-111111
discloses TiB 2 , ZrB 2 , WC, etc., but B 4 C
decomposes at temperatures above 1000°C in an oxidizing atmosphere, resulting in significantly poor oxidation resistance and insufficient strength and hardness.
WC also has insufficient oxidation resistance. The addition of metals such as Ni and Mo as sintering aids is disclosed in JP-A-111111-1982 and JP-A-21014, but it is insufficient to particularly improve oxidation resistance and hardness and strength. is also not enough. In view of these points, we conducted research on B 4 C sintered bodies, which have excellent hardness and wear resistance but are used only in extremely limited applications. , high strength, oxidation resistance,
Combines various performances such as variable conductivity (electrical resistance),
In addition, we have succeeded in developing sintered bodies that have significantly improved properties in some cases. [Means for solving the problem] That is, the present invention uses B 4 C as a main component and contains 1 to 1% by weight.
15% SiC and TiB2 , ZrB2 , TiC, TiN, Ti
(CN) 4-50% of any one or two or more types
This article summarizes a conductive B 4 C composite sintered body characterized by containing. ZrB 2 or TiB 2 as a subcomponent used in the present invention
is obtained by reacting a mixture of zirconium oxide boron oxide carbon or titanium oxide boron oxide carbon at an appropriate temperature, and it is preferable to use one with as high purity as possible for the production of this sintered body.
Also, powders with as small a particle size as possible are preferred. Specifically, the purity is 99% or more, the average particle size is 10μm, especially 1μm.
This is less than m. Exist as main component B 4 C and subcomponent
TiC, TiN, Ti(CN), and SiC need only be present in a predetermined amount as such compounds in the form of sintered bodies, so they may be blended in any form as starting materials, but B 4 C , TiC, TiN, Ti
When using raw materials other than (CN) and SiC, special consideration is required at the sintering stage, so it is best to prepare them as regular blended raw materials. It is preferable that these B 4 C, TiC, TiN, Ti(CN), and SiC raw materials have as high a purity as possible, and usually
99% or higher is good. Note that Ti(CN) is a solid solution of carbon in TiN, and the ratio of carbon to nitrogen ranges from 10:90 to 90:10. The raw material mixture is usually prepared by uniformly mixing one or more of these fine powders, but
The same applies to ultrafine pulverization for the purpose of pulverization and mixing. Generally, the particle size of the mixed raw material is preferably 10 μm or less.
Preferably, the average particle size should be sufficiently adjusted to 1 μm or less. It is appropriate to use SiC balls for crushing these. The present sintered body can be obtained by filling a graphite mold with the mixture and hot-pressing it in a vacuum or in a neutral or reducing atmosphere such as argon, helium, or carbon monoxide, or by molding the above-mentioned mixture with a rubber press. It can be obtained by firing under normal pressure. Note that the firing temperature is 1700 to 2200°C, and the firing time is usually 0.5 to 5 hours, although it depends on the size of the sample. This sintered body has electrical conductivity, so it is different from conventional B 4 C.
The system sintered bodies, which could only be processed by diamond machining, can now be processed by electrical discharge machining, and sintered bodies with high precision and good surface roughness can be obtained. In the sintered body of the present invention, at least 4% by weight of ZrB 2 or TiB 2 is required, but if it is less than that, high hardness, high strength, and conductivity cannot be obtained. This is not preferable because the high hardness, which is a characteristic of B 4 C, is impaired, and it is necessary to limit it to a maximum of 50%, preferably 7 to 45%. At least 4% of TiC is also required, but if it is less than that, it will not be possible to obtain conductivity, high strength, and high hardness.On the other hand, if it is too much, the high hardness characteristics of B 4 C will be impaired. Therefore, it is not preferable, and it is necessary to limit it to a maximum of 50%, and preferably 7 to 45%. At least 4% of TiN is also required, but if it is less than that, high strength, high hardness, and conductivity cannot be obtained.On the other hand, if it is too much, the high hardness properties of B 4 C will be impaired, so it is preferable. It is necessary to keep it to a maximum of 50%, preferably 7 to 45%. Even in the case of Ti (CN), at least 4% is necessary, but if it is less than that, high strength, high hardness, and conductivity cannot be obtained.On the other hand, if it is too much, B 4 C
It is undesirable because the high hardness properties of
It is necessary to keep it to a maximum of 50%, preferably 7 to 45%. Note that the optimum range of subcomponents other than SiC is 20 to 45%. In any case, SiC as a subcomponent must be at least 1%, because if it is less than that, it will be difficult to achieve oxidation resistance and high density.On the other hand, if it is too much, B 4 C The characteristic high hardness is lost, and the conductivity (electrical resistance) increases, making it difficult to perform electric discharge machining, which is undesirable, so it is necessary to limit the amount to a maximum of 15%, and preferably 3 to 12%. In addition, SiC, TiB 2 , ZrB 2 ,
One or two of TiC, TiN, Ti(CN)
A total amount of at least 5% is required, but it is possible to have a maximum of 65%, but if the total amount is too large, the properties of B 4 C will be impaired. Therefore, the total amount is usually 10
~60% is suitable, preferably 30-55%. In addition, it is of course possible to include other components as subcomponents as long as they do not essentially impair the intended effects of the sintered body of the present invention, but they should be kept in as small a quantity as possible, including unavoidable impurities. is necessary. The structure of the sintered body of the present invention is extremely dense with B4C microcrystals uniformly dispersed, and the subcomponents are
It consists of a good structure distributed between the fine crystal grains of B 4 C. Specifically speaking, in the present invention
Most of the B 4 C crystals exist as grain sizes of 5 μm or less. [Example] Example 1 B 4 C powder (purity 99% or more), SiC powder (purity 99%)
A pot mill was used to sufficiently mix and pulverize the ZrB 2 powder (purity of 99% or more), and the mixture was pulverized for 3 days using a SiC ball in an ethanol solvent. The obtained powder was thoroughly dried by removing alcohol using an evaporator to obtain a powder having an average particle size of 0.15 μm.
This powder was packed into a graphite mold and placed under an argon atmosphere.
It was heated at 2000°C for 30 minutes while pressurizing to 350Kg/cm 2 . Table 1 shows the properties of the sintered body thus obtained (all values at room temperature except for oxidation resistance). Examples 2 to 14 and Comparative Examples 1 to 4 Table 1 shows the results for each sample obtained by adjusting predetermined blending amounts in substantially the same manner as in Example 1 and treating them under predetermined conditions. Note (1) Electrical resistance indicates the value measured using the 4-terminal method. Note (2) Oxidation resistance indicates the oxidation status under oxidizing atmosphere at 1300℃ for 12 hours. [Effects of the Invention] The B4C conductive sintered body of the present invention thus obtained has excellent high density, high hardness, high strength, abrasion resistance, conductivity, and oxidation resistance, so it is suitable for industrial use. It can be preferably applied to mechanical parts, wear-resistant materials, heating elements, electrodes, high-humidity corrosion-resistant parts, etc. In addition, it can be processed using electrical conductivity (discharge machining), so high-precision processing is possible. , which can be used for various purposes and has great practical value. 【table】

Claims (1)

【特許請求の範囲】 1 B4Cを主成分とし、副成分としてSiCを重量
%で1〜15%及びZrB2、TiB2、TiC、TiN、Ti
(CN)のいずれか又は2種以上を重量%で4〜
50%含むことで特徴づけられたB4C系複合焼結
体。 2 SiCが3〜12%である特許請求の範囲第1項
記載の焼結体。 3 ZrB2、TiB2、TiC、TiN、Ti(CN)のいず
れか1以上が7〜45%である特許請求の範囲第1
項又は第2項記載の焼結体。
[Claims] 1 B 4 C as a main component, SiC as a subcomponent of 1 to 15% by weight, and ZrB 2 , TiB 2 , TiC, TiN, Ti
(CN) or two or more types in weight% of 4~
A B 4 C composite sintered body characterized by containing 50%. 2. The sintered body according to claim 1, wherein the SiC content is 3 to 12%. 3 Claim 1 in which any one or more of ZrB 2 , TiB 2 , TiC, TiN, and Ti(CN) is 7 to 45%
The sintered body according to item 1 or 2.
JP60293069A 1985-12-27 1985-12-27 B4c base composite sintered body Granted JPS62153166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60293069A JPS62153166A (en) 1985-12-27 1985-12-27 B4c base composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293069A JPS62153166A (en) 1985-12-27 1985-12-27 B4c base composite sintered body

Publications (2)

Publication Number Publication Date
JPS62153166A JPS62153166A (en) 1987-07-08
JPS644983B2 true JPS644983B2 (en) 1989-01-27

Family

ID=17790052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293069A Granted JPS62153166A (en) 1985-12-27 1985-12-27 B4c base composite sintered body

Country Status (1)

Country Link
JP (1) JPS62153166A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240130B2 (en) * 1990-03-23 2001-12-17 ティーディーケイ株式会社 Thermistor material and thermistor element
JP3228517B2 (en) * 1990-12-12 2001-11-12 皓一 新原 Boron carbide composite sintered body
FR2787370B1 (en) * 1998-12-22 2001-03-16 Franco Belge Combustibles METHOD FOR JOINING TWO COAXIAL TUBULAR PARTS, TOOL FOR MAKING THE SAME AND USE THEREOF
US7592279B1 (en) * 2003-06-12 2009-09-22 Georgia Tech Research Corporation Boron carbide and boron carbide components
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
WO2006110720A2 (en) 2005-04-11 2006-10-19 Georgia Tech Research Corporation Boron carbide component and methods for the manufacture thereof
NO335994B1 (en) * 2011-10-13 2015-04-13 Saint Gobain Ceramic Mat As Process for producing grains useful for the preparation of a silicon carbide-based sintered product, composite grains prepared by the process, and use of the grains.
WO2020202878A1 (en) * 2019-04-02 2020-10-08 学校法人同志社 Zirconium boride/boron carbide composite and method for manufacturing same

Also Published As

Publication number Publication date
JPS62153166A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
CN110330341B (en) High-purity superfine transition metal carbide single-phase high-entropy ceramic powder and preparation method thereof
EP0628525B1 (en) Composites based on boron carbide, titanium boride and elemental carbon and method of their production
US4670201A (en) Process for making pitch-free graphitic articles
JPS5830263B2 (en) Method for producing dense polycrystalline compacts from boron carbide by vacuum sintering
US2814566A (en) Boron and carbon containing hard cemented materials and their production
JPS6228109B2 (en)
JPH0253387B2 (en)
JPS644983B2 (en)
US4486544A (en) Titanium boride based sintering composition and the use thereof in the manufacture of sintered articles
EP0170889B1 (en) Zrb2 composite sintered material
EP0347920B1 (en) High strength high toughness TiB2 ceramics
JPH0755861B2 (en) Method for forming high density metal boride-aluminum nitride composite article
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
CN111732436A (en) Easy-to-sinter titanium and tungsten co-doped zirconium carbide powder and preparation method thereof
WO2009112192A2 (en) Composite material based on transition metal borides, method for the production thereof, and use thereof
JP3111709B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPH0253388B2 (en)
EP0136151A1 (en) Graphitic articles and their production
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JP2805969B2 (en) Aluminum oxide based ceramics with high toughness and high strength
JPH0610107B2 (en) High strength and high toughness TiB2 composite sintered body
JPH055138A (en) Titanium alloy composite material
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP2849702B2 (en) Method for producing highly conductive carbon-based composite material
JPS6172688A (en) Electroconductive zrb2 composite sintered body