JPH05320767A - Silicon steel sheet extremely excellent in core loss and its production - Google Patents

Silicon steel sheet extremely excellent in core loss and its production

Info

Publication number
JPH05320767A
JPH05320767A JP13398792A JP13398792A JPH05320767A JP H05320767 A JPH05320767 A JP H05320767A JP 13398792 A JP13398792 A JP 13398792A JP 13398792 A JP13398792 A JP 13398792A JP H05320767 A JPH05320767 A JP H05320767A
Authority
JP
Japan
Prior art keywords
steel sheet
recrystallization annealing
annealing
primary
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13398792A
Other languages
Japanese (ja)
Inventor
Hiroaki Masui
浩昭 増井
Osamu Tanaka
収 田中
Hodaka Honma
穂高 本間
Isao Iwanaga
功 岩永
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13398792A priority Critical patent/JPH05320767A/en
Publication of JPH05320767A publication Critical patent/JPH05320767A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To provide a grain-oriented silicon steel sheet extremely low in core loss by coating the surface of a steel sheet with a substance contg. chlorides and sulfides and specifying the average thickness of a primary coating film essentially consisting of forsterite formed at the time of secondary recrystallization annealing. CONSTITUTION:Steel contg. 1 to 7% Si is subjected to cold rolling, and after that, grooves in which the average of the depth of the maximum part is regulated to 2 to 50mum are imparted to the surface of the steel sheet at intervals of 45 to 90 degrees from the longitudinal direction. After that, primary recrystallization annealing and the subsequent stages are executed. In the meantime between the primary recrystallization annealing and secondary recrystallization annealing, the surface of the steel sheet is coated with a substance contg. one or more kinds among chlorides and sulfides. The average thickness of an insulating primary coating film essentially consisting of forsterite formed at the time of the secondary recrystallization annealing is regulated to <=0.3mum. In this way, the objective grain oriented silicon steel sheet excellent in magnetic properties can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気特性に優れた方向性
電磁鋼板及びその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having excellent magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術】トランス用等の磁気特性に優れた1〜7
%のSiを含んだ珪素鋼板を製造するに際して、絶縁特
性の確保と鋼板表面に張力を与えトランスの性能向上に
必要な磁気特性を向上させ、かつ鋼板との密着性が良好
な一次被膜を形成させることは従来技術においては方向
性電磁鋼板の一つの重要な課題であった。
2. Description of the Related Art 1-7 excellent in magnetic characteristics for transformers and the like
% Silicon in the production of a steel sheet, a primary coating that secures insulation properties and imparts tension to the steel sheet surface to improve the magnetic characteristics necessary for improving the performance of the transformer and has good adhesion to the steel sheet is formed. To do so has been one of the important problems of the grain-oriented electrical steel sheet in the prior art.

【0003】すなわち、通常の技術では脱炭を伴う一次
焼鈍後に鋼板にマグネシアと呼ばれる酸化マグネシウム
(MgO)の微粉末を水溶させたスラリー状のものを塗
り、必要に応じて乾燥させたあと、二次再結晶焼鈍工程
で焼成させ、鋼板中のSiO2 やSiとの反応でフォル
ステライト(Mg2 SiO4 )と呼ばれるセラミックス
質状の絶縁性の一次被膜を形成させる。これが鋼板に張
力を与え、磁気特性とりわけ鉄損と呼ばれるトランスの
効率を支配する特性値を向上させるのに有効である。
That is, in the usual technique, after the primary annealing accompanied by decarburization, a steel sheet is coated with a slurry of magnesium oxide (MgO) fine powder called magnesia dissolved in water, dried as necessary, and then It is fired in the subsequent recrystallization annealing step to form a ceramic primary insulating film called forsterite (Mg 2 SiO 4 ) by reaction with SiO 2 and Si in the steel sheet. This is effective for giving tension to the steel sheet and improving the magnetic property, especially the characteristic value called iron loss, which governs the efficiency of the transformer.

【0004】しかも、このフォルステライト形成の状態
が、二次再結晶で鋼板の結晶方位を通称GOSS方位と
呼ばれ、透磁率や磁束密度の向上に不可欠な鋼板長手方
向(圧延方向)に対して{110}[001]の結晶方
位を有するやや粗大な二次再結晶粒を成長させるのにも
重要な役割を果たしていることもよく知られている。逆
に、二次再結晶焼鈍昇温過程中に十分緻密な被膜が形成
されないまま二次再結晶させようとしても鋼板内のイン
ヒビターと呼ばれる微細な窒化物や硫化物等がそのまま
の状態で、あるいは分解して早く鋼板外に抜けでてしま
う。このため、昇温中にGOSS方位粒を優先的に成長
させ、他の方位粒の成長を抑制させる役目のインヒビタ
ー効果が発揮できず、通称、細粒と呼ばれ、GOSS方
位粒の二次再結晶粒の成長が部分的あるいは全面的に行
われない、極めて磁気特性の劣る鋼板を生み出すことに
なる。なお、このMgOの中に酸化チタン(TiO
2 等)やその他の化合物を添加させ、さらに緻密な一次
被膜を形成させることも行われる。
Moreover, this state of forsterite formation is called the GOSS orientation of the crystal orientation of the steel sheet in the secondary recrystallization, and with respect to the steel sheet longitudinal direction (rolling direction) which is indispensable for improving the magnetic permeability and the magnetic flux density. It is also well known that it also plays an important role in growing slightly coarse secondary recrystallized grains having a crystal orientation of {110} [001]. On the contrary, during the secondary recrystallization annealing temperature rising process, even if trying to perform secondary recrystallization without forming a sufficiently dense film, fine nitrides and sulfides called inhibitors in the steel sheet are left as they are, or It disassembles and falls out of the steel plate quickly. For this reason, the inhibitor effect of growing preferentially the GOSS-oriented grains during the temperature rise and suppressing the growth of other oriented grains cannot be exhibited, and is commonly called fine grain. This results in a steel sheet with extremely poor magnetic properties in which crystal grains do not grow partially or entirely. In addition, titanium oxide (TiO 2
2 etc.) and other compounds may be added to form a denser primary coating.

【0005】しかるに、近年アモルファスの登場に見ら
れるようにエネルギー節減のためトランスのエネルギー
変換効率に影響の大きい電磁鋼板の鉄損低減への要求は
大きく、上記の従来技術の延長ではこの要望に耐えるこ
とは困難となってきた。従来技術においては上記の方法
以外にも二次再結晶後のいわゆる製品鋼板表面に機械的
あるいはレーザー等のエネルギー照射的な方法で溝ある
いはなんらかの損傷を意図的に与え、磁区細分化を行
い、鉄損を向上せしめる方法が行われている。しかしな
がら、この方法をもってしてもまだアモルファスに対抗
できるような低鉄損は実現困難であった。一方、フォル
ステライトを主成分とする一次被膜は硬質な固形物質な
るがゆえに製品のせん断等の加工性に難点があり、工具
寿命の低下をもたらしていた。
However, as seen in the appearance of amorphous materials in recent years, there is a great demand for iron loss reduction of magnetic steel sheets, which greatly affects the energy conversion efficiency of the transformer for energy saving, and the above-mentioned conventional technique can endure this demand. Things have become difficult. In the prior art, in addition to the above method, a so-called product steel sheet surface after secondary recrystallization is intentionally given a groove or some damage by a method of energy irradiation such as mechanical or laser to subdivide magnetic domains, There are ways to improve the loss. However, even with this method, it was still difficult to realize a low iron loss that can counter amorphous. On the other hand, since the primary coating containing forsterite as a main component is a hard solid substance, it has a difficulty in workability such as shearing of the product, resulting in a shortened tool life.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような問
題点を解明し、以下のような骨子に示される技術的知見
から一次被膜と呼ばれるフォルステライトを主成分とす
る固形物質の形成を極力抑え、かつ極めて低鉄損の方向
性電磁鋼板を得るべく新たな製品開発技術を見いだした
ものである。
DISCLOSURE OF THE INVENTION The present invention has clarified such problems, and from the technical knowledge shown in the skeleton as follows, formation of a solid substance containing forsterite as a main component called a primary film is as much as possible. We have discovered a new product development technology in order to obtain grain-oriented electrical steel sheets that suppresses and has extremely low iron loss.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)Si:1〜7%を含む鋼を溶製し、熱間圧延、冷
間圧延、一次再結晶焼鈍、焼鈍分離剤塗布、及び二次再
結晶焼鈍を基本工程とする方向性電磁鋼板の製造におい
て、冷間圧延後に鋼板表面に最大部の深さの平均が2〜
50μmの溝を鋼板の長手方向から45度〜90度の方
向に間隔を開けて付与せしめ、その後に一次再結晶焼鈍
以降の工程が行われ、一次再結晶焼鈍から二次再結晶焼
鈍の間に鋼板表面に塩化物及び硫化物の少なくとも一種
類以上を含む物質を鋼板表面に塗布し、二次再結晶焼鈍
時に生成されるフォルステライトを主成分とする絶縁性
の一次被膜の平均厚みを0.3μm以下とする極めて鉄
損の優れた珪素鋼板の製造方法。
The main points of the present invention are as follows. (1) Si: Steel containing 1 to 7% is melted, and hot-rolled, cold-rolled, primary recrystallization annealing, application of an annealing separator, and grain-oriented electrical steel sheet based on secondary recrystallization annealing. In the production of, the average maximum depth of the steel sheet surface after cold rolling is 2 to
Grooves of 50 μm are formed at intervals of 45 ° to 90 ° from the longitudinal direction of the steel sheet, and then the steps after the primary recrystallization annealing are performed, and between the primary recrystallization annealing and the secondary recrystallization annealing. A material containing at least one kind of chloride and sulfide is applied to the surface of the steel sheet, and the average thickness of the insulating primary coating mainly composed of forsterite generated during the secondary recrystallization annealing is set to 0. A method of manufacturing a silicon steel sheet having an extremely excellent iron loss of 3 μm or less.

【0008】(2)上記(1)において冷間圧延後付与
する溝の間隔を2〜20mmとする方法。
(2) A method in which the interval between grooves provided after cold rolling in the above (1) is set to 2 to 20 mm.

【0009】(3)上記(1),(2)において一次再
結晶焼鈍時に窒化を行う方法。
(3) A method of nitriding at the time of primary recrystallization annealing in the above (1) and (2).

【0010】(4)上記(1)〜(3)において焼鈍分
離剤に塩化物として塩化カルシウム、硫化物として硫化
カリウムを添加する方法。
(4) A method of adding calcium chloride as a chloride and potassium sulfide as a sulfide to the annealing separator in the above (1) to (3).

【0011】(5)上記(1)〜(4)において二次再
結晶焼鈍時の昇温速度を毎時30℃以下、また雰囲気ガ
ス中の窒素分圧を30%以上とする方法。
(5) In the above (1) to (4), the temperature rising rate during the secondary recrystallization annealing is 30 ° C. or less per hour, and the nitrogen partial pressure in the atmosphere gas is 30% or more.

【0012】(6)Si:1〜7%を含み、鋼板表面に
最大部の深さの平均が2〜50μmで底部にフォルステ
ライトの残留した溝が鋼板の長手方向から45度〜90
度の方向に間隔を開けて付与され、かつフォルステライ
トを主成分とする一次被膜の平均厚みが0.3μm以下
で鉄損がW17/50 で0.70Watt/kg以下の珪素鋼板。
(6) Si: 1 to 7% is included, the average depth of the maximum portion is 2 to 50 μm on the surface of the steel sheet, and the groove where forsterite remains at the bottom is 45 degrees to 90 degrees from the longitudinal direction of the steel sheet.
A silicon steel sheet which is applied with a space in the direction of degree and has an average primary coating film mainly composed of forsterite of 0.3 μm or less and an iron loss of W 17/50 of 0.70 Watt / kg or less.

【0013】(7)上記(6)で溝の間隔を2〜20mm
とすること。
(7) In (6) above, the groove interval is 2 to 20 mm.
To do.

【0014】以下に本発明を詳細に説明する。方向性珪
素鋼板の二次再結晶はGOSS方位と呼ばれる{11
0}[001]方位の粒を二次再結晶焼鈍(仕上げ焼鈍
とも呼ばれる)時に十分成長させることが肝要である。
これは一次再結晶焼鈍(以下、一次焼鈍と呼ぶ)の中の
ある特定粒のみを粗大再結晶させるもので、この時にイ
ンヒビター(Inhibitor)と呼ばれるAlN等
の微細析出物を仕上げ焼鈍前に十分作っておくことが技
術上必要であることがよく知られている。そして、この
ために必要な窒素を鋼溶製時又は一次焼鈍後又は他の工
程中に添加することが行われる。
The present invention will be described in detail below. Secondary recrystallization of grain-oriented silicon steel sheet is called GOSS orientation {11
It is important to sufficiently grow the grains of 0} [001] orientation during secondary recrystallization annealing (also called finish annealing).
This is to coarsely recrystallize only certain specific grains in the primary recrystallization annealing (hereinafter referred to as primary annealing). At this time, fine precipitates such as AlN called an inhibitor (Inhibitor) are sufficiently formed before finish annealing. It is well known that it is technically necessary to keep it. Then, nitrogen necessary for this purpose is added during steel melting, after primary annealing, or during other steps.

【0015】本発明の目的からはむしろ一次焼鈍後に窒
素を添加する方法が最適な窒素の添加法であることもわ
かった。もし、一次焼鈍中又は直後に窒素添加する場合
は、通常、脱炭反応も機能する一次焼鈍の設備の一部に
窒化反応を行う設備を内部又は近接して設置し、一次焼
鈍後又はそれと平行させて窒化反応させる方法も有効で
ある。鋼溶製時に十分低炭化した鋼では脱炭機能よりも
一次焼鈍後の表面層の酸化物層を変えて、被膜反応に有
利な形にすることがむしろ重要な役割となる。さて、本
発明では冷間圧延後又は冷間圧延中に鋼板表面に最大部
の深さの平均が2〜50μmの溝を規則的に付与するこ
とが重要である。これはこの溝によって製品の磁区をよ
り細かくすることが可能でこれが鉄損低減に寄与するか
らである。この溝の付与の仕方は溝付きロール、溝付き
プレス等の機械的方法、レーザー、プラズマ等のエネル
ギー照射方法、水、油等を高圧で吹き付ける方法、酸等
による化学的腐食、電気的腐食による方法、あるいはそ
れらを組み合わせた方法等、基本的に手段はどれでも良
く、要は上記の溝の要件を満たしていれば効果が認めら
れる。しかし、これだけでは本発明の狙いとする低鉄損
は得られない。
For the purpose of the present invention, it was found that the method of adding nitrogen after the primary annealing is rather the optimum method of adding nitrogen. If nitrogen is added during or immediately after the primary annealing, the equipment for nitriding reaction is usually installed inside or close to a part of the equipment for the primary annealing that also functions the decarburization reaction, and after or after the primary annealing. The method of causing the nitriding reaction is also effective. In the case of steel having a sufficiently low carbonization during steel melting, it is more important than the decarburizing function to change the oxide layer of the surface layer after the primary annealing so as to favorably form the coating reaction. In the present invention, it is important to regularly provide grooves having an average maximum depth of 2 to 50 μm on the surface of the steel sheet after or during cold rolling. This is because the grooves can make the magnetic domains of the product finer, which contributes to the reduction of iron loss. This groove can be applied by a mechanical method such as a grooved roll or a grooved press, an energy irradiation method such as laser or plasma, a method of spraying water or oil at a high pressure, a chemical corrosion by an acid or an electric corrosion. Basically, any method such as a method or a method combining them may be used, and the effect is recognized as long as the above-mentioned requirements for the groove are satisfied. However, this alone cannot provide the low iron loss targeted by the present invention.

【0016】本発明でもっとも重要な技術的な要件は鋼
板表面のフォルステライトを主成分とする一次被膜の平
均厚みとの組み合わせである。この厚みが0.3μm以
下のとき上記との組み合わせで極めて磁気特性が向上す
ることがわかった。また仕上げ焼鈍前に溝を付けた場
合、溝の底にフォルステライトが一部残留するが、これ
も鉄損向上の効果を助長すると推定される。この理由は
必ずしもわかっていないが、この一次被膜が厚いと鋼板
の磁束の流れを妨げ、とりわけ被膜に凹凸が多い場合
や、フォルステライト直下にスピネル(MgO・Al2
3 )等の酸化物が多い場合はその傾向が大きいことは
容易に想像できる。
The most important technical requirement in the present invention is the combination with the average thickness of the primary coating mainly composed of forsterite on the surface of the steel sheet. It has been found that when the thickness is 0.3 μm or less, the magnetic characteristics are remarkably improved in combination with the above. Further, when the groove is formed before the finish annealing, some of the forsterite remains at the bottom of the groove, which is also presumed to promote the effect of improving the iron loss. The reason for this is not necessarily understood, but if this primary coating is thick, it obstructs the flow of magnetic flux in the steel sheet, especially if the coating has many irregularities, or if spinel (MgO.Al 2
It can be easily imagined that this tendency is large when there are many oxides such as O 3 ).

【0017】したがって表面の一次被膜を極力減らして
薄くするか、完全になくしてしまい、そのかわりに、溝
を形成させれば磁束は規則的に円滑に流れる。この結
果、鉄損も十分に低減できることになる。当然ながら溝
の深さとピッチには制約がつくことになる。
Therefore, if the primary coating on the surface is reduced as much as possible to make it thin or completely eliminated, and if the grooves are formed instead, the magnetic flux flows regularly and smoothly. As a result, iron loss can be sufficiently reduced. Of course, there will be restrictions on the depth and pitch of the grooves.

【0018】本発明での重要な点はさらに次の点にあ
る。従来技術においては、いわゆる一次被膜を形成した
後のいわば製品に近いものに溝を付けて磁区細分化する
方法が行われている。これは同じく従来技術にある、中
間工程で溝を付けた方法よりも磁区制御効果が大きく出
易いためである。
Further important points in the present invention are as follows. In the prior art, a method is used in which a so-called primary product after forming a so-called primary coating is provided with grooves to subdivide magnetic domains. This is because the magnetic domain control effect is larger than that of the prior art method in which a groove is formed in the intermediate step.

【0019】しかしながら、本発明で明らかになったこ
とは、一次被膜厚みが極端に少ないか、ない場合はコス
ト的にも安価な冷間圧延後又は冷間圧延中に溝を付ける
方法でも十分な磁区細分化効果が発揮されると言う事実
を見いだした点である。
However, what has been made clear by the present invention is that a method of forming a groove after cold rolling or during cold rolling, which is inexpensive in terms of cost, is also sufficient when the thickness of the primary coating is extremely small or absent. This is the point that the fact that the magnetic domain subdivision effect is exhibited is found.

【0020】表1の化学成分を有する方向性電磁鋼板を
熱延、熱延焼鈍後0.23mmに冷間圧延し、これにロー
ルで深さ15μm、ピッチ5mmの溝を付けて、この後一
次焼鈍を行い、鋼板にMgOパウダーに添加物を種々変
えて仕上げ焼鈍を行い、一次被膜の平均厚みを変えて、
さらに張力を有する絶縁コーティングを塗布したサンプ
ルの鉄損を調べたのが図1である。
The grain-oriented electrical steel sheet having the chemical composition shown in Table 1 was hot-rolled, hot-rolled and annealed, then cold-rolled to 0.23 mm, and a roll having a depth of 15 μm and a pitch of 5 mm was formed on the grain. Annealing is performed, and the steel sheet is subjected to finish annealing with various additives added to MgO powder, and the average thickness of the primary coating is changed.
Further, FIG. 1 shows the iron loss of the sample coated with the insulating coating having tension.

【0021】[0021]

【表1】 [Table 1]

【0022】これを見ても明らかに一次被膜の厚みが小
さくなるほど鉄損の低減(向上)が見られ、とりわけ
0.3μm以下でそれが顕著であることがわかる。これ
は溝を冷間圧延後という中間工程に付与すると、溝の中
に後工程でフォルステライト等が詰まって磁区制御効果
が劣化するが、鋼板表面の一次被膜の平均厚みが少ない
か、ない場合はこの作用が少ないため十分磁区細分化さ
れるのではないかと考えられる。
From this, it can be seen that the iron loss is reduced (improved) as the thickness of the primary coating becomes smaller, and is particularly remarkable at 0.3 μm or less. This is because if the groove is applied to an intermediate step after cold rolling, forsterite etc. will be clogged in the groove in the post step and the magnetic domain control effect will deteriorate, but if the average thickness of the primary coating on the steel plate surface is small or absent. Is likely to be sufficiently subdivided into magnetic domains due to its small effect.

【0023】次に、二次再結晶を行う場合にAlを添加
する場合はインヒビターとしてAlNやSi3 4 をメ
インに使うが、ここで本発明の方法の一つとして一次焼
鈍中か後に窒化せしめる方法の方が、より本発明の目的
に好ましいことがわかった。これは以下の理由による。
鋼溶製時に窒素を多く添加する場合と異なり、後で窒化
する方がAlN,Si3 4 の最適量はコントロールし
易く、二次再結晶焼鈍時に、本発明のようにフォルステ
ライト等の一次被膜が薄くなるか消失しても雰囲気中の
窒素分圧(P N2 )をコントロールすることで、最適窒
素量を確保し易いからであろう、と考えられる。
Next, when Al is added during secondary recrystallization, AlN or Si 3 N 4 is mainly used as an inhibitor. Here, as one of the methods of the present invention, nitriding is performed during or after the primary annealing. It has been found that the method of buffing is more preferable for the purpose of the present invention. This is for the following reason.
Unlike the case where a large amount of nitrogen is added during steel melting, it is easier to control the optimal amount of AlN and Si 3 N 4 by nitriding later, and during secondary recrystallization annealing, it is possible to perform primary recrystallization such as forsterite as in the present invention. It is considered that the optimum nitrogen amount can be easily secured by controlling the nitrogen partial pressure (P N 2 ) in the atmosphere even if the film becomes thin or disappears.

【0024】次に、仕上げ焼鈍時の一次被膜を極力少な
くするか無くするために、本発明では一次焼鈍後の鋼板
表面に塩化物、硫化物を通常のマグネシア(MgO)パ
ウダーのなかに混ぜて添加することが有効であることが
わかった。この中でもとりわけ塩化カルシウム(CaC
2 )、硫化カリウム(K2 S)は有効である。
Next, in order to reduce or eliminate the primary coating film during finish annealing as much as possible, in the present invention, chlorides and sulfides are mixed in a normal magnesia (MgO) powder on the surface of the steel sheet after primary annealing. It has been found effective to add. Among these, calcium chloride (CaC
1 2 ) and potassium sulfide (K 2 S) are effective.

【0025】なお、通常法でもMgO以外にTiO2
アンチモン系の化合物(Sb2 (SO4 3 )やボロン
系の化合物(Na2 (BO4 3 )、ストロンチウム・
バリウム系、炭・窒化物系等を添加して反応を容易にす
ることが行われるが、本発明でもこれらの添加物の効果
は発揮されるので添加しても本発明の本質を変えるもの
ではない。
In addition to MgO, TiO 2 , antimony compounds (Sb 2 (SO 4 ) 3 ), boron compounds (Na 2 (BO 4 ) 3 ), strontium.
Barium, charcoal / nitride, etc. are added to facilitate the reaction. However, the effects of these additives are also exerted in the present invention, so addition of them does not change the essence of the present invention. Absent.

【0026】さて、ここで珪素鋼板の製造方法に触れる
必要がある。前述のように本発明が可能な珪素鋼板はS
i以外に必要に応じてAlを含有し、Si3 4 あるい
はAlN、および鋼中のSが多い場合はMnSを主要イ
ンヒビターとする鋼に限定する。もちろんSi,Al以
外に、Sn,Se,Sb,Cu,B,Nb,Ti,V等
の他の添加元素を付加的に添加させ、磁気特性の向上を
はかることは本発明の基本を変えるものではない。
Now, it is necessary to touch on the method of manufacturing a silicon steel sheet. As described above, the silicon steel sheet that can be used in the present invention is S
In addition to i, if necessary, Al is contained, and if Si 3 N 4 or AlN and S in the steel are large, the steel is limited to MnS as a main inhibitor. Of course, in addition to Si and Al, the addition of other additive elements such as Sn, Se, Sb, Cu, B, Nb, Ti and V to improve the magnetic characteristics changes the basics of the present invention. is not.

【0027】ところでAlNあるいはSi3 4 ,Mn
Sをインヒビターとする鋼は公知であり、そのいずれの
場合においても本発明の技術を適用することが可能であ
る。しかしながら、本発明の特徴をより一層発揮させる
にはとりわけ以下に示す製造法が最適である。
By the way, AlN or Si 3 N 4 , Mn
Steel containing S as an inhibitor is known, and the technique of the present invention can be applied to any of the cases. However, the following production methods are most suitable for further exerting the characteristics of the present invention.

【0028】すなわちSiを1〜7%含む鋼で必要に応
じAlを鋼溶製時に0.1%以下含み、Nを珪素鋼板製
造工程における冷延後の一次焼鈍中の脱炭焼鈍中、又は
後に鋼板に直接窒化反応を介して鋼にNを強制的に添加
せしめる方法により、二次再結晶焼鈍前にNを30ppm
〜600ppm 含ませることを特徴とする。Siは本発明
においては上記のようにフォルステライト形成のために
最低1%は必要である。一方、7%を超えると加工性が
極端に劣化し工業生産に適さない。
That is, in a steel containing 1 to 7% of Si, if necessary, Al is contained in an amount of 0.1% or less when the steel is melted, and N is included in the decarburization annealing during the primary annealing after cold rolling in the silicon steel sheet manufacturing process, or After the method of forcibly adding N to the steel sheet through the direct nitriding reaction, the N content of 30 ppm was increased before the secondary recrystallization annealing.
It is characterized by containing ~ 600ppm. In the present invention, at least 1% of Si is necessary for forming forsterite as described above. On the other hand, if it exceeds 7%, the workability is extremely deteriorated and it is not suitable for industrial production.

【0029】AlはAlNインヒビター形成に有効であ
る。しかし0.1%を超えるとAl2 3 生成量が多く
なり健全な鋼の清浄度を損ない、ひいては磁気特性に悪
影響をもたらす。NはSi3 4 インヒビターを形成す
るのに不可欠であり、本発明においては一次焼鈍後つま
り、仕上げ焼鈍前で最低30ppm は必要である。一方A
lを意図的に使う場合にはAlNの量確保の点で60pp
m 以上は必要である。ただし、600ppm を超えるとA
lやSiとインヒビターとして機能しない化合物を作る
ので不適当である。
Al is effective in forming an AlN inhibitor. However, if it exceeds 0.1%, the amount of Al 2 O 3 produced increases, impairing the cleanliness of sound steel, and adversely affecting the magnetic properties. N is indispensable for forming the Si 3 N 4 inhibitor, and in the present invention, a minimum of 30 ppm is required after the primary annealing, that is, before the finish annealing. Meanwhile A
When intentionally using l, 60 pp in terms of securing the amount of AlN
More than m is required. However, if it exceeds 600ppm, A
It is unsuitable because it produces a compound that does not function as an inhibitor with 1 or Si.

【0030】Sはこれを積極的に利用する場合は最低
0.01%はMnSをインヒビターとして有効に使うの
に必要である。一方、0.05%超では凝集して好まし
くはない。この他の元素は本発明では従来の鋼に較べて
特に特徴的ではないが以下に制約することが好ましい。
When S is positively used, at least 0.01% of S is necessary for effectively using MnS as an inhibitor. On the other hand, if it exceeds 0.05%, aggregation is not preferable. The other elements are not particularly characteristic in the present invention as compared with the conventional steel, but the following restrictions are preferable.

【0031】Cは鋼溶製中に十分低くするか又は一次焼
鈍の脱炭焼鈍時に十分低くする必要があり、二次再結晶
焼鈍開始時には0.03%以下が好ましい。Mnは0.
5%以下ならばSと反応してMnSインヒビターを形成
する。0.15%以下だとさらに磁束密度の向上に好ま
しい。酸素(O)は鋼溶製後に0.05%以下であれば
Al2 3 を多量に作りすぎず清浄度的に好ましい。
C needs to be sufficiently low during steel melting or sufficiently low during decarburization annealing of primary annealing, and is preferably 0.03% or less at the start of secondary recrystallization annealing. Mn is 0.
If it is 5% or less, it reacts with S to form an MnS inhibitor. If it is 0.15% or less, it is preferable for further improving the magnetic flux density. If oxygen (O) is 0.05% or less after the steel is melted, a large amount of Al 2 O 3 is not produced, which is preferable for cleanliness.

【0032】次に化学成分以外の本発明の製造方法につ
いて述べる。鋼を転炉又は電気炉等で出鋼し、必要に応
じて精錬工程に加えて成分調整を行った溶鋼を連続鋳造
法、造塊分塊圧延法あるいは熱延工程省略のための薄ス
ラブ連続鋳造法等により、厚さ30〜400mm(薄スラ
ブ連続鋳造法では50mm以下)のスラブとする。ここで
30mmは生産性の下限であり、400mmは中止偏析でA
2 3 等の分布が異常になることを防ぐための上限で
ある。また50mmは冷速が小さくなって粗大粒が出てく
ることを抑制するための上限である。
Next, the manufacturing method of the present invention other than the chemical components will be described. Continuous slab continuous casting method, ingot ingot slab rolling method or thin slab for skipping hot rolling step, in which steel is tapped in a converter or electric furnace and the composition is adjusted as necessary in addition to the refining step A slab having a thickness of 30 to 400 mm (50 mm or less in the thin slab continuous casting method) is formed by a casting method or the like. Here, 30mm is the lower limit of productivity, and 400mm is the discontinuation segregation A
This is the upper limit for preventing the distribution of l 2 O 3 etc. from becoming abnormal. Further, 50 mm is the upper limit for suppressing the generation of coarse particles due to the low cooling rate.

【0033】該スラブをガス加熱、電気利用加熱等によ
り1000℃〜1400℃に再加熱を行い、引き続き熱
間圧延を行って厚さ10mm以下のホットコイルとする。
ここで1000℃はAlN溶解の下限であり、1400
℃は表面肌あれと材質劣化の上限でる。また10mmは適
正な析出物を生成する冷速を得る上限である。なお、薄
スラブ連続鋳造法では直接コイル状にすることも可能で
あり、そのためには10mm以下が好ましい。
The slab is reheated to 1000 ° C. to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less.
Here, 1000 ° C. is the lower limit of AlN melting,
℃ is the upper limit of surface roughness and material deterioration. Further, 10 mm is the upper limit for obtaining a cold speed at which an appropriate precipitate is formed. In the thin slab continuous casting method, it is possible to directly form a coil, and for that purpose, it is preferably 10 mm or less.

【0034】このように作ったホットコイルを再び80
0〜1250℃で焼鈍し、磁性向上をはかることもしば
しば行われる。ここで800℃はAlN再溶解の下限で
あり、1250℃はAlN粗粒化防止の上限である。
The hot coil made in this manner is used again for 80
Annealing at 0 to 1250 ° C. is often performed to improve magnetism. Here, 800 ° C. is the lower limit for remelting AlN, and 1250 ° C. is the upper limit for preventing AlN coarsening.

【0035】かかる処理工程の後、ホットコイルを直接
又はバッチ的に酸洗後冷間圧延を行う。冷間圧延は圧下
率60〜95%で行うが、60%は本発明で再結晶可能
な限界であり、好ましくは70%以上が一次焼鈍で{1
11}[112]方位粒を多くして、二次再結晶焼鈍時
のGOSS方位粒の生成を促進させる下限であり、一方
95%超では二次再結晶焼鈍で首振りGOSS粒と称す
るGOSS方位粒が板面内回転した磁気特性に好ましく
ない粒が生成される。
After this treatment step, the hot coil is directly or batch-pickled and then cold-rolled. Cold rolling is performed at a rolling reduction of 60 to 95%, 60% being the limit of recrystallization in the present invention, preferably 70% or more by primary annealing {1
11} [112] is a lower limit for increasing the number of grains to promote the production of GOSS-oriented grains during secondary recrystallization annealing, while above 95% is a GOSS orientation called swinging GOSS grains in secondary recrystallization annealing. The grains are rotated in the plane of the plate, and grains which are not favorable for the magnetic properties are generated.

【0036】以上はいわゆる一回冷延法で製造する場合
だが、なお、二回冷延法と称して冷延−焼鈍−冷延を行
う場合は、一回目の圧下率は10〜80%、二回目の圧
下率は50〜95%となる。ここで10%は再結晶に必
要な最低圧下率、80%と95%はそれぞれ二次再結晶
時に適正なGOSS方位粒を生成させるための上限圧化
率、また50%は二回冷延法においては一次焼鈍時の
{111}[112]方位粒を適正に残す下限圧下率で
ある。
The above is the case of manufacturing by the so-called single cold rolling method. However, in the case of performing cold rolling-annealing-cold rolling called the double cold rolling method, the first rolling reduction is 10 to 80%, The second rolling reduction is 50 to 95%. Here, 10% is the minimum reduction ratio necessary for recrystallization, 80% and 95% are the upper limit compression ratios for generating proper GOSS oriented grains during secondary recrystallization, respectively, and 50% is the double cold rolling method. Is the lower limit of the reduction rate in which {111} [112] oriented grains are appropriately left during the primary annealing.

【0037】なお、通称パス間エージングと称し、冷間
圧延の途中で鋼板を適当な方法で100〜400℃の範
囲で加熱することも磁気特性の向上に有効である。10
0℃未満ではエージングの効果がなく、一方、400℃
超では転位が回復してしまう。
It is also commonly called "interpass aging", and it is effective to improve the magnetic properties by heating the steel sheet in the range of 100 to 400 ° C by an appropriate method during the cold rolling. 10
Below 0 ℃, there is no effect of aging, while at 400 ℃
If it exceeds the limit, dislocations will be recovered.

【0038】さて、本発明で重要な要件は冷間圧延後の
溝形成である。これが仕上げ焼鈍後に残り、フォルステ
ライトを主成分とする一次被膜を平均0.3μm以下と
極めて少なくする方法との組み合わせで従来に見られな
い低鉄損が得られるわけである。被膜厚みを0.3μm
以下とする理由は、前にも述べたが、これよりも厚い
と、本発明の中間工程で溝を付ける方法によっては十分
な低鉄損が得られないからである。
Now, an important requirement in the present invention is groove formation after cold rolling. This remains after finishing annealing, and a low iron loss, which has not been seen in the past, can be obtained in combination with a method of reducing the primary coating containing forsterite as a main component to an average of 0.3 μm or less. Coating thickness 0.3 μm
The reason for the following is as described above, but if it is thicker than this, a sufficiently low iron loss cannot be obtained by the groove forming method in the intermediate step of the present invention.

【0039】溝の形成方法は前述の通りであるが、溝の
最大部の平均の深さが2μm未満では磁区細分化効果が
ない。一方、50μm超では深すぎて磁束の円滑な流れ
を妨げてかえって鉄損も悪くなる。好ましくは5〜30
μmが良い。溝は規則的に配列されている方が良い。こ
れは、磁区細分化が規則的に行われるからである。通常
鋼板長手方向に対し45度から直角までの角度に、間隔
を開けて刻まれることが好ましい。45度未満では磁区
細分化の方向が磁性に好ましい結晶学的方位と合わない
からである。
The method of forming the groove is as described above, but if the average depth of the maximum part of the groove is less than 2 μm, there is no magnetic domain subdivision effect. On the other hand, if it exceeds 50 μm, it is too deep and the smooth flow of magnetic flux is hindered, and the iron loss deteriorates. Preferably 5-30
μm is good. The grooves should be arranged regularly. This is because the magnetic domain subdivision is regularly performed. Usually, it is preferable to engrave at intervals from 45 degrees to a right angle with respect to the longitudinal direction of the steel sheet. This is because if it is less than 45 degrees, the direction of magnetic domain subdivision does not match the crystallographic orientation preferred for magnetism.

【0040】また、溝のピッチは2〜20mmが好まし
い。2mm未満では磁区細分化が進みすぎて90度磁区が
増え、鉄損も磁歪も悪い。一方、20mm超では磁区細分
化の効果がない。なお、二回冷間圧延法においては二回
目の圧延後又は圧延時に溝を形成することが好ましいこ
とは言うまでもない。
The groove pitch is preferably 2 to 20 mm. If it is less than 2 mm, the subdivision of the magnetic domain will proceed too much and the 90 degree magnetic domain will increase, resulting in poor core loss and magnetostriction. On the other hand, if it exceeds 20 mm, there is no effect of domain division. It is needless to say that in the double cold rolling method, it is preferable to form the groove after or during the second rolling.

【0041】しかる後に一次焼鈍を行い、このとき必要
に応じて窒化を行う。一回冷延法でも二回冷延法でも一
次焼鈍を行うわけであるが、この焼鈍で脱炭を行うこと
は有効である。前述のようにCは二次再結晶粒の成長に
好ましくないばかりか、不純物として残ると鉄損の劣化
を招く。
After that, primary annealing is performed, and at this time, nitriding is performed if necessary. Although both the single cold rolling method and the double cold rolling method perform primary annealing, it is effective to perform decarburization by this annealing. As described above, C is not preferable for the growth of secondary recrystallized grains, and if it remains as an impurity, it causes deterioration of iron loss.

【0042】なお、鋼の溶製時にCを下げておくと脱炭
工程が短縮化されるばかりか{111}[112]方位
粒も増やすので好ましい。なお、この脱炭焼鈍工程で適
正な露点を設定することで後の一次被膜生成に必要な酸
化層の確保が行われる。
It is preferable that C is lowered during the melting of steel because not only the decarburization step is shortened but also {111} [112] oriented grains are increased. By setting an appropriate dew point in this decarburization annealing step, the oxide layer necessary for the subsequent formation of the primary coating can be secured.

【0043】一次焼鈍温度は700〜950℃が好まし
い。ここで700℃は再結晶可能な下限温度であり、9
50℃は一次再結晶の粗大粒の発生を抑制する上限温度
である。
The primary annealing temperature is preferably 700 to 950 ° C. Here, 700 ° C. is the lower limit temperature at which recrystallization is possible, and
50 ° C. is the upper limit temperature for suppressing the generation of coarse grains in primary recrystallization.

【0044】さらに、AlNやSi3 4 インヒビター
のNをこの一次焼鈍時に窒化法等で強制添加する本発明
においては、上記の一次焼鈍中又は直後に引続きアンモ
ニア(NH3 )等で窒化法により窒化することが行われ
る。この場合の窒化法の温度は600〜950℃が好ま
しい。ここで600℃は窒化反応を起こす下限であり、
一方950℃は粗大粒発生を抑える上限である。
Further, in the present invention in which AlN or N of Si 3 N 4 inhibitor is forcibly added by the nitriding method or the like during the primary annealing, the nitriding method with ammonia (NH 3 ) or the like is continuously performed during or immediately after the primary annealing. Nitriding is performed. In this case, the temperature of the nitriding method is preferably 600 to 950 ° C. Here, 600 ° C. is the lower limit of the nitriding reaction,
On the other hand, 950 ° C. is the upper limit for suppressing the generation of coarse particles.

【0045】本発明においては窒化は一次再結晶焼鈍後
に行うのが好ましいが、工業的には同じ炉内の後面に仕
切りを設けて雰囲気を必要に応じて多少変えて、NH3
ガスを流すか、近接した設備で行うため一次再結晶と平
行して窒化されることもしばしばある。この際前述のよ
うにN2 分圧が低い方が窒化量は大きく、好ましくは窒
素と酸素の分圧比P N2 /P H2 は0.5以下が好まし
い。
In the present invention, the nitriding is preferably carried out after the primary recrystallization annealing, but industrially, a partition is provided on the rear surface of the same furnace and the atmosphere is slightly changed as necessary, and NH 3
Nitrogen is often nitrided in parallel with primary recrystallization because the gas is flown or it is carried out in close proximity. At this time, as described above, the lower the N 2 partial pressure is, the larger the nitriding amount is, and the partial pressure ratio P N 2 / P H 2 of nitrogen and oxygen is preferably 0.5 or less.

【0046】一次焼鈍あるいは上記窒化法を行い、その
後、酸化マグネシウム(MgOを主成分とする。以下M
gOと呼ぶ)パウダーを水又は水を主成分とする水溶液
に溶かしスラリー状にして鋼板に塗布する。この際、後
の二次再結晶焼鈍時にMgOパウダーの溶融を容易にさ
せ、フォルステライト生成反応を促進させる目的で、適
当な化合物を微量添加することも行われる。
Primary annealing or the above nitriding method is performed, and then magnesium oxide (MgO is the main component.
The powder is referred to as gO) is dissolved in water or an aqueous solution containing water as a main component to form a slurry, which is applied to a steel sheet. At this time, a trace amount of an appropriate compound may be added for the purpose of facilitating the melting of the MgO powder during the subsequent secondary recrystallization annealing and promoting the forsterite formation reaction.

【0047】TiO2 を添加する場合は1〜15%が好
ましいが、ここで1%はフォルステライト反応促進効果
を発揮する下限であり、15%超ではMgOが少なくな
ってかえってフォルステライト反応が進まない。Sb2
(SO4 3 等のアンチモン系の化合物はMgOを比較
的低温で溶融させるのに効果があり、添加を行う場合は
0.05〜5%が好ましい。ここで、0.05%は上記
低温溶融を起こす下限であり、一方、5%を超える場合
は多すぎてMgOのフォルステライトの本来の反応を不
活性化する。
When TiO 2 is added, 1 to 15% is preferable, but 1% is the lower limit for exhibiting the forsterite reaction accelerating effect, and if it exceeds 15%, the amount of MgO decreases and the forsterite reaction proceeds rather. Absent. Sb 2
An antimony-based compound such as (SO 4 ) 3 is effective in melting MgO at a relatively low temperature, and when added, its content is preferably 0.05 to 5%. Here, 0.05% is the lower limit for causing the above-mentioned low-temperature melting, while if it exceeds 5%, it is too much to inactivate the original reaction of MgO forsterite.

【0048】Na2 4 7 等のボロン系の化合物及び
それと同様の作用を持つストロンチウム・バリウム系、
炭・窒化物系、硫化物系、塩化物系の化合物はアンチモ
ン系よりは比較的高温でMgOを溶融させるのに効果が
あり、添加する場合は0.05〜5%が好ましい。ここ
で、0.05%は上記の効果を発揮する下限であり、一
方5%超ではやはりMgOのフォルステライトの本来の
反応を不活性化するので好ましくない。なおこれらの化
合物は互いに複合して添加することも可能である。
Boron-based compounds such as Na 2 B 4 O 7 and strontium-barium-based compounds having the same action as those,
Carbon / nitride-based, sulfide-based, and chloride-based compounds are effective in melting MgO at a relatively higher temperature than antimony-based compounds, and when added, 0.05 to 5% is preferable. Here, 0.05% is the lower limit for exerting the above-mentioned effect, while if it exceeds 5%, it also inactivates the original reaction of MgO forsterite, which is not preferable. It should be noted that these compounds can be added in combination with each other.

【0049】なお、ここで添加する化合物の%はMgO
の重量を100%としたときの重量比を%で示してあ
る。本発明においては、さらにMgOパウダーに前述の
塩化物あるいは硫化物の一種類以上を添加すると、仕上
げ焼鈍後の一次被膜は平均0.3μm以下にでき、かつ
十分な二次再結晶方位が得られるが、これらの中でもと
りわけ塩化カルシウム(CaCl2 )、硫化カリウム
(K2 S)は有効である。これらは最低0.5%(Mg
Oの重量を100としたときの重量割合)以上あると効
果的である。20%超ではかえって二次被膜形成過程が
不安定となる。
The percentage of the compound added here is MgO.
The weight ratio is shown in% when the weight of 100% is taken as 100%. In the present invention, when one or more kinds of the above-mentioned chlorides or sulfides are further added to the MgO powder, the primary coating film after finish annealing can be 0.3 μm or less on average, and sufficient secondary recrystallization orientation can be obtained. However, among these, calcium chloride (CaCl 2 ) and potassium sulfide (K 2 S) are particularly effective. These are at least 0.5% (Mg
It is effective if the weight ratio of O is 100 or more). If it exceeds 20%, the secondary film formation process becomes rather unstable.

【0050】二次再結晶焼鈍は最高到達温度を1100
〜1300℃で行うのが好ましい。1100℃は二次再
結晶が行われる下限の温度であり、一方1300℃超は
結晶粒が粗大化し過ぎて鉄損の劣化を招く。この二次再
結晶焼鈍で重要な点は以下の通りである。本発明ではM
gOパウダーへ特殊添加物の効果でフォルステライトを
主成分とする一次被膜が極端に少なくなるか、なくなる
ので、焼鈍中に二次再結晶に必要な窒素系のインヒビタ
ー(AlN,Si3 4 等)も仕上げ焼鈍中に逃げ易い
傾向があり、このため仕上げ焼鈍の雰囲気ガス中の窒素
分圧(P N2 )を30%以上とすることでこれを防ぐこ
とができ、安定した二次再結晶を得ることが可能であ
る。
The maximum reachievable temperature of the secondary recrystallization annealing is 1100.
It is preferable to carry out at ˜1300 ° C. 1100 ° C. is the lower limit temperature at which the secondary recrystallization is performed, while if it exceeds 1300 ° C., the crystal grains become too coarse and iron loss is deteriorated. The important points in this secondary recrystallization annealing are as follows. In the present invention, M
Due to the effect of a special additive on gO powder, the primary coating containing forsterite as the main component is extremely reduced or eliminated, so nitrogen-based inhibitors (AlN, Si 3 N 4, etc.) necessary for secondary recrystallization during annealing. ) Also tends to escape during the finish annealing, so that it is possible to prevent this by setting the nitrogen partial pressure (P N 2 ) in the atmosphere gas of the finish annealing to 30% or more, and stable secondary recrystallization It is possible to obtain

【0051】さらに二次再結晶焼鈍の昇温速度があまり
大きすぎると、十分な二次再結晶を起こす前にインヒビ
ターが逃げ易いのでむしろ昇温速度を毎時30℃以下に
抑えた方が安定した磁気特性が得られる。なお、前述の
ように、この二次再結晶焼鈍中の比較的前段階で雰囲気
等より窒素を追加添加する窒化法が行われることもあ
る。
Further, if the temperature rising rate of the secondary recrystallization annealing is too high, the inhibitor easily escapes before sufficient secondary recrystallization occurs, so rather it is more stable if the temperature rising rate is kept below 30 ° C. per hour. Magnetic properties are obtained. Note that, as described above, the nitriding method in which nitrogen is additionally added from the atmosphere or the like may be performed at a relatively previous stage during the secondary recrystallization annealing.

【0052】以上が本発明の珪素鋼板の製造方法での重
要な部分であるが、工業的にはさらに絶縁特性や磁気特
性を向上させる目的で、二次再結晶後の鋼板に有機質や
無機質による絶縁被膜を有する高張力被膜(コーティン
グ)を熱処理等と組み合わせて塗布することがとりわけ
重要である。この理由は、本発明ではフォルステライト
等の高張力特性を有する一次被膜が極端に少ないか、な
いために、それを補完するべく高張力特性を有する絶縁
被膜を塗布することが効果的であるからである。
The above is an important part of the method for producing a silicon steel sheet of the present invention, but industrially, for the purpose of further improving the insulating characteristics and magnetic characteristics, the steel sheet after secondary recrystallization is made of an organic or inorganic substance. It is especially important to apply a high-strength coating (coating) having an insulating coating in combination with heat treatment or the like. The reason for this is that, in the present invention, the primary coating having high tensile properties such as forsterite is extremely small or absent, and therefore it is effective to apply an insulating coating having high tensile properties to complement it. Is.

【0053】[0053]

【実施例】表2に示すような化学成分の鋼を転炉で溶製
し、表2に示すような条件で製造した。熱延板焼鈍を一
部行ったがこの条件は1120℃×30秒間である。ま
た冷間圧延時のパス間エージングをB以外は行ったがそ
の条件は250℃である。なお、ここで本発明にとりわ
け重要な一次再結晶焼鈍に引続く窒化は同一炉内に仕切
りを設けた炉中内部分で同一ガス組成で雰囲気をドライ
にし、NH3 ガスを一定量流して行ったものである。か
かる一次焼鈍後の窒化量(窒素量)を同表に示す。
Example Steels having chemical compositions shown in Table 2 were melted in a converter and manufactured under the conditions shown in Table 2. The hot-rolled sheet was partially annealed under the condition of 1120 ° C. × 30 seconds. Aging between passes during cold rolling was performed except for B, but the condition is 250 ° C. Here, the nitriding subsequent to the primary recrystallization annealing, which is particularly important in the present invention, is performed by making the atmosphere dry with the same gas composition and flowing a certain amount of NH 3 gas in the inside of the furnace where the partition is provided in the same furnace. It is a thing. The nitriding amount (nitrogen amount) after such primary annealing is shown in the same table.

【0054】さらにこの鋼板にパウダーを塗布したが、
パウダーは水に溶解させスラリー状にして塗布後、35
0℃で乾燥させた。ここで、%はMgOの重量を100
%としたときの重量比率である。しかる後に、800℃
〜最高到達温度の平均昇温速度を種々変えて二次再結晶
焼鈍を行った。ここでは最高到達温度は1200℃であ
る。
Further, powder was applied to this steel plate,
Dissolve the powder in water, make a slurry, and apply 35
It was dried at 0 ° C. Here,% means the weight of MgO is 100
It is the weight ratio when it is defined as%. After that, 800 ℃
-Secondary recrystallization annealing was performed by changing the average temperature rising rate of the highest reached temperature variously. The highest temperature reached here is 1200 ° C.

【0055】さらにリン酸系の高張力の絶縁被膜(二次
被膜)を加熱塗布した後、板取りし、歪取り焼鈍850
℃×4時間(N2 90−H2 10,Dry)を行い、磁
気測定試験を行った。表2にその結果を示す。なお、溝
の最大深さ、ピッチ及び圧延方向との角度はいずれも二
次再結晶焼鈍後の製品での測定である。
Further, a phosphoric acid-based high-strength insulating coating (secondary coating) is applied by heating, followed by plate removal and strain relief annealing 850.
° C. × for 4 hours (N 2 90-H 2 10 , Dry), was subjected to magnetic measurement test. The results are shown in Table 2. The maximum depth of the groove, the pitch, and the angle with the rolling direction are all measured with the product after the secondary recrystallization annealing.

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【表6】 [Table 6]

【0061】[0061]

【表7】 [Table 7]

【0062】磁気測定は60×300mmの単板のSST
試験法で測定し、B8 (800A/mの磁束密度、単位
はテスラ)及びW17/50 (50Hzで1.7テスラのとき
の鉄損、単位はWatt/kg)、W13/50 (50Hzで1.3
テスラのときの鉄損)を測定した。さて、表2に示すよ
うに、本発明の範囲に入っているものは鉄損が十分低く
本発明の目的範囲に入っていることがわかる。
The magnetic measurement is SST of a single plate of 60 × 300 mm.
Measured by the test method, B 8 (magnetic flux density of 800 A / m, unit: Tesla) and W 17/50 (iron loss at 1.7 Tesla at 50 Hz, unit: Watt / kg), W 13/50 ( 1.3 at 50Hz
The iron loss at Tesla) was measured. Now, as shown in Table 2, it is understood that those falling within the range of the present invention have a sufficiently low iron loss and fall within the target range of the present invention.

【0063】[0063]

【発明の効果】本発明により超低鉄損の方向性電磁鋼板
を得ることができる。
According to the present invention, a grain-oriented electrical steel sheet having an ultra-low iron loss can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次被膜の平均厚みと鉄損の関係を示す図表で
ある。
FIG. 1 is a chart showing the relationship between the average thickness of a primary coating and iron loss.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年8月28日[Submission date] August 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)Si:1〜7%を含む鋼を溶製し、熱間圧延、冷
間圧延、一次再結晶焼鈍、焼鈍分離剤塗布、及び二次再
結晶焼鈍を基本工程とする方向性電磁鋼板の製造におい
て、冷間圧延後又は冷間圧延中に鋼板表面に最大部の深
さの平均が2〜50μmの溝を鋼板の長手方向から45
度〜90度の方向に間隔を開けて付与せしめ、その後に
一次再結晶焼鈍以降の工程が行われ、一次再結晶焼鈍か
ら二次再結晶焼鈍の間に鋼板表面に塩化物及び硫化物の
少なくとも一種類以上を含む物質を鋼板表面に塗布し、
二次再結晶焼鈍時に生成されるフォルステライトを主成
分とする絶縁性の一次被膜の平均厚みを0.3μm以下
とする極めて鉄損の優れた珪素鋼板の製造方法。
The main points of the present invention are as follows. (1) Si: Steel containing 1 to 7% is melted, and hot-rolled, cold-rolled, primary recrystallization annealing, application of an annealing separator, and grain-oriented electrical steel sheet based on secondary recrystallization annealing. In the production of, after the cold rolling or during the cold rolling, a groove having an average maximum depth of 2 to 50 μm is formed on the surface of the steel sheet by 45 from the longitudinal direction of the steel sheet.
At intervals of 90 degrees to 90 degrees, and thereafter, the steps after the primary recrystallization annealing are performed, and at least the chloride and the sulfide on the surface of the steel sheet between the primary recrystallization annealing and the secondary recrystallization annealing. Apply a substance containing one or more kinds to the steel plate surface,
A method for producing a silicon steel sheet having an extremely excellent iron loss, wherein the average thickness of an insulative primary coating mainly composed of forsterite produced during secondary recrystallization annealing is 0.3 μm or less.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】本発明の目的からはむしろ一次焼鈍後に窒
素を添加する方法が最適な窒素の添加法であることもわ
かった。もし、一次焼鈍中又は直後に窒素添加する場合
は、通常、脱炭反応も機能する一次焼鈍の設備の一部に
窒化反応を行う設備を内部又は近接して設置し、一次焼
鈍後又はそれと平行させて窒化反応させる方法も有効で
ある。鋼溶製時に十分低炭化した鋼では脱炭機能よりも
一次焼鈍後の表面層の酸化物層を変えて、被膜反応に有
利な形にすることがむしろ重要な役割となる。さて、本
発明では冷間圧延後又は冷間圧延中に鋼板表面に最大部
の深さの平均が2〜50μmの溝を規則的に付与するこ
とが重要である。これはこの溝によって製品の磁区をよ
り細かくすることが可能でこれが鉄損低減に寄与するか
らである。この溝の付与の仕方は溝付きロール、溝付き
又は刃型プレス等の機械的方法、レーザー、プラズマ等
のエネルギー照射方法、水、油等を高圧で吹き付ける方
法、酸等による化学的腐食、電気的腐食による方法、あ
るいはそれらを組み合わせた方法等、基本的に手段はど
れでも良く、要は上記の溝の要件を満たしていれば効果
が認められる。しかし、これだけでは本発明の狙いとす
る低鉄損は得られない。
For the purpose of the present invention, it was found that the method of adding nitrogen after the primary annealing is rather the optimum method of adding nitrogen. If nitrogen is added during or immediately after the primary annealing, the equipment for nitriding reaction is usually installed inside or close to a part of the equipment for the primary annealing that also functions the decarburization reaction, and after or after the primary annealing. The method of causing the nitriding reaction is also effective. In the case of steel having a sufficiently low carbonization during steel melting, it is more important than the decarburizing function to change the oxide layer of the surface layer after the primary annealing so as to favorably form the coating reaction. In the present invention, it is important to regularly provide grooves having an average maximum depth of 2 to 50 μm on the surface of the steel sheet after or during cold rolling. This is because the grooves can make the magnetic domains of the product finer, which contributes to the reduction of iron loss. How to add this groove is grooved roll, grooved
Or mechanical methods such as a blade press, laser, energy irradiation methods such as plasma, methods of spraying water, oil, etc. at high pressure, chemical corrosion by acids, etc., methods by electrical corrosion, or a combination thereof, etc. Basically, any means may be used, and the effect is recognized as long as the above-mentioned groove requirements are satisfied. However, the low iron loss targeted by the present invention cannot be obtained by this alone.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】なお、通常法でもMgO以外にTiO2
アンチモン系の化合物(Sb2 (SO4 3 )やボロン
系の化合物(Na2 4 7 )、ストロンチウム・バリ
ウム系、炭・窒化物系等を添加して反応を容易にするこ
とが行われるが、本発明でもこれらの添加物の効果は発
揮されるので添加しても本発明の本質を変えるものでは
ない。
In addition to MgO, TiO 2 and antimony-based compounds (Sb 2 (SO 4 ) 3 ), boron-based compounds (Na 2 B 4 O 7 ), strontium-barium-based compounds, carbon / nitrides, etc. Although the reaction is facilitated by adding a system or the like, the effects of these additives are exerted in the present invention as well, so addition of these does not change the essence of the present invention.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】さて、ここで珪素鋼板の製造方法に触れる
必要がある。前述のように本発明が可能な珪素鋼板はS
i以外に必要に応じてAlを含有し、Si3 4 あるい
はAlN、および鋼中のSが多い場合はMnSを主要イ
ンヒビターとする鋼に限定する。もちろんSi,Al以
外に、Sn,Se,Sb,Cu,B,Nb,Ti,V
Ni,Cr等の他の添加元素を付加的に添加させ、磁気
特性の向上をはかることは本発明の基本を変えるもので
はない。
Now, it is necessary to touch on the method of manufacturing a silicon steel sheet. As described above, the silicon steel sheet that can be used in the present invention is S
In addition to i, if necessary, Al is contained, and if Si 3 N 4 or AlN and S in the steel are large, the steel is limited to MnS as a main inhibitor. Of course Si, other than Al, Sn, Se, Sb, Cu, B, Nb, Ti, V,
The addition of other additive elements such as Ni and Cr to improve the magnetic characteristics does not change the basis of the present invention.

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Name of item to be corrected] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】該スラブをガス加熱、電気利用加熱等によ
り1000℃〜1400℃に再加熱を行い、引き続き熱
間圧延を行って厚さ10mm以下のホットコイルとする。
ここで1000℃はAlN溶解の下限であり、1400
℃は表面肌あれと材質劣化の上限でる。また10mmは
適正な析出物を生成する冷速を得る上限である。なお、
薄スラブ連続鋳造法では直接コイル状にすることも可能
であり、そのためには10mm以下が好ましい。
The slab is reheated to 1000 ° C. to 1400 ° C. by gas heating, electric heating, etc., and then hot rolled to obtain a hot coil having a thickness of 10 mm or less.
Here, 1000 ° C. is the lower limit of AlN melting,
℃ is Ru Oh at the upper limit of the surface skin any door material deterioration. Further, 10 mm is the upper limit for obtaining a cold speed at which an appropriate precipitate is formed. In addition,
In the thin slab continuous casting method, it is possible to directly form a coil, and for that purpose, 10 mm or less is preferable.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0038】さて、本発明で重要な要件は冷間圧延後
は冷間圧延中の溝形成である。これが仕上げ焼鈍後に残
り、フォルステライトを主成分とする一次被膜を平均
0.3μm以下と極めて少なくする方法との組み合わせ
で従来に見られない低鉄損が得られるわけである。被膜
厚みを0.3μm以下とする理由は、前にも述べたが、
これよりも厚いと、本発明の中間工程で溝を付ける方法
によっては十分な低鉄損が得られないからである。
[0038] Now, an important requirement in the present invention are also after cold rolling
Is the groove formation during cold rolling . This remains after finishing annealing, and a low iron loss, which has not been seen in the past, can be obtained in combination with a method of reducing the primary coating containing forsterite as a main component to an average of 0.3 μm or less. The reason why the film thickness is 0.3 μm or less has been described above,
If it is thicker than this, a sufficiently low iron loss cannot be obtained by the groove forming method in the intermediate step of the present invention.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0059[Correction target item name] 0059

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0059】[0059]

【表5】 [Table 5]

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0061[Correction target item name] 0061

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0061】[0061]

【表7】 ─────────────────────────────────────────────────────
[Table 7] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月7日[Submission date] October 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】表1の化学成分(但しS1のN量は一次焼
鈍後に窒化後の値)を有する方向性電磁鋼板を熱延、熱
延焼鈍後0.23mmに冷間圧延し、これにロールで深さ
15μm、ピッチ5mmの溝を付けて、この後一次焼鈍を
行い、鋼板にMgOパウダーに添加物を種々変えて仕上
げ焼鈍を行い、一次被膜の平均厚みを変えて、さらに張
力を有する絶縁コーティングを塗布したサンプルの鉄損
を調べたのが図1である。
Chemical composition in Table 1 (however, the amount of N in S1 is the primary
After annealing, the grain-oriented electrical steel sheet having the value (after nitriding) is hot-rolled, hot-rolled and annealed, and then cold-rolled to 0.23 mm, and a groove having a depth of 15 μm and a pitch of 5 mm is formed on this with a primary annealing. Fig. 1 shows the iron loss of a sample in which the steel sheet was subjected to finish annealing with various additives added to MgO powder, the average thickness of the primary coating was changed, and an insulating coating having tension was applied. ..

フロントページの続き (72)発明者 岩永 功 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内Front page continued (72) Inventor Isao Iwanaga 1-1 No. 1 Tobatacho, Tobata-ku, Kitakyushu Nippon Steel Co., Ltd. Yawata Works (72) Inventor Katsuro Kuroki No. 1 Tobita-cho, Tobata-ku, Kitakyushu Steelworks Yawata Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Si:1〜7%を含む鋼を溶製し、熱間
圧延、冷間圧延、一次再結晶焼鈍、焼鈍分離剤塗布、及
び二次再結晶焼鈍を基本工程とする方向性電磁鋼板の製
造において、冷間圧延後に鋼板表面に最大部の深さの平
均が2〜50μmの溝を鋼板の長手方向から45度〜9
0度の方向に、間隔を開けて付与せしめ、その後に一次
再結晶焼鈍以降の工程が行われ、一次再結晶焼鈍から二
次再結晶焼鈍の間に、鋼板表面に塩化物及び硫化物の少
なくとも一種類以上を含む物質を鋼板表面に塗布し、二
次再結晶焼鈍時に生成されるフォルステライトを主成分
とする絶縁性の一次被膜の平均厚みを0.3μm以下と
することを特徴とする極めて鉄損の優れた珪素鋼板の製
造方法。
1. Directionality in which steel containing Si: 1 to 7% is smelted, and hot rolling, cold rolling, primary recrystallization annealing, application of an annealing separator, and secondary recrystallization annealing are the basic steps. In manufacturing an electromagnetic steel sheet, a groove having an average maximum depth of 2 to 50 μm is formed on the surface of the steel sheet after cold rolling at 45 ° to 9 ° from the longitudinal direction of the steel sheet.
In the direction of 0 degree, it is given with an interval, and then the steps after the primary recrystallization annealing are performed, and during the period from the primary recrystallization annealing to the secondary recrystallization annealing, at least the chloride and sulfide on the surface of the steel sheet are A material containing one or more kinds is applied to the surface of a steel sheet, and the average thickness of the insulating primary coating mainly composed of forsterite produced during secondary recrystallization annealing is set to 0.3 μm or less. A method for manufacturing a silicon steel sheet having excellent iron loss.
【請求項2】 冷間圧延後付与する溝の間隔が2〜20
mmであることを特徴とする請求項1記載の極めて鉄損の
優れた珪素鋼板の製造方法。
2. The interval between grooves provided after cold rolling is 2 to 20.
The method for producing a silicon steel sheet having excellent iron loss according to claim 1, wherein the silicon steel sheet has a thickness of mm.
【請求項3】 一次再結晶焼鈍時に窒化を行うことを特
徴とする請求項1又は2記載の極めて鉄損の優れた珪素
鋼板の製造方法。
3. The method for producing a silicon steel sheet having excellent iron loss according to claim 1 or 2, wherein nitriding is performed during the primary recrystallization annealing.
【請求項4】 焼鈍分離剤に含有させる塩化物として、
塩化カルシウム、硫化物として硫化カリウムを添加する
ことを特徴とする請求項1又は2又は3記載の極めて鉄
損の優れた珪素鋼板の製造方法。
4. The chloride contained in the annealing separator,
The method for producing a silicon steel sheet having extremely excellent iron loss according to claim 1, 2 or 3, wherein calcium chloride and potassium sulfide as a sulfide are added.
【請求項5】 二次再結晶焼鈍時の昇温速度を、毎時3
0℃以下、また雰囲気ガス中の窒素分圧を30%以上と
することを特徴とする請求項1又は2又は3又は4記載
の極めて鉄損の優れた珪素鋼板の製造方法。
5. The rate of temperature rise during secondary recrystallization annealing is set to 3 per hour.
The method for producing a silicon steel sheet with extremely excellent iron loss according to claim 1, 2 or 3 or 4, wherein the nitrogen partial pressure in the atmosphere gas is set to 0 ° C or lower and the nitrogen partial pressure in the atmosphere gas is set to 30% or higher.
【請求項6】 Si:1〜7%を含み、鋼板表面に最大
部の深さの平均が2〜50μmで、底部にフォルステラ
イトが一部残留した溝を、鋼板の長手方向から45度〜
90度の方向に間隔を開けて付与され、かつフォルステ
ライトを主成分とする一次被膜の平均厚みが、0.3μ
m以下で鉄損がW17/50 で0.70Watt/kg以下である
ことを特徴とする極めて鉄損の優れた珪素鋼板。
6. A groove containing Si: 1 to 7%, having an average maximum depth of 2 to 50 μm on the surface of the steel sheet, and having a portion of forsterite remaining at the bottom is 45 degrees from the longitudinal direction of the steel sheet.
The average thickness of the primary coating containing forsterite as a main component, which is applied at intervals of 90 degrees, is 0.3 μm.
A silicon steel sheet having an extremely excellent iron loss, characterized in that the iron loss at W 17/50 is 0.70 Watt / kg or less at m or less.
【請求項7】 溝の間隔が2〜20mmであることを特徴
とする請求項6記載の極めて鉄損の優れた珪素鋼板。
7. The silicon steel sheet with extremely excellent iron loss according to claim 6, wherein the groove interval is 2 to 20 mm.
JP13398792A 1992-05-26 1992-05-26 Silicon steel sheet extremely excellent in core loss and its production Withdrawn JPH05320767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13398792A JPH05320767A (en) 1992-05-26 1992-05-26 Silicon steel sheet extremely excellent in core loss and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13398792A JPH05320767A (en) 1992-05-26 1992-05-26 Silicon steel sheet extremely excellent in core loss and its production

Publications (1)

Publication Number Publication Date
JPH05320767A true JPH05320767A (en) 1993-12-03

Family

ID=15117737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13398792A Withdrawn JPH05320767A (en) 1992-05-26 1992-05-26 Silicon steel sheet extremely excellent in core loss and its production

Country Status (1)

Country Link
JP (1) JPH05320767A (en)

Similar Documents

Publication Publication Date Title
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP2014508858A (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JPH10259424A (en) Production of silicon-chromium grain-oriented silicon steel
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
WO1991016462A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JPH06100937A (en) Production of silicon steel sheet having no glass film and extremely excellent in core loss
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JPH06220541A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JPH05295447A (en) Annealing method for finishing grain oriented electrical steel sheet in short time
JPH06100997A (en) Silicon steel sheet free from glass film and excellent in magnetic property and its production
JP4291733B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet using the same
JPH07258802A (en) Grain oriented silicon steel sheet having high magnetic flux density and low iron loss and its production
JPH06220540A (en) High magnetic flux density grain-oriented silicon steel sheet excellent in magnetic property after domain control
JPH06188116A (en) Oriented silicon steel plate for low core loss and high flux density and manufacture thereof
JPH06136552A (en) Grain-oriented silicon steel sheet excellent in magnetic core loss and its production
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JPH05320767A (en) Silicon steel sheet extremely excellent in core loss and its production
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
JPH06136446A (en) Production of grain-oriented silicon steel sheet having no glass coating and excellent in iron loss
CN113166874B (en) Oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803