JPH0610051A - Silicon steel sheet excellent in iron loss and its production - Google Patents

Silicon steel sheet excellent in iron loss and its production

Info

Publication number
JPH0610051A
JPH0610051A JP4169714A JP16971492A JPH0610051A JP H0610051 A JPH0610051 A JP H0610051A JP 4169714 A JP4169714 A JP 4169714A JP 16971492 A JP16971492 A JP 16971492A JP H0610051 A JPH0610051 A JP H0610051A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
primary
recrystallization annealing
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4169714A
Other languages
Japanese (ja)
Inventor
Hiroaki Masui
浩昭 増井
Katsuro Kuroki
克郎 黒木
Osamu Tanaka
収 田中
Isao Iwanaga
功 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4169714A priority Critical patent/JPH0610051A/en
Publication of JPH0610051A publication Critical patent/JPH0610051A/en
Priority to US08/257,765 priority patent/US5507883A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a silicon steel sheet excellent in iron loss by forming specific grooves in the surface of a rolled sheet with specific Si content at proper temp., applying chloride or sulfide to the surface, and then forming a primary insulating film by secondary recrystallization annealing. CONSTITUTION:The grain-oriented silicon steel sheet can be obtained by refining a steel containing 1-7% Si and subjecting this steel to hot rolling, cold rolling, and primary and secondary recrystallization annealing treatments. At this time, grooves are provided, at spaces, to the surface of a steel sheet of 300-950 deg.C in the course of primary recrystallization annealing. As to these grooves, the average maximum depth is 2-50/mum and the derection is regulated to 45-90 deg.C with respect to the longitudinal direction, and further, suitable space is 2-20mm. Subsequently, a material containing chloride and/or sulfide is applied to the surface of this steel sheet, and secondary recrystallization annealing is carried out in the atmosphere, preferably, of >=30% partial pressure of N2 at <=30 deg.C/hr temp. rise rate. By this procedure, a primary insulating film having <=0.3mum average thickness and composed essentially of forsterite is formed and part of this film is allowed to remain in the bottom of the above grooves, by which the silicon steel sheet having an iron loss of <=0.70watt/kg by W17/50 can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は磁気特性に優れた珪素鋼板
及びその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon steel sheet having excellent magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術】トランス用等の磁気特性に優れた1〜7
%のSiを含んだ珪素鋼板を製造するに際して、絶縁特
性の確保と鋼板表面に張力を与えトランスの性能向上に
必要な磁気特性を向上させ、かつ鋼板との密着性が良好
な一次被膜を形成させることは、従来技術においては方
向性電磁鋼板の一つの重要な課題であった。すなわち、
通常の技術では脱炭を伴う一次焼鈍後に鋼板にマグネシ
アと呼ばれる酸化マグネシウム(MgO)の微粉末を水
溶させたスラリー状のものを塗り、必要に応じて乾燥さ
せた後、二次再結晶焼鈍工程で焼成させ、鋼板中のSi
2 やSiとの反応でフォルステライト(Mg2 SiO
4 )と呼ばれるセラミックス質状の絶縁性の一次被膜を
形成させる。これが鋼板に張力を与え、磁気特性、とり
わけ鉄損と呼ばれるトランスの効率を支配する特性値を
向上させるのに有効である。しかも、このフォルステラ
イト形成の状態が、二次再結晶で鋼板の結晶方位として
通称GOSS方位と呼ばれ、透磁率や磁束密度の向上に
不可欠な鋼板長手方向(圧延方向)に対して{110}
<001>の結晶方位を有するやや粗大な二次再結晶粒
を成長させるのにも重要な役割を果たしていることもよ
く知られている。逆に、二次再結晶焼鈍昇温過程中に十
分緻密な被膜が形成されないまま、二次再結晶させよう
としても鋼板内のインヒビターと呼ばれる微細な窒化物
や硫化物等がそのままの状態で、あるいは分解して早く
鋼板外に抜け出てしまう。このため、昇温中にGOSS
方位粒を優先的に成長させ、他の方位粒の成長を抑制さ
せる役目のインヒビター効果が発揮できず、通常、細粒
と呼ばれ、GOSS方位粒の二次再結晶粒の成長が部分
的あるいは全面的に行われない、極めて磁気特性の劣る
鋼板を生み出すことになる。なお、このMgOの中に酸
化チタン(TiO2 等)やその他の化合物を添加させ、
さらに緻密な一次被膜を形成させることも行われる。
2. Description of the Related Art 1-7 excellent magnetic properties for transformers, etc.
% Of Si containing silicon, it secures insulation properties and imparts tension to the steel plate surface to improve the magnetic properties necessary for improving the performance of the transformer, and forms a primary coating with good adhesion to the steel plate. To do so was one of the important problems of the grain-oriented electrical steel sheet in the prior art. That is,
In the usual technology, after the primary annealing accompanied with decarburization, a steel sheet is coated with a slurry of magnesia (MgO) fine powder dissolved in water, dried if necessary, and then a secondary recrystallization annealing step. Fired in
By reaction with O 2 and Si, forsterite (Mg 2 SiO
4 ) Form a ceramic-like insulating primary coating called a). This is effective for giving tension to the steel sheet and improving the magnetic characteristics, especially the characteristic value called iron loss, which governs the efficiency of the transformer. Moreover, this state of forsterite formation is commonly referred to as the GOSS orientation as the crystal orientation of the steel sheet in the secondary recrystallization, and is {110} with respect to the steel sheet longitudinal direction (rolling direction) essential for improving the permeability and the magnetic flux density.
It is well known that it also plays an important role in growing slightly coarse secondary recrystallized grains having a <001> crystal orientation. Conversely, while a sufficiently dense coating is not formed during the secondary recrystallization annealing temperature rising process, fine nitrides and sulfides called inhibitors in the steel sheet remain as they are, even when trying to perform secondary recrystallization. Alternatively, it disassembles and quickly escapes from the steel plate. Therefore, during the temperature rise, GOSS
Since the inhibitory effect of growing preferentially oriented grains and suppressing the growth of other oriented grains cannot be exhibited, it is usually called fine grain, and the growth of secondary recrystallized grains of GOSS oriented grains is partially or It will produce a steel sheet with extremely inferior magnetic properties, which is not done entirely. In addition, titanium oxide (TiO 2 etc.) and other compounds are added to this MgO,
It is also performed to form a denser primary coating.

【0003】しかるに、近年アモルファス合金の登場に
見られるように、エネルギー節減のためトランスのエネ
ルギー変換効率に影響の大きい電磁鋼板の鉄損低減への
要求は大きく、上記の従来技術の延長ではこの要望に応
えることは困難となってきた。従来技術においては上記
の方法以外にも二次再結晶後のいわゆる製品鋼板表面に
機械的あるいはレーザー等のエネルギー照射的な方法で
溝あるいはなんらかの損傷を意図的に与え、磁区細分化
を行い、鉄損を向上せしめる方法が行われている。しか
しながら、この方法を以てしてもまだアモルファス合金
に対抗できるような低鉄損は実現困難であった。一方、
フォルステライトを主成分とする一次被膜は硬質な固形
物質なるがゆえに製品のせん断等の加工性に難点があ
り、工具寿命の低下をもたらしていた。
However, as seen in the advent of amorphous alloys in recent years, there is a great demand for iron loss reduction of electromagnetic steel sheets, which greatly affects the energy conversion efficiency of transformers to save energy, and this is a demand in the extension of the prior art described above. It has become difficult to respond to. In the prior art, in addition to the above method, a so-called product steel sheet surface after secondary recrystallization is intentionally given a groove or some damage by a method of energy irradiation such as mechanical or laser, and magnetic domain subdivision is performed. There are ways to improve the loss. However, even with this method, it was still difficult to realize a low iron loss that can counter the amorphous alloy. on the other hand,
Since the primary coating containing forsterite as a main component is a hard solid substance, there is a problem in workability such as shearing of the product, resulting in a reduction in tool life.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような問
題点を解明し、以下のような骨子に示される技術的知見
から一次被膜とよばれるフォルステライトを主成分とす
る固形物質の形成を極力抑え、かつ極めて低鉄損の方向
性電磁鋼板を得るべく新たな製品開発技術を見出したも
のである。
DISCLOSURE OF THE INVENTION The present invention has clarified such problems, and based on the technical knowledge shown in the following outline, formation of a solid substance containing forsterite as a main component called a primary coating is formed. This is a finding of a new product development technology to obtain grain-oriented electrical steel sheets with an extremely low iron loss while suppressing it as much as possible.

【0005】以下にその内容を説明する。The contents will be described below.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1) Si:1〜7%を含む鋼を溶製し、熱間圧延、
冷間圧延、一次再結晶焼鈍及び二次再結晶焼鈍を基本工
程とする方向性電磁鋼板の製造において、一次再結晶焼
鈍昇温開始から冷却終了までの間の鋼板温度300〜9
50℃の間に鋼板表面に最大部の深さの平均が2〜50
μmの溝を鋼板長手方向から、45〜90度の方向に、
間隔を開けて付与し、次いで鋼板表面に塩化物及び硫化
物の少なくとも一種類以上を含む物質を塗布し、次いで
二次再結晶焼鈍を行い、二次再結晶焼鈍時に生成するフ
ォルステライトを主成分とする絶縁性の一次被膜の平均
の厚みを0.3μm以下とすることを特徴とする鉄損の
優れた珪素鋼板の製造法。
The gist of the present invention is as follows. (1) Si: Steel containing 1 to 7% is melted, hot rolled,
In the production of a grain-oriented electrical steel sheet having cold rolling, primary recrystallization annealing and secondary recrystallization annealing as basic steps, a steel sheet temperature of 300 to 9 from the start of the primary recrystallization annealing to the end of cooling.
The average depth of the maximum part on the steel plate surface is 2 to 50 during 50 ° C.
A groove of μm from the longitudinal direction of the steel plate in the direction of 45 to 90 degrees,
It is given at intervals, then a substance containing at least one kind of chloride and sulfide is applied to the surface of the steel sheet, then secondary recrystallization annealing is performed, and forsterite generated during secondary recrystallization annealing is the main component. A method for producing a silicon steel sheet with excellent iron loss, characterized in that the average thickness of the insulating primary coating is 0.3 μm or less.

【0007】(2) 鋼板に付与する溝の間隔を2〜2
0mmとすることを特徴とする前項1記載の鉄損の優れ
た珪素鋼板の製造法。 (3) 一次再結晶焼鈍時に窒化を行うことを特徴とす
る前項1または2記載の鉄損の優れた珪素鋼板の製造
法。 (4) 鋼板表面に塗布する物質に含有させる塩化物と
して塩化カルシウム、硫化物として硫化カリウムを使用
する前項1〜3のいずれかに記載の鉄損の優れた珪素鋼
板の製造法。
(2) The distance between the grooves provided on the steel sheet is set to 2 to 2
The method for producing a silicon steel sheet having excellent iron loss according to the above item 1, wherein the thickness is 0 mm. (3) The method for producing a silicon steel sheet with excellent iron loss according to the above item 1 or 2, wherein nitriding is performed during primary recrystallization annealing. (4) The method for producing a silicon steel sheet having excellent iron loss according to any one of the above items 1 to 3, wherein calcium chloride is used as a chloride and potassium sulfide is used as a sulfide contained in the substance applied to the surface of the steel sheet.

【0008】(5) 二次再結晶焼鈍時の昇温速度を毎
時30℃以下とし、雰囲気ガス中の窒素分圧を30%以
上とする前項1〜4のいずれかに記載の鉄損の優れた珪
素鋼板の製造法。 (6) Si:1〜7%を含み、鋼板表面に鋼板の長手
方向から45〜90度の方向で最大部の深さの平均が2
〜50μmの底部にフォルステライトが一部残留した溝
を有し、かつフォルステライトを主成分とする固形硬質
一次被膜の平均厚みが0.3μm以下で、鉄損がW
17/50で0.70watt/kg以下であることを特徴
とする鉄損の優れた珪素鋼板。
(5) The iron loss is excellent as described in any one of the above items 1 to 4, in which the temperature rising rate during the secondary recrystallization annealing is 30 ° C. or less per hour and the nitrogen partial pressure in the atmosphere gas is 30% or more. Method for manufacturing silicon steel sheet. (6) Si: 1 to 7% is included, and the average of the maximum depths is 2 in the direction of 45 to 90 degrees from the longitudinal direction of the steel plate on the steel plate surface.
˜50 μm with a groove in which forsterite partially remains, and the solid hard primary coating mainly composed of forsterite has an average thickness of 0.3 μm or less and an iron loss of W
Excellent silicon steel iron loss, characterized in that at most 0.70watt / kg at 17/50.

【0009】(7) 溝の間隔が2〜20mmであるこ
とを特徴とする前項6記載の鉄損の優れた珪素鋼板。 以下に本発明を詳細に説明する。方向性珪素鋼板の二次
再結晶はGOSS方位と呼ばれる{110}<001>
方位の粒を二次再結晶焼鈍(仕上焼鈍とも呼ばれる)時
に十分成長させることが肝要である。これは一次再結晶
焼鈍(以下、一次焼鈍と呼ぶ)の中のある特定粒のみを
粗大再結晶させるもので、この時にインヒビター(In
hibitor)と呼ばれるAlN等の微細析出物を仕
上焼鈍前に十分作っておくことが技術上必要であること
がよく知られている。そして、このために必要な窒素を
鋼溶製時または一次焼鈍後または他の工程中に添加する
ことが行われる。本発明の目的からはむしろ一次焼鈍後
に窒素を添加する方法が最適な窒素の添加法であること
もわかった。もし、一次焼鈍中または直後に窒素添加す
る場合は、通常、脱炭反応も機能する一次焼鈍の設備の
一部に窒化反応を行う設備を内部または近接して設置
し、一次焼鈍後またはそれと平行させて窒化反応させる
方法も有効である。鋼溶製時に十分低炭化した鋼では脱
炭機能よりも一次焼鈍後の表面層の酸化物層を変えて、
被膜反応に有利な形にすることがむしろ重要な役割とな
る。
(7) The silicon steel sheet having excellent iron loss as set forth in the above item 6, wherein the groove interval is 2 to 20 mm. The present invention will be described in detail below. Secondary recrystallization of grain-oriented silicon steel sheet is called GOSS orientation {110} <001>
It is important to grow grains of orientation sufficiently during secondary recrystallization annealing (also called finish annealing). This is to coarsely recrystallize only certain specific grains in the primary recrystallization annealing (hereinafter referred to as primary annealing).
It is well known in the art that it is technically necessary to prepare fine precipitates such as AlN called "hibitor)" before finish annealing. Then, nitrogen necessary for this purpose is added during steel melting, after primary annealing, or during other steps. For the purpose of the present invention, it was also found that the method of adding nitrogen after the primary annealing is the optimum method of adding nitrogen. If nitrogen is added during or immediately after the primary anneal, the nitriding reaction facility is usually installed inside or close to a part of the primary anneal facility that also functions for decarburization, and after or after the primary anneal. The method of causing the nitriding reaction is also effective. For steel that has sufficiently low carbonization during steel melting, the oxide layer of the surface layer after primary annealing is changed rather than the decarburizing function,
It is rather important to make the film favorable to the coating reaction.

【0010】さて、本発明では一次再結晶焼鈍の昇温開
始から冷却終了までの間の鋼板温度300℃〜950℃
の間に鋼板表面に最大部の深さの平均が2〜50μmの
溝を機械的、化学的、光学的、熱的、電気的その他のエ
ネルギー照射的な方法で規則的な配列で付与せしめるこ
とが重要である。これはこの溝によって製品の磁区細分
化をより細かくすることが可能で鉄損低減に寄与するか
らである。この溝の付与の仕方は溝付きロール、溝付き
プレス等の機械的方法、レーザー、プラズマ等のエネル
ギー照射方法、水、油等を高圧で吹き付ける方法、酸等
による化学的腐食、電気的腐食による方法、あるいはそ
れらを組み合わせた方法等、基本的に手段はどれでも良
く、要は上記の溝の要件を満たしていれば効果が認めら
れる。
In the present invention, the steel sheet temperature from the start of temperature rise of the primary recrystallization annealing to the end of cooling is 300 ° C to 950 ° C.
Between the surfaces of the steel sheet, grooves having an average maximum depth of 2 to 50 μm are formed in a regular array by mechanical, chemical, optical, thermal, electrical or other energy irradiation methods. is important. This is because the grooves can make the magnetic domains of the product finer and contribute to the reduction of iron loss. This groove can be applied by a mechanical method such as a grooved roll or a grooved press, an energy irradiation method such as laser or plasma, a method of spraying water or oil at a high pressure, a chemical corrosion by an acid or an electrical corrosion. Basically, any method such as a method or a combination thereof may be used, and the effect is recognized as long as the above requirements for the groove are satisfied.

【0011】しかし、これだけでは本発明の狙いとする
低鉄損は得られない。本発明で最も重要な技術的な要件
は鋼板表面のフォルステライトを主成分とする一次被膜
の平均厚みとの組み合わせである。この厚みが0.3μ
m以下のとき上記との組み合わせで極めて磁気特性が向
上することがわかった。この理由は必ずしも明らかでは
ないが、この一次被膜は厚いと鋼板の磁束の流れを妨
げ、とりわけ被膜に凹凸が多い場合や、フォルステライ
ト直下にスピネル(MgO・Al2 3 )等の酸化物が
多い場合はその傾向が大きいことは容易に想像できる。
したがって表面の一次被膜を極力減らして薄くするか、
完全になくしてしまい、そのかわりに、溝を間隔を開け
て形成させれば、磁束は規則的に円滑に流れる。この結
果、鉄損も十分に低減できることになる。当然ながら溝
の深さとピッチには制約がつくことになる。
However, the low iron loss aimed at by the present invention cannot be obtained by this alone. The most important technical requirement in the present invention is the combination with the average thickness of the forsterite-based primary coating on the surface of the steel sheet. This thickness is 0.3μ
It was found that when m or less, the magnetic characteristics were remarkably improved in combination with the above. The reason for this is not always clear, but if this primary coating is thick, it obstructs the flow of magnetic flux in the steel sheet, especially if the coating has many irregularities, or if oxides such as spinel (MgO.Al 2 O 3 ) are formed directly under forsterite. It can be easily imagined that the tendency is large when there are many.
Therefore, reduce the primary coating on the surface as much as possible to make it thinner,
If the grooves are completely removed and the grooves are formed at intervals instead, the magnetic flux will flow smoothly and regularly. As a result, iron loss can be sufficiently reduced. Of course, there will be restrictions on the depth and pitch of the grooves.

【0012】本発明では重要な点はさらに次の点にあ
る。従来技術において、いわゆる一次被膜を形成した後
のいわば製品に近いものに溝を付けて磁区を細分化する
方法が行われている。これは同じく従来技術にある、中
間工程で溝を付けた方法よりも磁区制御効果が大きく出
易いためである。しかしながら、本発明で明らかになっ
たことは、一次被膜厚みが極端に少ないか、あるいは一
次被膜がない場合はコスト的にも安価な一次再結晶焼鈍
中または前後に溝を付ける方法でも十分な磁区細分化効
果が発揮されると言う事実を見出した点である。
Further important points in the present invention are as follows. In the prior art, a method is used in which a so-called primary product after forming a so-called primary coating is provided with grooves to subdivide magnetic domains. This is because the magnetic domain control effect is larger than that of the prior art method in which a groove is formed in the intermediate step. However, what has been clarified in the present invention is that if the primary coating thickness is extremely small, or if there is no primary coating, a sufficient magnetic domain can be obtained by a method of forming a groove during or before and after the primary recrystallization annealing which is inexpensive in terms of cost. The point is that the fact that the subdivision effect is exhibited is found.

【0013】表1の化学成分を有する鋼を熱延し、熱延
板焼鈍した後、0.23mmに冷延し、得られた冷延板
を一次再結晶焼鈍した直後の鋼板温度700〜600℃
の温度範囲で、この冷延板にロールで深さ15μm、ピ
ッチ5mmの溝を付けて、冷却後、この鋼板に焼鈍分離
剤としてMgOパウダーに添加物を種々変えて塗布し、
仕上焼鈍を行い、一次被膜の平均厚みを変えて、さらに
張力を有する絶縁コーティングを塗布したサンプルの鉄
損を調べたのが図1である。これをみても明らかなよう
に、一次被膜の厚みが小さくなるほど鉄損の低減(向
上)が見られ、とりわけ0.3μm以下でそれが顕著で
あることがわかる。これは溝が一次再結晶焼鈍直後とい
う中間工程で付けられて、この溝の中に後工程でフォル
ステライト等が詰まった場合は鉄損が劣化するが、鋼板
表面の一次被膜の平均厚みが少ないか、あるいは一次被
膜がない場合は溝の底部にのみフォルステライトが残留
し、十分に磁区細分化が行われ、かつ鉄損の劣化も少な
いことを示している。
Steels having the chemical composition shown in Table 1 were hot-rolled, annealed by hot-rolled sheet, then cold-rolled to 0.23 mm, and the obtained cold-rolled sheet was subjected to primary recrystallization annealing. ℃
In this temperature range, a groove having a depth of 15 μm and a pitch of 5 mm was formed on the cold rolled sheet with a roll, and after cooling, the steel sheet was coated with MgO powder as an annealing separator with various additives.
FIG. 1 shows the results of investigating the iron loss of a sample which was subjected to finish annealing, the average thickness of the primary coating was changed, and an insulating coating having tension was further applied. As is clear from this, it can be seen that the core loss is reduced (improved) as the thickness of the primary coating becomes smaller, and is particularly remarkable at 0.3 μm or less. This is because the groove is formed in the intermediate step immediately after the primary recrystallization annealing, and if the groove is clogged with forsterite etc. in the later step, the iron loss deteriorates, but the average thickness of the primary coating on the steel plate surface is small. Or, if there is no primary coating, it means that forsterite remains only at the bottom of the groove, the magnetic domains are sufficiently subdivided, and the iron loss is less deteriorated.

【0014】[0014]

【表1】 [Table 1]

【0015】さらに本発明で重要な点は一次再結晶焼鈍
中または前後の比較的高温域で鋼板に溝を付けるという
点である。表2の化学成分の鋼について、(1)一次再
結晶焼鈍後の鋼板を常温(25℃)でロール法で溝を付
けた場合、(2)600℃で溝を付けた場合、のそれぞ
れについて二次再結晶させた結果を図2の金属組織写真
に示す。これではっきり云えることは、(1)の常温で
溝を付けた場合は、図2(a)に示すように溝の周辺に
細粒が発生するが、(2)の600℃で溝を付けた場合
は、図2(b)に示すようにそのような現象はみられな
い。つまり、一次再結晶板に高温で溝を付けた場合は二
次再結晶後も正常な組織になり、磁性も良好になる。
Further, an important point in the present invention is that the steel sheet is grooved at a relatively high temperature region during or before and after the primary recrystallization annealing. Regarding the steels having the chemical components shown in Table 2, (1) when the steel sheet after primary recrystallization annealing was grooved by the roll method at room temperature (25 ° C), (2) when it was grooved at 600 ° C. The result of secondary recrystallization is shown in the metallographic photograph of FIG. What is clear from this is that when the groove is formed at room temperature in (1), fine grains are generated around the groove as shown in FIG. 2 (a), but the groove is formed at 600 ° C. in (2). When attached, such a phenomenon is not seen as shown in FIG. That is, when grooves are formed on the primary recrystallized plate at a high temperature, the structure becomes normal even after the secondary recrystallization, and the magnetism becomes good.

【0016】[0016]

【表2】 [Table 2]

【0017】次に、二次再結晶焼鈍を行う際にAlを含
有する珪素鋼板の場合は、インヒビターとしてAlNや
Si3 4 を主体に使うが、ここで本発明の方法の一つ
として一次焼鈍中あるいは後に窒化せしめる方法の方が
より本発明の目的に好ましいことがわかった。その理由
は以下のとおりである。鋼溶製時に窒素を多く添加する
場合と異なり、後で窒化する方がAlN、Si 3 4
最適量を調節しやすく、二次再結晶焼鈍時に、本発明の
ようにフォルステライト等の一次被膜が薄くなるか消失
しても雰囲気中の窒素分圧(PN2)を制御することで最
適窒素量を確保しやすいからであると考えられる。
Next, when secondary recrystallization annealing is performed, Al is not contained.
In the case of the silicon steel sheet that has, AlN or
Si3NFourWhich is one of the methods of the present invention.
As a method of nitriding during or after primary annealing
It was further found that it is preferable for the purpose of the present invention. The reason
Is as follows. Add a lot of nitrogen when melting steel
Unlike the case, nitriding later is better than AlN or Si 3NFourof
It is easy to adjust the optimum amount, and during secondary recrystallization annealing, the
The primary coating such as forsterite becomes thin or disappears
Even if the nitrogen partial pressure (PN2) By controlling
It is considered that this is because it is easy to secure an appropriate amount of nitrogen.

【0018】次に、仕上焼鈍時に一次被膜を極力少なく
するか、あるいは消失させるために、本発明では一次焼
鈍後の鋼板表面に、塩化物、硫化物を通常のマグネシア
(MgO)パウダーに混加して塗布することが有効であ
ることがわかった。この中でも、とりわけ塩化カルシウ
ム(CaCl2 )、硫化カリウム(K2 S)は有効であ
る。なお、通常法でもMgO以外にTiO2 やアンチモ
ン系の化合物(Sb2(SO4 3 )やボロン系の化合
物(Na2 (BO4 3 )、ストロンチウム・バリウム
系、炭・窒化物系等を添加して反応を容易にすることが
行われるが、本発明でもこれらの添加物の効果は発揮さ
れるので、添加しても本発明の本質を変えるものではな
い。
Next, in the present invention, chlorides and sulfides are mixed with ordinary magnesia (MgO) powder on the surface of the steel sheet after the primary annealing in order to minimize or eliminate the primary coating during the finish annealing. Then, it was found that it was effective to apply. Among these, calcium chloride (CaCl 2 ) and potassium sulfide (K 2 S) are particularly effective. In addition to MgO, TiO 2 and antimony compounds (Sb 2 (SO 4 ) 3 ), boron compounds (Na 2 (BO 4 ) 3 ), strontium / barium compounds, carbon / nitride compounds, etc. Is added to facilitate the reaction, but the effects of these additives are exerted also in the present invention, and therefore the addition does not change the essence of the present invention.

【0019】ここで珪素鋼板の製造方法に就いて述べる
必要がある。前述のように本発明を適用し得る珪素鋼板
はSi以外に、必要に応じてAlを含有し、Si3 4
あるいはAlN、及び鋼中のSが多い場合はMnSを主
要インヒビターとする鋼に限定される。もちろんSi、
Al以外に、Sn、Se、Sb、Cu、B、Nb、T
i、V等の他の添加元素を付加的に添加させ、磁気特性
の向上をはかることは本発明の基本を変えるものではな
い。
Here, it is necessary to describe the method of manufacturing the silicon steel sheet. As described above, the silicon steel sheet to which the present invention can be applied contains Al in addition to Si, if necessary, and contains Si 3 N 4
Alternatively, if the amount of S in AlN and steel is large, the steel is limited to MnS as the main inhibitor. Of course Si,
In addition to Al, Sn, Se, Sb, Cu, B, Nb, T
The addition of other additive elements such as i and V to improve the magnetic characteristics does not change the basis of the present invention.

【0020】ところでAlNあるいはSi3 4 、Mn
Sをインヒビターとする鋼は公知であり、そのいずれの
場合においても本発明の技術を適用することが可能であ
る。しかしながら、本発明の特徴をより一層発揮させる
にはとりわけ以下に示す製造法を採るのが最適である。
すなわち、Siを1〜7%含み、必要に応じて鋼溶製時
にAlを0.1%以下含有せしめた鋼を出発材とし、珪
素鋼板製造工程における冷延後の一次焼鈍における脱炭
焼鈍中または後に、直接窒化反応を介してNを強制的に
添加せしめることにより、二次再結晶焼鈍前にN量を3
0〜600ppmとする。
By the way, AlN or Si 3 N 4 , Mn
Steel containing S as an inhibitor is known, and the technique of the present invention can be applied to any of the cases. However, in order to further exert the characteristics of the present invention, the following manufacturing method is most suitable.
That is, during decarburization annealing in the primary annealing after cold rolling in the silicon steel sheet manufacturing process, starting from a steel containing 1 to 7% of Si and optionally containing 0.1% or less of Al at the time of melting the steel. Alternatively, by forcibly adding N through a direct nitriding reaction, the N content is reduced to 3 before the secondary recrystallization annealing.
It is set to 0 to 600 ppm.

【0021】Siは本発明においては上記のようにフォ
ルステライト形成のために最低1%は必要である。一
方、7%を超えると加工性が極端に劣化し、工業生産に
適さない。AlはAlNインヒビター形成に有効であ
る。しかし0.1%を超えるとAl 2 3 生成量が多く
なり、健全な鋼の清浄度を損ない、ひいては磁気特性に
悪影響をもたらす。
In the present invention, Si is used as the source as described above.
A minimum of 1% is required for the formation of rusterite. one
On the other hand, if it exceeds 7%, the workability is extremely deteriorated, and it is suitable for industrial production.
Not suitable. Al is effective in forming AlN inhibitor
It However, if it exceeds 0.1%, Al 2O3Large amount of production
And the cleanliness of sound steel is impaired, which in turn leads to magnetic properties.
Bring about an adverse effect.

【0022】NはSi3 4 インヒビターを形成するの
に不可欠であり、本発明においては一次焼鈍後、つまり
仕上焼鈍前で最低30ppmは必要である。一方、Al
を意図的に使う場合にはAlNの量確保の点で60pp
m以上は必要である。ただし、600ppmを超えると
AlやSiを食いすぎて好ましくはない。Sはこれを積
極的に利用する場合は最低0.01%はMnSをインヒ
ビターとして有効に使うのに必要である。一方、0.0
5%超では凝集して好ましくはない。
N is essential for forming the Si 3 N 4 inhibitor, and in the present invention, a minimum of 30 ppm is required after the primary annealing, that is, before the finish annealing. On the other hand, Al
When intentionally using, 60pp in terms of securing the amount of AlN
m or more is necessary. However, if it exceeds 600 ppm, Al and Si are excessively eaten, which is not preferable. When S is positively used, at least 0.01% of S is necessary for effectively using MnS as an inhibitor. On the other hand, 0.0
If it exceeds 5%, aggregation is not preferable.

【0023】この他の元素は本発明では従来の鋼に較べ
て特に特徴的ではないが、以下のように制約することが
好ましい。Cは鋼溶製中に十分低くするかまたは一次焼
鈍の脱炭焼鈍時に十分低くする必要があり、二次再結晶
焼鈍開始時には0.03%以下が好ましい。Mnは0.
5%以下ならばSと反応してMnSインヒビターを形成
する。0.15%以下だとさらに磁束密度の向上に好ま
しい。
Although the other elements are not particularly characteristic in the present invention as compared with the conventional steel, the following restrictions are preferable. C needs to be sufficiently low during steel melting or sufficiently low during decarburization annealing of primary annealing, and is preferably 0.03% or less at the start of secondary recrystallization annealing. Mn is 0.
If it is 5% or less, it reacts with S to form an MnS inhibitor. If it is 0.15% or less, it is preferable for further improving the magnetic flux density.

【0024】Oは鋼溶製後に0.05%以下であればA
2 3 を多量に作りすぎず、清浄度的に好ましい。次
に化学成分以外の本発明の製造法について述べる。鋼を
転炉または電気炉等で出鋼し、必要に応じて精錬工程を
加えて成分調整を行った溶鋼を連続鋳造法、造塊分塊圧
延法あるいは熱延工程省略のための薄スラブ連続鋳造法
等により、厚さ30〜400mm(薄スラブ連続鋳造法
では50mm以下)のスラブとする。ここで30mmは
生産性の下限であり、400mmは中心偏析でAl2
3 等の分布が異常になることを防ぐための上限である。
また薄スラブ連続鋳造法では、50mmは冷速が小さく
なって粗大粒が出てくることを抑制するための上限であ
る。
O is A if 0.05% or less after the steel is melted
It is preferable in terms of cleanliness because it does not produce a large amount of l 2 O 3 . Next, the production method of the present invention other than the chemical components will be described. Continuous casting method, ingot-agglomeration and rolling method, or thin slab continuous method for omitting hot rolling step, in which steel is tapped in a converter or electric furnace, and a refining step is added as necessary to adjust the composition. A slab having a thickness of 30 to 400 mm (50 mm or less in the thin slab continuous casting method) is formed by a casting method or the like. Here, 30 mm is the lower limit of productivity, and 400 mm is the center segregation of Al 2 O.
This is the upper limit to prevent the distribution of 3 etc. from becoming abnormal.
Further, in the thin slab continuous casting method, 50 mm is the upper limit for suppressing the generation of coarse particles due to the low cooling rate.

【0025】前記の厚さのスラブをガス加熱、電気利用
加熱等により1000〜1400℃に再加熱し、ひき続
き熱間圧延を行って厚さ10mm以下のホットコイルと
する。ここで1000℃はAlN溶解の下限であり、1
400℃は表面肌あれと材質劣化の上限である。また1
0mmは適正な析出物を生成する冷速を得る上限であ
る。なお、薄スラブ連続鋳造法では直接コイル状にする
ことも可能であり、そのためには10mm以下が好まし
い。このように作ったホットコイルを再び800〜12
50℃で焼鈍し、磁性向上をはかることもしばしば行わ
れる。ここで800℃はAlN再溶解の下限であり、1
250℃はAlN粗粒化防止の上限である。
The slab having the above-mentioned thickness is reheated to 1000 to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less. Here, 1000 ° C. is the lower limit of AlN melting, and 1
400 ° C. is the upper limit of surface roughness and material deterioration. Again 1
0 mm is the upper limit for obtaining a cold speed at which a proper precipitate is formed. In the thin slab continuous casting method, it is also possible to directly form a coil, and for that purpose, 10 mm or less is preferable. The hot coil made in this way is again 800-12
Annealing at 50 ° C. is often performed to improve magnetism. Here, 800 ° C is the lower limit of remelting of AlN, and
250 ° C. is the upper limit for preventing AlN coarsening.

【0026】かかる処理工程の後、ホットコイルを直接
またはバッチ的に酸洗し、次いで冷間圧延を行う。冷間
圧延は圧下率60〜95%で行うが、60%は本発明で
再結晶可能な限界である。好ましくは70%が一次焼鈍
で{111}<112>方位粒を多くして、二次再結晶
焼鈍時のGOSS方位粒の生成を促進させる下限であ
る。一方、95%超では二次再結晶焼鈍で首振りGOS
S粒と称するGOSS方位粒が板面内回転した磁気特性
に好ましくない粒が生成される。以上はいわゆる一回冷
延法で製造する場合だが、二回冷延法と称して冷延−焼
鈍−冷延を行う場合は、一回目の圧下率は10〜80
%、二回目の圧下率は50〜95%となる。ここで10
%は再結晶に必要な最低圧下率、80%と95%はそれ
ぞれ二次再結晶時に適正なGOSS方位粒を生成させる
ための上限圧下率、また50%は二回冷延法においては
一次焼鈍時の{111}<112>方位粒を適正に残す
下限圧下率である。
After this treatment step, the hot coil is pickled directly or batchwise and then cold rolled. Cold rolling is performed at a rolling reduction of 60 to 95%, and 60% is the limit of recrystallization in the present invention. Preferably, 70% is the lower limit for increasing the number of {111} <112> oriented grains in the primary annealing and promoting the generation of GOSS oriented grains in the secondary recrystallization annealing. On the other hand, if it exceeds 95%, GOS swings due to secondary recrystallization annealing.
GOSS-oriented grains called S grains rotate in the plane of the plate to produce grains unfavorable to the magnetic properties. The above is the case of manufacturing by the so-called single cold rolling method, but when cold rolling-annealing-cold rolling is carried out by calling the double cold rolling method, the first rolling reduction is 10 to 80.
%, And the second rolling reduction is 50 to 95%. Where 10
% Is the minimum reduction ratio required for recrystallization, 80% and 95% are the upper limit reduction ratios for producing proper GOSS oriented grains during secondary recrystallization, and 50% is the primary annealing in the double cold rolling method. It is the lower limit of the rolling reduction that appropriately leaves {111} <112> oriented grains.

【0027】なお、通称パス間エージングと称し、冷間
圧延の途中で鋼板を適当な方法で100〜400℃の範
囲で加熱することも磁気特性の向上に有効である。10
0℃未満ではエージングの効果がなく、一方400℃超
では転位が回復してしまう。次に一次再結晶焼鈍を行う
わけであるが、本発明で重要な要件はこの過程中または
前後における鋼板温度300〜950℃での溝形成であ
る。ここで、300℃未満では鋼板に歪が入り、二次再
結晶後に溝の周囲に細粒が生じ、鉄損を著しく劣化させ
る。好ましくは600℃以上が良い。一方、950℃超
では一次再結晶粒が粗大化し、二次再結晶時に鉄損に好
ましいGOSS方位が得られない。溝形成は一次再結晶
焼鈍の昇温開始から冷却終了までの高温域で行う方が省
エネルギー的にも好ましいが、本発明の効果は一次再結
晶焼鈍冷却後に再加熱して300〜950℃の範囲で溝
を付けても同様の効果がある。
It is also commonly called "interpass aging", and it is effective to improve the magnetic properties by heating the steel sheet in the range of 100 to 400 ° C by an appropriate method during the cold rolling. 10
If it is less than 0 ° C, the effect of aging is not obtained, while if it exceeds 400 ° C, dislocations are recovered. Next, primary recrystallization annealing is performed, but an important requirement in the present invention is groove formation at a steel plate temperature of 300 to 950 ° C. during or before this process. Here, if the temperature is less than 300 ° C., the steel sheet will be distorted, and fine grains will be formed around the groove after the secondary recrystallization, which will significantly deteriorate the iron loss. It is preferably 600 ° C. or higher. On the other hand, if it exceeds 950 ° C., the primary recrystallized grains become coarse, and a GOSS orientation that is favorable for iron loss cannot be obtained during secondary recrystallization. It is preferable to perform the groove formation in a high temperature region from the start of the temperature rise of the primary recrystallization annealing to the end of cooling in terms of energy saving, but the effect of the present invention is to reheat after the primary recrystallization annealing and to reheat it in the range of 300 to 950 ° C. The same effect can be obtained by forming a groove with.

【0028】このようにしてつくられた溝が仕上焼鈍後
に残り、フォルステライトを主成分とする一次被膜厚を
平均0.3μm以下と極めて少なくする方法との組み合
わせで、従来に見られない低鉄損が得られるわけであ
る。一次被膜厚を0.3μm以下とした理由は前述の通
りであり、これよりも厚いと、本発明の中間工程で溝を
付ける方法では十分な低鉄損が得られない。
The groove thus formed remains after the finish annealing, and in combination with the method of reducing the primary coating thickness of forsterite as the main component to 0.3 μm or less on average, low iron which has never been seen in the past. You will get a loss. The reason why the primary film thickness is set to 0.3 μm or less is as described above. If it is thicker than this, a sufficient low iron loss cannot be obtained by the groove forming method in the intermediate step of the present invention.

【0029】溝の形成方法は前述の通りであるが、溝の
最大部の平均の深さが2μm未満では磁区細分化効果が
ない。一方、50μm超では深すぎて磁束の円滑な流れ
を妨げてかえって鉄損も悪くなる。好ましくは5〜30
μmが良い。溝は間隔を開けて付与されるが、規則的に
配列されている方が望ましい。これは、磁区細分化が規
則的に行われるからである。通常、鋼板長手方向に対し
45度から直角までの角度を有するほぼ一定のピッチで
刻まれることが好ましい。45度未満では磁区細分化の
方向が磁性に好ましい結晶学的方位と合わないからであ
る。
The method for forming the groove is as described above, but if the average depth of the maximum part of the groove is less than 2 μm, there is no magnetic domain subdivision effect. On the other hand, if it exceeds 50 μm, it is too deep and the smooth flow of the magnetic flux is hindered, and the iron loss deteriorates. Preferably 5-30
μm is good. The grooves are provided at intervals, but it is preferable that they are regularly arranged. This is because the magnetic domain is subdivided regularly. Usually, it is preferable to be engraved at a substantially constant pitch having an angle of 45 degrees to a right angle with respect to the longitudinal direction of the steel sheet. This is because if the angle is less than 45 degrees, the direction of subdivision of the magnetic domain does not match the crystallographic orientation preferred for magnetism.

【0030】また、溝のピッチは2〜20mmが好まし
い。2mm未満では磁区細分化が進みすぎて90度磁区
が増え、鉄損も磁歪も悪い。一方、20mm超では磁区
細分化の効果がでない。なお、二回冷間圧延法において
は一回目、二回目のいずれの焼鈍時でも溝を形成するこ
とは可能であり、さらにその両者で分割して行うことも
可能である。
The groove pitch is preferably 2 to 20 mm. If it is less than 2 mm, the magnetic domains are subdivided too much, the 90 degree magnetic domains increase, and the core loss and magnetostriction are poor. On the other hand, if it exceeds 20 mm, the effect of domain division is not obtained. In the double cold rolling method, it is possible to form the groove during either the first annealing or the second annealing, and it is also possible to divide the groove into both.

【0031】一次再結晶焼鈍中または引き続いて直後に
必要に応じて窒化を行う。なお、一回冷延法でも二回冷
延法でも一次焼鈍を行うわけであるが、この焼鈍で脱炭
を行うことは有効である。前述のようにCは二次再結晶
粒の成長に好ましくないばかりか、不純物として残ると
鉄損の劣化を招く。なお、鋼の溶製時にCを下げておく
と脱炭工程が短縮化されるばかりか{111}<112
>方位粒も増やすので好ましい。なお、この脱炭焼鈍工
程で適正な露点を設定することで、後の一次被膜生成に
必要な酸化層の確保が行われる。
If necessary, nitriding is performed during the primary recrystallization annealing or immediately thereafter. Although the primary annealing is performed in both the single cold rolling method and the double cold rolling method, decarburization is effective in this annealing. As described above, C is not preferable for the growth of secondary recrystallized grains, and if it remains as an impurity, it causes deterioration of iron loss. It should be noted that if C is lowered during melting of steel, not only the decarburization process is shortened but also {111} <112.
> It is preferable because the number of oriented grains is also increased. By setting an appropriate dew point in this decarburization annealing step, an oxide layer necessary for subsequent primary film formation is secured.

【0032】一次焼鈍温度は700〜950℃が好まし
い。ここで700℃は再結晶可能な下限温度であり、9
50℃は一次再結晶の粗大粒の発生を抑制する上限温度
である。さらに、AlNやSi3 4 インヒビターのN
をこの一次焼鈍時に窒化法等で強制添加する本発明にお
いては、上記の一次焼鈍中または直後に引き続き、アン
モニア(NH3 )等で窒化法により窒化することが行わ
れる。この場合の窒化法の温度は600〜950℃が好
ましい。ここで600℃は窒化反応を起こす下限であ
り、一方950℃は粗大粒発生を抑える上限である。
The primary annealing temperature is preferably 700 to 950 ° C. Here, 700 ° C. is the lower limit temperature at which recrystallization is possible, and
50 ° C. is an upper limit temperature that suppresses the generation of coarse grains in primary recrystallization. In addition, N of AlN and Si 3 N 4 inhibitors
In the present invention in which is forcibly added by the nitriding method or the like during this primary annealing, nitriding is performed by the nitriding method with ammonia (NH 3 ) or the like during or immediately after the above primary annealing. In this case, the temperature of the nitriding method is preferably 600 to 950 ° C. Here, 600 ° C. is the lower limit for causing the nitriding reaction, while 950 ° C. is the upper limit for suppressing the generation of coarse particles.

【0033】本発明においては窒化は一次再結晶焼鈍後
に行うのが好ましいが、工業的には同じ炉内の後面に仕
切りを設けて雰囲気を必要に応じて多少変えて、NH3
ガスを流すか、近接した設備で行うため一次再結晶と平
行して窒化されることもしばしばある。この際前述のよ
うにN2 分圧が低い方が窒化量は大きく、好ましくは窒
素と酸素の分圧比PN2/PH2は0.5以下とする。
In the present invention, the nitriding is preferably carried out after the primary recrystallization annealing, but industrially, a partition is provided on the rear surface of the same furnace and the atmosphere is slightly changed according to need, and NH 3 is used.
Nitrogen is often nitrided in parallel with primary recrystallization because a gas is passed or it is carried out in close proximity. At this time, as described above, the lower the N 2 partial pressure is, the larger the nitriding amount is, and the partial pressure ratio P N2 / P H2 of nitrogen and oxygen is preferably 0.5 or less.

【0034】一次焼鈍の昇温開始から冷却終了までの
間、また上記窒化法を行う場合は一次再結晶焼鈍開始か
ら窒化後冷却終了までの間で鋼板表面温度が300〜9
50℃の間に鋼板表面に最大部の深さの平均が2〜50
μmの溝を機械的、化学的、光学的、熱的、電気的その
他のエネルギー照射的な方法で間隔を開けて付与する。
溝の形成方法は前述の通りであるが、溝の最大部の平均
の深さが2μm未満では磁区細分化効果がない。一方、
50μm超では深すぎて磁束の円滑な流れを妨げて、か
えって鉄損も悪くなる。好ましくは5〜30μmが良
い。
The steel sheet surface temperature is from 300 to 9 from the start of the temperature rise of the primary annealing to the end of cooling, and in the case of performing the above nitriding method, from the start of the primary recrystallization annealing to the end of cooling after nitriding.
The average depth of the maximum part on the steel plate surface is 2 to 50 during 50 ° C.
The μm grooves are provided at intervals by mechanical, chemical, optical, thermal, electrical or other energy irradiation method.
The method of forming the groove is as described above, but if the average depth of the maximum part of the groove is less than 2 μm, there is no magnetic domain subdivision effect. on the other hand,
If it exceeds 50 μm, it is too deep and the smooth flow of magnetic flux is hindered, and the iron loss is rather deteriorated. It is preferably 5 to 30 μm.

【0035】溝は規則的に配列されている方が良い。こ
れは、磁区細分化が規則的に行われるからである。通常
鋼板長手方向に対し45度から直角までの角度を有する
ほぼ一定のピッチで刻まれることが好ましい。45度未
満では磁区細分化の方向が磁性に好ましい結晶学的方位
と合わないからである。また、溝のピッチは2〜20m
mが好ましい。2mm未満では磁区細分化が進みすぎて
90度磁区が増え、鉄損も磁歪も悪い。一方、20mm
超では磁区細分化の効果が出ない。
It is preferable that the grooves are regularly arranged. This is because the magnetic domain is subdivided regularly. Usually, it is preferable to engrave at a substantially constant pitch having an angle of 45 degrees to a right angle with respect to the longitudinal direction of the steel sheet. This is because if the angle is less than 45 degrees, the direction of subdivision of the magnetic domain does not match the crystallographic orientation preferred for magnetism. The pitch of the groove is 2 to 20 m.
m is preferred. If it is less than 2 mm, the magnetic domains are subdivided too much, the 90 degree magnetic domains increase, and the core loss and magnetostriction are poor. On the other hand, 20 mm
If it is super, the effect of subdivision of magnetic domains does not appear.

【0036】一次焼鈍あるいは必要に応じて上記窒化法
を行い、その後、酸化マグネシウム(MgOを主成分と
する。以下MgOと呼ぶ)パウダーを水または水を主成
分とする水溶液に溶かし、スラリー状にして鋼板に塗布
する。この際、後の二次再結晶焼鈍時にMgOパウダー
の溶融を容易にさせ、フォルステライト生成反応を促進
させる目的で、適当な化合物を微量添加することも行わ
れる。
Primary annealing or, if necessary, the above nitriding method is performed, and then magnesium oxide (MgO as a main component; hereinafter referred to as MgO) powder is dissolved in water or an aqueous solution containing water as a main component to form a slurry. Apply it to the steel plate. At this time, a trace amount of an appropriate compound may be added for the purpose of facilitating the melting of the MgO powder during the subsequent secondary recrystallization annealing and accelerating the forsterite formation reaction.

【0037】TiO2 を添加する場合は1〜15%が好
ましい。ここで1%はフォルステライト生成反応促進効
果を発揮する下限であり、15%超ではMgOが少なく
なって、かえってフォルステライト生成反応が進まな
い。Sb2 (SO4 3 等のアンチモン系の化合物はM
gOを比較的低温で溶融させるのに効果があり、添加を
行う場合は0.05〜5%が好ましい。ここで、0.0
5%は上記低温溶融を起こす下限であり、一方5%を超
える場合は多すぎてMgOのフォルステライトへの本来
の生成反応を不活性化する。
When TiO 2 is added, it is preferably 1 to 15%. Here, 1% is the lower limit for exerting the effect of promoting the forsterite formation reaction, and if it exceeds 15%, the amount of MgO decreases and the forsterite formation reaction does not proceed. Antimony compounds such as Sb 2 (SO 4 ) 3 are M
It is effective in melting gO at a relatively low temperature, and when added, 0.05 to 5% is preferable. Where 0.0
5% is the lower limit for causing the above-mentioned low-temperature melting, while on the other hand, when it exceeds 5%, it is too much and inactivates the original formation reaction of MgO to forsterite.

【0038】Na2 4 7 等のボロン系の化合物及び
それと同様の作用を持つストロンチウム・バリウム系、
炭・窒化物系、硫化物系、塩化物系の化合物はアンチモ
ン系よりは比較的高温でMgOを溶融させるのに効果が
あり、添加する場合は0.05〜5%が好ましい。ここ
で、0.05%は上記の効果を発揮する下限であり、一
方5%超ではやはりMgOのフォルステライトへの本来
の生成反応を不活性化するので好ましくない。
Boron-based compounds such as Na 2 B 4 O 7 and strontium-barium-based compounds having the same action as those,
Carbon / nitride-based, sulfide-based, and chloride-based compounds are effective in melting MgO at a relatively higher temperature than antimony-based compounds, and when added, 0.05 to 5% is preferable. Here, 0.05% is the lower limit for exerting the above-mentioned effect, while if it exceeds 5%, the original production reaction of MgO to forsterite is inactivated, which is not preferable.

【0039】なお、これらの化合物は互いに複合して添
加することも可能である。ここで添加する化合物の%は
MgOの重量を100%としたときの重量比を%で示し
てある。本発明においては、さらにMgOパウダーに前
述の塩化物あるいは硫化物の一種類以上を添加すると、
仕上焼鈍後の一次被膜の厚さを平均0.3μm以下にで
き、かつ十分な二次再結晶方位が得られるが、これらの
中でもとりわけ塩化カルシウム(CaCl2 )、硫化カ
リウム(K2 S)は有効である。これらは最低0.5%
(MgO重量を100としたときの重量割合)以上ある
と効果的である。20%超ではかえって被膜形成過程が
不安定となる。
It is also possible to add these compounds in combination with each other. The% of the compound added here indicates the weight ratio when the weight of MgO is 100%. In the present invention, if one or more of the above-mentioned chlorides or sulfides are further added to the MgO powder,
The thickness of the primary coating after finish annealing can be 0.3 μm or less on average, and a sufficient secondary recrystallization orientation can be obtained. Among these, calcium chloride (CaCl 2 ) and potassium sulfide (K 2 S) are It is valid. These are at least 0.5%
(Weight ratio when the weight of MgO is 100) is more effective. If it exceeds 20%, the film formation process becomes rather unstable.

【0040】二次再結晶焼鈍は最高到達温度を1100
〜1300℃で行うのが好ましい。1100℃は二次再
結晶が行われる下限の温度であり、一方1300℃超は
結晶粒が粗大化し過ぎて鉄損の劣化を招く。この二次再
結晶焼鈍で重要な点は以下の通りである。本発明ではM
gOパウダーへの特殊添加物の効果でフォルステライト
を主成分とする一次被膜が極端に少なくなるか、あるい
はなくなるので、焼鈍中に二次再結晶に必要な窒素系の
インヒビター(AlN、Si3 4 等)も仕上焼鈍中に
逃げ易い傾向があり、このため仕上焼鈍の雰囲気ガス中
の窒素分圧(P N2)を30%以上とすることで、これを
防ぐことができ、安定した二次再結晶を得ることが可能
である。さらに二次再結晶焼鈍の昇温速度があまり大き
すぎると、十分な二次再結晶を起こす前にインヒビター
が逃げ易いので、むしろ昇温速度を毎時30℃以下に抑
えた方が安定した磁気特性が得られる。なお、前述のよ
うに、この二次再結晶焼鈍中の比較的前段階で雰囲気等
より窒素を追加添加する窒化法が行われることもある。
The maximum reachievable temperature of the secondary recrystallization annealing is 1100.
It is preferable to carry out at ˜1300 ° C. Secondary temperature at 1100 ° C
It is the lower limit temperature for crystallization, while above 1300 ° C
The crystal grains become too coarse, which causes deterioration of iron loss. This secondary re
The important points in crystal annealing are as follows. In the present invention, M
Forsterite due to the effect of special additives on gO powder
The primary coating mainly composed of
Of the nitrogen system necessary for secondary recrystallization during annealing.
Inhibitor (AlN, Si3NFourEtc.) during finish annealing
It tends to escape, so that the finish annealing is performed in the atmosphere gas.
Nitrogen partial pressure (P N2) To 30% or more
Can be prevented and stable secondary recrystallization can be obtained
Is. Furthermore, the rate of temperature rise in the secondary recrystallization annealing is too high.
Too much inhibitor before sufficient secondary recrystallization occurs
Since it is easy to escape, the rate of temperature rise is rather suppressed to 30 ° C or less
The more stable the magnetic characteristics are obtained. In addition, the above
Sea urchin, etc. in the comparatively previous stage during this secondary recrystallization annealing
A nitriding method in which nitrogen is additionally added may be performed.

【0041】以上が本発明の珪素鋼板の製造法での重要
な部分であるが、工業的にはさらに絶縁特性や磁気特性
を向上させる目的で二次再結晶後の鋼板に有機質や無機
質による絶縁被膜を有する高張力被膜(コーティング)
を熱処理等と組み合わせて塗布することがとりわけ重要
である。この理由は、本発明ではフォルステライト等の
高張力特性を有する一次被膜が極端に少ないか、あるい
はないために、それを補完すべく高張力特性を有する絶
縁被膜を塗布することが効果的であるからである。
The above is an important part of the method for producing a silicon steel sheet according to the present invention, but industrially, the steel sheet after secondary recrystallization is insulated with an organic or inorganic material for the purpose of further improving the insulation characteristics and magnetic characteristics. High tensile coating with coating
It is particularly important to apply in combination with heat treatment or the like. The reason for this is that, in the present invention, the primary coating having high tensile properties such as forsterite is extremely small or absent, and it is effective to apply an insulating coating having high tensile properties to complement it. Because.

【0042】[0042]

【実施例】表3に示すような化学成分の鋼を転炉で溶製
し、表3に示すような条件で製造した。熱延板焼鈍を一
部行ったがこの条件は1120℃×30秒間である。ま
た冷間圧延時のパス間エージングをB以外は行ったが、
その条件は250℃である。
EXAMPLE Steels having chemical compositions shown in Table 3 were melted in a converter and manufactured under the conditions shown in Table 3. The hot-rolled sheet was partially annealed under the condition of 1120 ° C. for 30 seconds. In addition, aging between passes during cold rolling was performed except for B,
The condition is 250 ° C.

【0043】なお、ここで本発明にとりわけ重要な一次
再結晶焼鈍に引き続く窒化は同一炉内に仕切りを設けた
炉内部分で同一ガス組成で雰囲気をドライにし、NH3
ガスを一定量流して行ったものである。かかる一次焼鈍
後の窒化量(窒素量)を同表に示す。さらにこの鋼板に
パウダーを塗布したが、パウダーは水に溶解させ、スラ
リー状にして塗布後、350℃で乾燥させた。ここで、
%はMgOの重量を100%としたときの重量比率であ
る。しかる後に、800℃〜最高到達温度の平均昇温速
度を種々変えて二次再結晶焼鈍を行った。ここでは最高
到達速度は1200℃である。さらにリン酸系の高張力
の絶縁被膜(二次被膜)を加熱塗布した後、板取りし、
歪取焼鈍850℃×4時間(N2 90%−H2 10%、
Dry)を行い、磁気測定試験を行った。表3にその結
果を示す。なお、溝の最大深さ、ピッチ及び圧延方向と
の角度はいずれも二次再結晶焼鈍後の製品での測定であ
る。
Here, the nitriding subsequent to the primary recrystallization annealing, which is particularly important in the present invention, is performed by drying the atmosphere with the same gas composition in the inside of the furnace where the partition is provided in the same furnace, and NH 3
This was done by flowing a certain amount of gas. The nitriding amount (nitrogen amount) after such primary annealing is shown in the same table. Further, a powder was applied to this steel plate, and the powder was dissolved in water to form a slurry, which was then dried at 350 ° C. here,
% Is the weight ratio when the weight of MgO is 100%. After that, secondary recrystallization annealing was performed while changing the average heating rate from 800 ° C. to the highest reached temperature variously. The maximum reaching speed is 1200 ° C. here. Furthermore, after applying a phosphoric acid-based high-strength insulating coating (secondary coating) by heating, plate cutting,
Strain relief annealing 850 ° C. × 4 hours (N 2 90% -H 2 10%,
Dry) was performed and a magnetic measurement test was performed. The results are shown in Table 3. The maximum depth of the groove, the pitch, and the angle with the rolling direction are all measured with the product after the secondary recrystallization annealing.

【0044】磁気測定は60×30mmの単板をSST
試験法で測定し、B8 (800A/m)の磁束密度(単
位はテスラ)及びW17/50 (50Hzで1.7テスラの
ときの鉄損、単位はwatt/kg)、W13/50(50
Hzで1.3テスラのときの鉄損)を測定した。表3に
示すように、本発明の範囲に入っているものは鉄損が十
分低く、本発明の目的範囲に入っていることがわかる。
For magnetic measurement, SST a 60 × 30 mm single plate
Measured by the test method, magnetic flux density of B 8 (800 A / m) (unit is Tesla) and W 17/50 (iron loss at 50 Tesla at 1.7 Tesla, unit is Watt / kg), W 13/50 (50
The iron loss at 1.3 Tesla in Hz) was measured. As shown in Table 3, it is understood that those falling within the range of the present invention have a sufficiently low iron loss, which is within the target range of the present invention.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【表5】 [Table 5]

【0048】[0048]

【発明の効果】本発明によれば、磁気特性の極めて優れ
た方向性珪素鋼板を製造することができる。
According to the present invention, it is possible to manufacture a grain-oriented silicon steel sheet having extremely excellent magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次被膜の平均厚みと鉄損の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the average thickness of a primary coating and iron loss.

【図2】常温で溝加工した場合(a)と高温(600
℃)で溝加工した場合(b)の二次再結晶組織を示す写
真である。
[Fig.2] Groove processing at room temperature (a) and high temperature (600)
It is a photograph which shows the secondary recrystallization structure of (b) when groove | channel processing is carried out at (degreeC).

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年8月25日[Submission date] August 25, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】さて、本発明では一次再結晶焼鈍の昇温開
始から冷却終了までの間の鋼板温度300℃〜950℃
の間に鋼板表面に最大部の深さの平均が2〜50μmの
溝を機械的、化学的、光学的、熱的、電気的その他のエ
ネルギー照射的な方法で規則的な配列で付与せしめるこ
とが重要である。これはこの溝によって製品の磁区細分
化をより細かくすることが可能で鉄損低減に寄与するか
らである。この溝の付与の仕方は溝付きロール、溝付き
または刃型プレス等の機械的方法、レーザー、プラズマ
等のエネルギー照射方法、水、油等を高圧で吹き付ける
方法、酸等による化学的腐食、電気的腐食による方法、
あるいはそれらを組み合わせた方法等、基本的に手段は
どれでも良く、要は上記の溝の要件を満たしていれば効
果が認められる。
In the present invention, the steel sheet temperature from the start of temperature rise of the primary recrystallization annealing to the end of cooling is 300 ° C to 950 ° C.
Between the surfaces of the steel sheet, grooves having an average maximum depth of 2 to 50 μm are formed in a regular array by mechanical, chemical, optical, thermal, electrical or other energy irradiation methods. is important. This is because the grooves can make the magnetic domains of the product finer and contribute to the reduction of iron loss. How to add this groove is grooved roll, grooved
Or mechanical method such as blade press, energy irradiation method such as laser and plasma, method of spraying water, oil etc. at high pressure, chemical corrosion by acid etc., method by electric corrosion,
Alternatively, basically any means such as a method combining them may be used, and the effect is recognized as long as the above-mentioned requirements for the groove are satisfied.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

【表1】 [Table 1]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【表2】 [Table 2]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】次に、仕上焼鈍時に一次被膜を極力少なく
するか、あるいは消失させるために、本発明では一次焼
鈍後の鋼板表面に、塩化物、硫化物を通常のマグネシア
(MgO)パウダーに混加して塗布することが有効であ
ることがわかった。この中でも、とりわけ塩化カルシウ
ム(CaCl2 )、硫化カリウム(K2 S)は有効であ
る。なお、通常法でもMgO以外にTiO2 やアンチモ
ン系の化合物(Sb2(SO4 3 )やボロン系の化合
物(Na2 47 )、ストロンチウム・バリウム系、
炭・窒化物系等を添加して反応を容易にすることが行わ
れるが、本発明でもこれらの添加物の効果は発揮される
ので、添加しても本発明の本質を変えるものではない。
Next, in the present invention, chlorides and sulfides are mixed with ordinary magnesia (MgO) powder on the surface of the steel sheet after the primary annealing in order to minimize or eliminate the primary coating during the finish annealing. Then, it was found that it was effective to apply. Among these, calcium chloride (CaCl 2 ) and potassium sulfide (K 2 S) are particularly effective. In addition to MgO, TiO 2 , antimony-based compounds (Sb 2 (SO 4 ) 3 ), boron-based compounds ( Na 2 B 4 O 7 ), strontium-barium-based compounds,
Although the reaction is facilitated by adding a charcoal / nitride system or the like, the effects of these additives are exerted also in the present invention, and therefore the addition does not change the essence of the present invention.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】ここで珪素鋼板の製造方法に就いて述べる
必要がある。前述のように本発明を適用し得る珪素鋼板
はSi以外に、必要に応じてAlを含有し、Si3 4
あるいはAlN、及び鋼中のSが多い場合はMnSを主
要インヒビターとする鋼に限定される。もちろんSi、
Al以外に、Sn、Se、Sb、Cu、B、Nb、T
i、V、Ni、Cr等の他の添加元素を付加的に添加さ
せ、磁気特性の向上をはかることは本発明の基本を変え
るものではない。
Here, it is necessary to describe the method of manufacturing the silicon steel sheet. As described above, the silicon steel sheet to which the present invention can be applied contains Al in addition to Si, if necessary, and contains Si 3 N 4
Alternatively, if the amount of S in AlN and steel is large, the steel is limited to MnS as the main inhibitor. Of course Si,
In addition to Al, Sn, Se, Sb, Cu, B, Nb, T
The addition of other additive elements such as i, V 2 , Ni, and Cr to improve the magnetic characteristics does not change the basics of the present invention.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0045[Name of item to be corrected] 0045

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0045】[0045]

【表3】 [Table 3]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0047[Correction target item name] 0047

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0047】[0047]

【表5】 [Table 5]

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正書】[Procedure amendment]

【提出日】平成4年9月18日[Submission date] September 18, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】表1の化学成分(但し、R1のN量は一次
再結晶焼鈍後に窒化後の値)を有する鋼を熱延し、熱延
板焼鈍した後、0.23mmに冷延し、得られた冷延板
を一次再結晶焼鈍した直後の鋼板温度700〜600℃
の温度範囲で、この冷延板にロールで深さ15μm、ピ
ッチ5mmの溝を付けて、冷却後、この鋼板に焼鈍分離
剤としてMgOパウダーに添加物を種々変えて塗布し、
仕上焼鈍を行い、一次被膜の平均厚みを変えて、さらに
張力を有する絶縁コーティングを塗布したサンプルの鉄
損を調べたのが図1である。これをみても明らかなよう
に、一次被膜の厚みが小さくなるほど鉄損の低減(向
上)が見られ、とりわけ0.3μm以下でそれが顕著で
あることがわかる。これは溝が一次再結晶焼鈍直後とい
う中間工程で付けられて、この溝の中に後工程でフォル
ステライト等が詰まった場合は鉄損が劣化するが、鋼板
表面の一次被膜の平均厚みが少ないか、あるいは一次被
膜がない場合は溝の底部にのみフォルステライトが残留
し、十分に磁区細分化が行われ、かつ鉄損の劣化も少な
いことを示している。
Chemical composition in Table 1 (however, the N content of R1 is the primary
Steel having a value after nitriding after recrystallization annealing is hot-rolled, hot-rolled sheet is annealed, cold-rolled to 0.23 mm, and the obtained cold-rolled sheet has a steel sheet temperature of 700 to 100 immediately after primary recrystallization annealing. 600 ° C
In this temperature range, a groove having a depth of 15 μm and a pitch of 5 mm was formed on the cold rolled sheet with a roll, and after cooling, the steel sheet was coated with MgO powder as an annealing separator with various additives.
FIG. 1 shows the results of investigating the iron loss of a sample which was subjected to finish annealing, the average thickness of the primary coating was changed, and an insulating coating having tension was further applied. As is clear from this, it can be seen that the core loss is reduced (improved) as the thickness of the primary coating becomes smaller, and is particularly remarkable at 0.3 μm or less. This is because the groove is formed in the intermediate step immediately after the primary recrystallization annealing, and if the groove is clogged with forsterite etc. in the later step, the iron loss deteriorates, but the average thickness of the primary coating on the steel plate surface is small. Or, if there is no primary coating, it means that forsterite remains only at the bottom of the groove, the magnetic domains are sufficiently subdivided, and the iron loss is less deteriorated.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】さらに本発明で重要な点は一次再結晶焼鈍
中または前後の比較的高温域で鋼板に溝を付けるという
点である。表2の化学成分(Nは一次再結晶焼鈍後に窒
化した値)の鋼について、(1)一次再結晶焼鈍後の鋼
板を常温(25℃)でロール法で溝を付けた場合、
(2)600℃で溝を付けた場合、のそれぞれについて
二次再結晶させた結果を図2の金属組織写真に示す。こ
れではっきり云えることは、(1)の常温で溝を付けた
場合は、図2(a)に示すように溝の周辺に細粒が発生
するが、(2)の600℃で溝を付けた場合は、図2
(b)に示すようにそのような現象はみられない。つま
り、一次再結晶板に高温で溝を付けた場合は二次再結晶
後も正常な組織になり、磁性も良好になる。
Further, an important point in the present invention is that the steel sheet is grooved at a relatively high temperature region during or before and after the primary recrystallization annealing. Chemical composition of Table 2 (N is nitrogen after primary recrystallization annealing
The phased value) of steel, when fluted roll method in (1) the primary recrystallization steel sheet after annealing ambient temperature (25 ° C.),
(2) The results of secondary recrystallization for each of the cases where grooves were formed at 600 ° C. are shown in the metallographic photograph of FIG. What is clear from this is that when the groove is formed at room temperature in (1), fine grains are generated around the groove as shown in FIG. 2 (a), but the groove is formed at 600 ° C. in (2). Figure 2 when attached
As shown in (b), such a phenomenon is not seen. That is, when grooves are formed on the primary recrystallized plate at a high temperature, the structure becomes normal even after the secondary recrystallization, and the magnetism becomes good.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩永 功 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Iwanaga 1-1 Tobahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Si:1〜7%を含む鋼を溶製し、熱間
圧延、冷間圧延、一次再結晶焼鈍及び二次再結晶焼鈍を
基本工程とする方向性電磁鋼板の製造において、一次再
結晶焼鈍昇温開始から冷却終了までの間の鋼板温度30
0〜950℃の間に鋼板表面に最大部の深さの平均が2
〜50μmの溝を鋼板長手方向から、45〜90度の方
向に、間隔を開けて付与し、次いで鋼板表面に塩化物及
び硫化物の少なくとも一種類以上を含む物質を塗布し、
次いで二次再結晶焼鈍を行い、二次再結晶焼鈍時に生成
するフォルステライトを主成分とする絶縁性の一次被膜
の平均の厚みを0.3μm以下とすることを特徴とする
鉄損の優れた珪素鋼板の製造法。
1. In the production of a grain-oriented electrical steel sheet, which comprises smelting steel containing Si: 1 to 7%, hot rolling, cold rolling, primary recrystallization annealing and secondary recrystallization annealing being the basic steps, Steel plate temperature 30 from the start of temperature rise of primary recrystallization annealing to the end of cooling
The average depth of the maximum part on the steel plate surface is 0 to 0 to 950 ° C.
From the longitudinal direction of the steel plate to the direction of 45 to 90 degrees from the longitudinal direction of the steel plate, at intervals, is provided, and then a steel plate surface is coated with a substance containing at least one of chloride and sulfide,
Next, secondary recrystallization annealing is performed, and the average thickness of the insulative primary coating mainly composed of forsterite produced during secondary recrystallization annealing is set to 0.3 μm or less, which is excellent in iron loss. Manufacturing method of silicon steel sheet.
【請求項2】 鋼板に付与する溝の間隔を2〜20mm
とすることを特徴とする請求項1記載の鉄損の優れた珪
素鋼板の製造法。
2. The distance between the grooves provided on the steel plate is 2 to 20 mm.
The method for producing a silicon steel sheet having excellent iron loss according to claim 1.
【請求項3】 一次再結晶焼鈍時に窒化を行うことを特
徴とする請求項1または2記載の鉄損の優れた珪素鋼板
の製造法。
3. The method for producing a silicon steel sheet having excellent iron loss according to claim 1, wherein nitriding is performed during the primary recrystallization annealing.
【請求項4】 鋼板表面に塗布する物質に含有させる塩
化物として塩化カルシウム、硫化物として硫化カリウム
を使用する請求項1〜3のいずれかに記載の鉄損の優れ
た珪素鋼板の製造法。
4. The method for producing a silicon steel sheet with excellent iron loss according to claim 1, wherein calcium chloride is used as the chloride contained in the substance applied to the surface of the steel sheet, and potassium sulfide is used as the sulfide.
【請求項5】 二次再結晶焼鈍時の昇温速度を毎時30
℃以下とし、雰囲気ガス中の窒素分圧を30%以上とす
る請求項1〜4のいずれかに記載の鉄損の優れた珪素鋼
板の製造法。
5. The rate of temperature rise during secondary recrystallization annealing is 30 per hour.
The method for producing a silicon steel sheet with excellent iron loss according to any one of claims 1 to 4, wherein the nitrogen partial pressure in the atmosphere gas is 30% or more and the temperature is not higher than 0 ° C.
【請求項6】 Si:1〜7%を含み、鋼板表面に鋼板
の長手方向から45〜90度の方向で最大部の深さの平
均が2〜50μmの底部にフォルステライトが一部残留
した溝を有し、かつフォルステライトを主成分とする固
形硬質一次被膜の平均厚みが0.3μm以下で、鉄損が
17/50で0.70watt/kg以下であることを特
徴とする鉄損の優れた珪素鋼板。
6. Forsterite partially contains Si: 1 to 7%, and a part of forsterite remains on the bottom surface of the steel sheet surface having an average maximum depth of 2 to 50 μm in the direction of 45 to 90 degrees from the longitudinal direction of the steel sheet. An iron loss having a groove and an average thickness of a solid hard primary coating containing forsterite as a main component of 0.3 μm or less and an iron loss of 0.70 watt / kg or less at W 17/50. Excellent silicon steel plate.
【請求項7】 溝の間隔が2〜20mmであることを特
徴とする請求項6記載の鉄損の優れた珪素鋼板。
7. The silicon steel sheet with excellent iron loss according to claim 6, wherein the intervals between the grooves are 2 to 20 mm.
JP4169714A 1992-06-26 1992-06-26 Silicon steel sheet excellent in iron loss and its production Withdrawn JPH0610051A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4169714A JPH0610051A (en) 1992-06-26 1992-06-26 Silicon steel sheet excellent in iron loss and its production
US08/257,765 US5507883A (en) 1992-06-26 1994-06-09 Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for production the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4169714A JPH0610051A (en) 1992-06-26 1992-06-26 Silicon steel sheet excellent in iron loss and its production

Publications (1)

Publication Number Publication Date
JPH0610051A true JPH0610051A (en) 1994-01-18

Family

ID=15891508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4169714A Withdrawn JPH0610051A (en) 1992-06-26 1992-06-26 Silicon steel sheet excellent in iron loss and its production

Country Status (1)

Country Link
JP (1) JPH0610051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208196A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208196A (en) * 2010-03-29 2011-10-20 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss

Similar Documents

Publication Publication Date Title
US4938807A (en) Process for production of grain oriented electrical steel sheet having high flux density
CN110100023B (en) Oriented electrical steel sheet and method for manufacturing the same
KR960010595B1 (en) Production of grain-oriented silicon steel sheet having no glass coating and excellent in iron loss
US5370748A (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
JP2014208895A (en) Method of producing grain oriented electrical steel
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH06220541A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JPH0610051A (en) Silicon steel sheet excellent in iron loss and its production
WO2008078915A1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
JPH06100997A (en) Silicon steel sheet free from glass film and excellent in magnetic property and its production
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JPH08295937A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPH06136552A (en) Grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
US20230212720A1 (en) Method for the production of high permeability grain oriented electrical steel containing chromium
JPH06188116A (en) Oriented silicon steel plate for low core loss and high flux density and manufacture thereof
JPH06136446A (en) Production of grain-oriented silicon steel sheet having no glass coating and excellent in iron loss
JPH05320767A (en) Silicon steel sheet extremely excellent in core loss and its production
JPH08199239A (en) Production of grain oriented magnetic steel sheet with high magnetic flux density

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831