JPH059945A - Underground skeleton constructing method - Google Patents

Underground skeleton constructing method

Info

Publication number
JPH059945A
JPH059945A JP3160361A JP16036191A JPH059945A JP H059945 A JPH059945 A JP H059945A JP 3160361 A JP3160361 A JP 3160361A JP 16036191 A JP16036191 A JP 16036191A JP H059945 A JPH059945 A JP H059945A
Authority
JP
Japan
Prior art keywords
slab
underground
pressure
retaining wall
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3160361A
Other languages
Japanese (ja)
Other versions
JP2588075B2 (en
Inventor
Yasukazu Onishi
靖和 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP3160361A priority Critical patent/JP2588075B2/en
Publication of JPH059945A publication Critical patent/JPH059945A/en
Application granted granted Critical
Publication of JP2588075B2 publication Critical patent/JP2588075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PURPOSE:To construct the underground skeleton of a building almost with no manpower, and reduce construction pollutions such as noise, vibration, and ground subsidence by pumping of ground water. CONSTITUTION:A retaining wall 1 and a cast-in-place pile 2 are constructed on the outer circumference and inner part of an underground body, respectively. An outer circumferential steel column 3 and a semi-PC steel column 4 are built in the retaining wall 1 and the internal pile 2, respectively. After primary excavation is conducted, a reinforced basket 5 for pressure-resisting slab is assembled on the excavated ground, a top slab 6 for reverse placing is constructed, and the reinforced basket 5 is lifted by a suspension wire 7 from the slab 6. Further, an excavation stabilizing solution plant 8 is placed on the top slab 6, and the ground under the slab is excavated to a determined depth by an underwater unmanned excavator 9. Underwater concrete is placed thereto to construct a pressure-resisting slab, and underground intermediate slabs are successively constructed from the upper floor while draining the water between the pressure-resisting slab and the retaining wall 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は地下躯体の構築方法に係
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing an underground structure.

【0002】[0002]

【従来の技術】近年、埋立地等、軟弱地盤での構築物の
建設や、都市部における地下構造物の大規模化、大深度
化が進み、基礎を含めた地下躯体の設計法、施工法が以
前にもまして重要な問題となってきている。而して地下
工事は山留工事、杭工事、土工事、地下躯体工事等から
構成されている。
2. Description of the Related Art In recent years, construction of structures on soft ground such as landfills, large-scale and deep underground structures in urban areas have progressed, and design methods and construction methods for underground structures including foundations have been developed. It has become a more important issue than ever before. The underground construction consists of mountain retaining work, pile construction, earthwork, and underground construction work.

【0003】[0003]

【発明が解決しようとする課題】しかしながら地下工事
は、建築生産という範疇では比較的扱い難い分野とされ
ている。その主な理由の一つは、地下工事の対象とする
地盤が自然材料である土と水とによって複雑に構成され
ていて、個々の敷地が固有の地盤条件を有することか
ら、各現場に共通性が極めて乏しいという点にある。そ
のため汎用性の高い新技術の開発は容易でない。
However, underground construction is regarded as a relatively difficult field in the category of building production. One of the main reasons for this is that the ground that is the target of underground construction is complicatedly composed of soil and water, which are natural materials, and each site has its own ground conditions. The point is that the sex is extremely poor. Therefore, the development of highly versatile new technology is not easy.

【0004】本発明はこのような実情に鑑みて提案され
たもので、その目的とする処は、建物の地下躯体をほぼ
無人で構築するとともに、騒音、振動、地下水の汲み上
げによる地盤沈下等の建設公害が低減された地下躯体の
構築工法を提供する点にある。
The present invention has been proposed in view of the above circumstances, and its purpose is to construct an underground structure of a building almost unattended, and to prevent noise, vibration, ground subsidence due to pumping of groundwater, etc. The point is to provide a construction method for an underground structure with reduced construction pollution.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る地下躯体構築工法によれば、地下躯体
外周には山留壁を、内部には場所打ち杭を自動掘削方式
で施工するとともに、山留壁には外周鉄骨柱を、内部杭
には半PC構真柱を建込み、1次掘削を行ったのち掘削
地盤上に耐圧スラブ用の鉄筋篭を組み立て、次いで逆打
ち用トツプスラブを施工して同スラブより前記鉄筋篭を
懸吊部材で吊り下げるとともに、トツプスラブ上に掘削
安定液プラントを設置し、トツプスラブ下の地盤を水中
無人掘削機によって所定深度まで掘削したのち、前記鉄
筋コンクリート篭を沈設して水中コンクリートを打設し
て耐圧スラブを施工し、次いで同耐圧スラブと山留壁と
の間の水を排水しながら地下中間スラブを上階より順次
施工するものである。
In order to achieve the above-mentioned object, according to the underground skeleton construction method according to the present invention, a mountain retaining wall is provided on the outer circumference of the underground skeleton and a cast-in-place pile is provided inside by an automatic excavation method. In addition to the construction, the outer steel column is installed on the mountain retaining wall, the semi-PC structure true column is installed on the inner pile, and after the primary excavation, the rebar cage for pressure slab is assembled on the excavated ground, and then the reverse shot is performed. While suspending the reinforcing bar cage from the slab by suspending the reinforcing bar cage from the slab for use with the slab, an excavation stabilizing liquid plant is installed on the top slab, and the ground under the top slab is excavated to a predetermined depth by an underwater unmanned excavator, and then the A reinforced concrete basket is sunk and underwater concrete is cast to construct a pressure resistant slab, and then an intermediate underground slab is constructed sequentially from the upper floor while draining the water between the pressure resistant slab and the mountain retaining wall. .

【0006】[0006]

【作用】本発明によれば前記したように、地下躯体外周
には山留壁を、内部には場所打杭を自動掘削方式で施工
し、逆打ち工法を適用してトツプスラブを施工したの
ち、同スラブ下の地盤を同スラブ上の掘削安定液プラン
トを使用して水中無人掘削機により所定深度まで水中掘
削し、前記スラブより鉄筋篭を沈設し、水中コンクリー
トを打設して耐圧スラブを施工し、同耐圧スラブと山留
壁とによって外部の地下水を遮断し、地下水の汲上げに
よる周辺地盤の沈下を防止し、内部の水を排水しながら
逆打ち工法によって地下中間スラブを順次上階より施工
して、地下躯体を施工するものである。
According to the present invention, as described above, the mountain retaining wall is installed on the outer periphery of the underground structure, the cast-in-place pile is installed inside by the automatic excavation method, and the top slab is applied by applying the reverse driving method, The ground under the slab is underwater excavated to a predetermined depth by an underwater unmanned excavator using the excavation stabilizer plant on the slab, the steel cage is sunk from the slab, and the underwater concrete is cast to construct the pressure slab. However, the pressure resistant slab and the mountain retaining wall are used to block the external groundwater, prevent the subsidence of the surrounding ground due to the pumping of the groundwater, and drain the internal water while using the upside down construction method to sequentially build the underground intermediate slab from the upper floor. It is a construction to construct an underground structure.

【0007】[0007]

【実施例】以下本発明を図示の実施例について説明す
る。地下躯体の外周杭及び地下外壁を兼用するRC地中
連続壁、またはソイルセメント柱外壁よりなる山留壁1
及び内部杭としての場所打ち杭2を施工し、山留壁1に
は外周鉄骨柱3を、場所打ち杭2には半PC構真柱4を
同時に建込む。(図1参照) ここで地中連続壁の場合は自動掘削機により、場所打杭
はリバースサーキユレーシヨン方式による自動掘削方式
によって施工する。
The present invention will be described below with reference to the illustrated embodiments. RC underground continuous wall that doubles as the outer stake and underground outer wall of the underground structure, or the mountain retaining wall 1 that consists of the soil cement column outer wall
And the cast-in-place pile 2 as an internal pile is constructed, the outer steel column 3 is built in the mountain retaining wall 1, and the semi-PC structure true pillar 4 is built in the cast-in-place pile 2 simultaneously. (Refer to Fig. 1) Here, in the case of an underground continuous wall, an automatic excavator is used.

【0008】次いで公知の方法で1次掘削を行ったの
ち、掘削地盤上に耐圧スラブの鉄筋篭5を組立て、次い
で逆打ち用トツプスラブ6を施工し、同トツプスラブ6
の施工後、同スラブ6より前記鉄筋篭5を吊りワイヤ7
等で吊り下げる。(図2参照) 次いで前記トツプスラブ6上に、土砂分離装置等の掘削
安定液プラント8を設置し、トツプスラブ6の下部地盤
を、リバースサーキユレイシヨン方式の大型の水中無人
掘削機9によって床付け面まで掘削する。(図3参照) かくして床付完了後、前記鉄筋篭5を沈設して水中コン
クリートを打設する。この時点で外周の山留壁1と底盤
の耐圧スラブ10とによって、外部の地下水は遮断され
る。(図4参照)なお掘削が完了するとトツプスラブ6
上の掘削安定液プラント8が撤去され、地上部の施工を
地下部の施工と並行して始めることができる。
Next, after performing a primary excavation by a known method, a pressure-proof slab rebar cage 5 is assembled on the excavated ground, and then a top-up slab 6 for reverse driving is installed, and the top-slab 6
After the construction of, the rebar cage 5 is hung from the slab 6 by the wire 7
Etc. (See FIG. 2) Next, an excavation stabilization liquid plant 8 such as a sediment separating device is installed on the top slab 6, and the lower ground of the top slab 6 is floored by a large reverse unmanned excavator 9 of the reverse circulation system. Drill to the surface. (See FIG. 3) Thus, after the flooring is completed, the rebar cage 5 is sunk and the underwater concrete is poured. At this point, the ground retaining wall 1 on the outer periphery and the pressure resistant slab 10 on the bottom block shut off the external groundwater. (See Fig. 4) When the excavation is completed, the top slab 6
The excavation stabilization liquid plant 8 above is removed, and the construction of the above-ground portion can be started in parallel with the construction of the underground portion.

【0009】次いで内部の水を排水管11より排水しな
がら、地下中間スラブ12を順次上階より施工する。そ
の際、型枠は吊型枠とし、作業にはスラブ開口部より投
入した水上パレツト13を利用する。(図5参照)図中
14は上部架構を示す。なお高性能水中コンクリートを
使用することによって、ノンブリージング性のためレイ
タンスが生じることがなく、場所打ちコンクリート杭に
使用すると杭頭の斫り作業が不要となり、また掘削をリ
バースサーキユレーシヨン方式で行うことにより、掘削
後のスライムも殆んど残存しない。更に高い流動性によ
るセルフレベリング性、水中で分離しない性質を利用
し、耐圧スラブのコンクリートを水中で打設できる。
Next, while draining the internal water from the drainage pipe 11, the underground intermediate slab 12 is sequentially constructed from the upper floor. At that time, the formwork is a hanging formwork, and the water pallet 13 charged from the slab opening is used for the work. (See FIG. 5) In the figure, 14 indicates an upper frame. By using high-performance underwater concrete, no non-breathing will cause latance, and when used for cast-in-place concrete piles, there is no need for picking work on the pile heads. By doing so, slime after excavation hardly remains. Furthermore, by utilizing the self-leveling property due to high fluidity and the property of not separating in water, it is possible to pour pressure-resistant slab concrete in water.

【0010】[0010]

【発明の効果】本発明によれば前記したように山留壁に
作用する側圧に対して剛性の高いトツプスラブと内部の
静水圧で抵抗させるため、中間スラブ、あるいは鋼製切
梁等の拘束なしで可成りの深度の床付けまで掘削が可能
である。また山留壁と耐圧スラブとによって山留壁外部
の地下水が遮断されているので、施工中の地下水の流れ
が殆んどなく、地下水位の低下による周辺の地盤の沈
下、井戸の枯渇を生起することがない。
According to the present invention, as described above, since the top slab having high rigidity and the internal hydrostatic pressure resist the lateral pressure acting on the mountain retaining wall, there is no restraint such as an intermediate slab or a steel beam. It is possible to excavate to the floor with a considerable depth. In addition, since the groundwater outside the mountain retention wall is blocked by the retaining wall and the pressure-resistant slab, there is almost no groundwater flow during construction, causing the subsidence of the surrounding ground and the depletion of wells due to the lowering of the groundwater level. There is nothing to do.

【0011】またリバースサーキユレーシヨン方式によ
る掘削方式を採用することによって、掘削土砂の地上へ
の搬送が容易で連続的に掘削するため、掘削機の自動
化、無人化が容易になる。
Further, by adopting the excavation method based on the reverse circulation system, the excavated soil can be easily transported to the ground and continuously excavated, so that the excavator can be automated and unmanned.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る地下躯体構築工法おける山留壁、
杭及び構真柱の施工工程を示す縦断面図である。
FIG. 1 is a mountain retaining wall in an underground skeleton construction method according to the present invention,
It is a longitudinal section showing a construction process of a pile and a true pillar.

【図2】1次掘削、耐圧スラブ配筋、トツプスラブ施工
工程を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a primary excavation, pressure slab reinforcement, and top slab construction process.

【図3】トツプスラブ下部地盤の水中掘削工程を示す縦
断面図である。
FIG. 3 is a vertical cross-sectional view showing an underwater excavation process of the bottom soil of the top slab.

【図4】耐圧スラブコンクリート打設工程を示す縦断面
図である。
FIG. 4 is a vertical sectional view showing a pressure slab concrete placing step.

【図5】排水及び中間スラブ施工工程を示す縦断面図で
ある。
FIG. 5 is a vertical sectional view showing a drainage and intermediate slab construction process.

【符号の説明】[Explanation of symbols]

1 山留壁 2 場所打ち杭 4 構真柱 5 耐圧スラブの鉄筋篭 6 トツプスラブ 7 吊りワイヤ 9 水中無人掘削機 10 耐圧スラブ 11 排水管 1 Yamadome Wall 2 Cast-in-place Pile 4 Structural true pillar 5 Reinforcement basket of pressure slab 6 Topslab 7 Suspended wire 9 Underwater unmanned excavator 10 Pressure slab 11 Drain pipe

Claims (1)

【特許請求の範囲】 【請求項1】 地下躯体外周には山留壁を、内部には場
所打ち杭を自動掘削方式で施工するとともに、山留壁に
は外周鉄骨柱を、内部杭には半PC構真柱を建込み、1
次掘削を行ったのち掘削地盤上に耐圧スラブ用の鉄筋篭
を組み立て、次いで逆打ち用トツプスラブを施工して同
スラブより前記鉄筋篭を懸吊部材で吊り下げるととも
に、トツプスラブ上に掘削安定液プラントを設置し、ト
ツプスラブ下の地盤を水中無人掘削機によって所定深度
まで掘削したのち、前記鉄筋コンクリート篭を沈設して
水中コンクリートを打設して耐圧スラブを施工し、次い
で同耐圧スラブと山留壁との間の水を排水しながら地下
中間スラブを上階より順次施工することを特徴とする地
下躯体構築工法。
[Claims] [Claim 1] In addition to constructing a mountain retaining wall on the outer periphery of the underground structure and a cast-in-place pile inside by an automatic excavation method, the outer retaining steel columns on the mountain retaining wall and on the inner piles Built a half-PC structure true pillar, 1
After performing the next excavation, assemble a reinforcing bar cage for pressure-resistant slab on the excavated ground, and then construct a reverse topslab to suspend the reinforcing bar cage from the same slab with a suspension member, and a stable drilling liquid plant on the topslab. After excavating the ground under the top slab to a predetermined depth with an underwater unmanned excavator, the reinforced concrete basket is sunk and the underwater concrete is struck to construct a pressure slab, and then the pressure slab and a mountain retaining wall An underground skeleton construction method characterized by sequentially constructing underground intermediate slabs from the upper floor while draining the water between.
JP3160361A 1991-07-01 1991-07-01 Underground building construction method Expired - Lifetime JP2588075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3160361A JP2588075B2 (en) 1991-07-01 1991-07-01 Underground building construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3160361A JP2588075B2 (en) 1991-07-01 1991-07-01 Underground building construction method

Publications (2)

Publication Number Publication Date
JPH059945A true JPH059945A (en) 1993-01-19
JP2588075B2 JP2588075B2 (en) 1997-03-05

Family

ID=15713315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3160361A Expired - Lifetime JP2588075B2 (en) 1991-07-01 1991-07-01 Underground building construction method

Country Status (1)

Country Link
JP (1) JP2588075B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748848A (en) * 1993-08-10 1995-02-21 Kajima Corp Construction method for underground skeleton by inverted construction method
US5794689A (en) * 1995-03-10 1998-08-18 Behr Gmbh & Co. Radiator for a motor vehicle
JP2009114662A (en) * 2007-11-02 2009-05-28 Kajima Corp Concrete solid permanent sub-substructural column

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505707B (en) * 2011-10-13 2014-04-16 张云祥 Construction method for underbridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748848A (en) * 1993-08-10 1995-02-21 Kajima Corp Construction method for underground skeleton by inverted construction method
US5794689A (en) * 1995-03-10 1998-08-18 Behr Gmbh & Co. Radiator for a motor vehicle
JP2009114662A (en) * 2007-11-02 2009-05-28 Kajima Corp Concrete solid permanent sub-substructural column

Also Published As

Publication number Publication date
JP2588075B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
CN106638640A (en) Modular coffer construction method for concrete without subsealing in the geologic condition of stratum
CN105649094B (en) A kind of deep water foundation bearing platform construction three wall steel cofferdams and its construction method
CN216194901U (en) Unloading plate type retaining wall structure for large-span underground garage
CN110700270B (en) Construction method for non-drainage earthwork excavation of ultra-deep foundation pit
JP2588075B2 (en) Underground building construction method
CN109989346A (en) Bridge major diameter precast concrete tubular column basis and its construction method
CN209584855U (en) Bridge major diameter precast concrete tubular column basis
JP7275844B2 (en) WALL-LIKE STRUCTURE AND METHOD OF CONSTRUCTING WALL-LIKE STRUCTURE
JPS6119771B2 (en)
JPH02311620A (en) Underground structure construction method
JP4132320B2 (en) Foundation construction method
JPH09291530A (en) Method for erecting column
CN107916665A (en) A kind of plastic bushing pile driving construction engineering method
JP3614587B2 (en) How to install a shaft in the groundwater under pressure
KR960009269B1 (en) Form-less style working method for underground constructions
JP6851180B2 (en) How to rebuild the building
JP2711748B2 (en) Construction method of large-scale underground space
JPH0510448B2 (en)
JPH073781A (en) Method for constructing foundation footing on cast-in-place concrete pile head
CN114635715A (en) Method for reinforcing hard rock mining cavity by support method and hard rock mining cavity support structure
JP2023077832A (en) Construction method of underground structure
TWI551773B (en) Hoist and backfill construction method of shaft
JPH0468123A (en) Method for constructing foundation of caisson
RU60542U1 (en) TEAM MONOLITHIC PILES
JP2821933B2 (en) Underground structure construction method