JPH0598377A - Aluminum alloy for magnetron heat radiation bar and its production - Google Patents

Aluminum alloy for magnetron heat radiation bar and its production

Info

Publication number
JPH0598377A
JPH0598377A JP28369691A JP28369691A JPH0598377A JP H0598377 A JPH0598377 A JP H0598377A JP 28369691 A JP28369691 A JP 28369691A JP 28369691 A JP28369691 A JP 28369691A JP H0598377 A JPH0598377 A JP H0598377A
Authority
JP
Japan
Prior art keywords
aluminum alloy
magnetron
heat resistance
alloy
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28369691A
Other languages
Japanese (ja)
Inventor
Takenobu Dokou
武宜 土公
Keisuke Yagi
啓介 八木
Shigenori Asami
重則 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP28369691A priority Critical patent/JPH0598377A/en
Publication of JPH0598377A publication Critical patent/JPH0598377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the strength, heat resistance, and formability of an aluminum alloy bar for magnetron heat radiation bar used for electronic oven, etc., without causing deterioration in thermal conductivity. CONSTITUTION:An aluminum alloy for magnetron heat radiation bar having a composition consisting of, by weight, 0.03-0.6% Si, 0.03-0.8% Fe, 0.003-0.3% Cu, 0.02-0.25% Zr, and the balance Al and an alloy having a composition consisting of, by weight, 0.03-0.6% Si, 0.03-0.8% Fe, 0.003-0.3% Cu, 0.02-0.25% Zr, and the balance Al are subjected to homogenizing treatment at 400-580 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱性に優れたマグネト
ロン放熱条用アルミニウム合金およびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant aluminum alloy for magnetron heat dissipation strips and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】電子レンジ等に使用されてい
るマグネトロン放熱条の特性としては、良好な熱伝導性
は勿論、加熱時の放熱条同志の接着防止のため耐熱性が
必要とされる。その他にも耐高温酸化性や、マグネトロ
ンへ取付けの際の圧入による割れ防止のため成形性も必
要とされる。そこで従来マグネトロン放熱条には厚さ
0.6mm程度の1050等の純Alが用いられている。
しかし最近電子レンジの高性能化に伴いマグネトロンの
使用温度は従来240℃程度であったものが約300℃
にもなって来ており、さらに耐熱性の向上が要求されて
いる。耐熱性向上の手段としては、1000系Alの場
合ストリップキャスティング法等を用いて主に不純物で
あるFeの固溶量を増し耐熱性を上げるか、または耐熱
性向上に効果のある合金元素を添加する方法が考えられ
る。またコスト低減の面からマグネトロン放熱条の薄肉
化が要求されているが、そのためには強度向上も必要と
なる。しかし上記のストリップキャスティング法を用い
る場合、その設備に莫大な費用を要する他、Feの固溶
量を増すと熱伝導度が低下する。また合金元素添加によ
り耐熱性と強度の向上を図る場合、熱伝導度が低下する
などの問題があった。
2. Description of the Related Art As a characteristic of a magnetron heat radiation strip used in a microwave oven or the like, not only good thermal conductivity but also heat resistance is required to prevent the radiation strips from adhering to each other during heating. .. In addition, high temperature oxidation resistance and formability are also required to prevent cracking due to press fitting when attached to the magnetron. Therefore, in the conventional magnetron heat radiation strip, pure Al having a thickness of about 0.6 mm such as 1050 is used.
However, due to the high performance of microwave ovens, the operating temperature of the magnetron has been about 240 ° C in the past, but about 300 ° C.
It is also becoming more and more necessary to improve heat resistance. As a means for improving heat resistance, in the case of 1000-based Al, a strip casting method or the like is mainly used to increase the solid solution amount of Fe, which is an impurity, to increase heat resistance, or an alloying element effective for improving heat resistance is added. There are possible ways to do it. Further, from the viewpoint of cost reduction, it is required to reduce the thickness of the magnetron heat dissipation strip, but for that purpose, it is also necessary to improve the strength. However, when the above strip casting method is used, the equipment requires enormous cost and the thermal conductivity decreases as the solid solution amount of Fe increases. In addition, when heat resistance and strength are improved by adding alloy elements, there is a problem that thermal conductivity decreases.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の問題に
ついて検討の結果、合金元素添加により熱伝導度の低下
が小さく、耐熱性および強度の優れたマグネトロン放熱
条用アルミニウム合金およびその製造方法を開発したも
のである。
DISCLOSURE OF THE INVENTION As a result of studying the above problems, the present invention provides an aluminum alloy for a magnetron heat dissipation strip which has a small decrease in thermal conductivity due to the addition of alloying elements and is excellent in heat resistance and strength, and a method for producing the same. It was developed.

【0004】[0004]

【課題を解決するための手段】本発明は、Si0.03
〜0.6wt%、Fe0.03〜0.8wt%、Cu0.0
03〜0.3wt%およびZr0.02〜0.25wt%を
含み残部Alからなるマグネトロン放熱条用アルミニウ
ム合金であり、またSi0.03〜0.6wt%、Fe
0.03〜0.8wt%、Cu0.003〜0.3wt%お
よびZr0.02〜0.25wt%を含み残部Alからな
る合金を400〜580℃の温度で均質化処理すること
を特徴とするマグネトロン放熱条用アルミニウム合金の
製造方法である。すなわち本発明はAlにSi、Fe、
CuおよびZrの所定量を添加することにより熱伝導度
を低下させることなく強度および耐熱性を著しく改善せ
しめたものであり、またこの合金を所定の温度範囲で均
質化処理を行うことによりAl3 Zrの化合物を合金に
微細で密に析出せしめて耐熱性を向上させたものであ
る。
The present invention provides Si0.03
~ 0.6wt%, Fe0.03-0.8wt%, Cu0.0
It is an aluminum alloy for a magnetron heat dissipation strip containing 03 to 0.3 wt% and Zr 0.02 to 0.25 wt% and the balance Al, and Si 0.03 to 0.6 wt% and Fe.
An alloy containing 0.03 to 0.8 wt%, Cu 0.003 to 0.3 wt% and Zr 0.02 to 0.25 wt% and the balance Al is homogenized at a temperature of 400 to 580 ° C. It is a method for producing an aluminum alloy for a magnetron heat dissipation strip. That is, in the present invention, Al, Si, Fe,
By adding a predetermined amount of Cu and Zr, the strength and heat resistance are remarkably improved without lowering the thermal conductivity, and Al 3 is obtained by subjecting this alloy to a homogenizing treatment within a predetermined temperature range. The heat resistance is improved by finely and densely depositing a Zr compound in the alloy.

【0005】[0005]

【作用】以下に本発明の各元素の作用および添加量の限
定理由について説明する。先ずSiは合金の強度を向上
し、Feの晶出や析出を容易にしFeと共にAl−Fe
−Si系の化合物を作る。一般にAl中の異種元素は化
合物状態の方が固溶状態より熱伝導度の低下が小さい。
Siが0.03wt%未満ではこれらの効果が十分でな
く、0.6wt%を超えると粗大な化合物となり成形性を
劣化させマグネトロンへの圧入の際のクラックが生じ易
くなる。Feは合金の強度を上げると共に金属組織を微
細にし成形性を向上させる。Fe量が増えるとFeを含
む化合物が増え、この化合物が再核発生位置となるた
め、再結晶核発生数が増え、金属組織が微細になる。マ
グネトロン放熱条用アルミニウム合金の場合、圧入によ
ってマグネトロンへ取付けるため、成形性が低いと放熱
条にクラックが生じ易くなる。その点Feは合金の強度
を上げるだけでなく金属組織を微細にし成形性も向上さ
せるので好都合である。しかし反面Feを含む化合物が
増えるとそれが再結晶核発生位置となるため再結晶し易
く、耐熱性が低下することになるが、この点は後述する
ZrやCuの添加によって十分補うことができる。ここ
でFeが0.03wt%未満では強度向上および成形性向
上効果が十分でなく、0.8wt%を越えるとFeを含む
化合物が粗大となり、成形性、耐熱性が低下する。
The function of each element of the present invention and the reason for limiting the amount added will be described below. First, Si improves the strength of the alloy, facilitates the crystallization and precipitation of Fe, and together with Fe, Al-Fe.
Making a Si-based compound. In general, the dissimilar element in Al has a smaller decrease in thermal conductivity in the compound state than in the solid solution state.
If Si is less than 0.03 wt%, these effects are not sufficient, and if it exceeds 0.6 wt%, it becomes a coarse compound and the formability is deteriorated, and cracks are likely to occur during press fitting into the magnetron. Fe increases the strength of the alloy and makes the metal structure finer to improve the formability. When the amount of Fe increases, the number of compounds containing Fe increases, and this compound becomes the re-nucleation generation position. Therefore, the number of re-crystallized nuclei increases and the metal structure becomes fine. In the case of an aluminum alloy for a magnetron heat dissipation strip, since it is attached to the magnetron by press fitting, if the formability is low, the heat dissipation strip is likely to crack. In that respect, Fe is advantageous because it not only increases the strength of the alloy but also makes the metal structure finer and improves the formability. On the other hand, when the amount of Fe-containing compound increases, it becomes a recrystallization nucleus generation position, so that recrystallization easily occurs and the heat resistance decreases, but this point can be sufficiently compensated by the addition of Zr or Cu described later. .. If Fe is less than 0.03 wt%, the effect of improving strength and moldability is not sufficient, and if it exceeds 0.8 wt%, the Fe-containing compound becomes coarse and moldability and heat resistance are deteriorated.

【0006】Cuは熱伝導度をあまり低下させずに合金
の強度を上げるが、延性が低下するため成形性が劣化す
る。そこで上記したようにFeは成形性を向上させるの
でCuと共に添加することにより互いの欠点を補い合う
ことになる。すなわち耐熱性の低下を抑えるためFeの
添加を減らし、その分Cuにより強度を高めCu添加に
よる成形性の劣化はFeにより改善される。ここでCu
が0.003wt%未満では強度向上効果が十分でなく、
0.3wt%を越えると延性低下が大きくなり成形性が劣
化する。しかしてZrは、Al中に固溶した状態でも耐
熱性を向上させるが、その合金の熱伝導度をかなり低下
させる。しかしAl3 Zrの化合物として微細で密に析
出させると熱伝導度を殆ど低下させることなく、耐熱性
を固溶した状態以上に向上させることができる。この場
合Al3 Zrの粒子が転位の移動を妨害し、再結晶を遅
らせることにより耐熱性を向上させるがAl3 Zr粒子
が微細で密に分布している程この効果は大きい。このZ
rは0.02wt%未満では効果が十分でなく、0.25
wt%を越えるとAl3 Zrが粗大となり転位の移動妨害
効果が低下するだけでなく成形性も劣化する。また、本
発明においては20℃における導電率が50%IACS
以上であることが望ましく、これはアルミニウム合金の
場合、一般に熱伝導度と導電率とは略直線関係にあり導
電率が50%IACS以上あればマグネトロン放熱条用
アルミニウム合金として実用上問題のない熱伝導度が得
られるからである。
Cu raises the strength of the alloy without significantly lowering the thermal conductivity, but the ductility decreases and the formability deteriorates. Therefore, as described above, Fe improves the formability, so that by adding together with Cu, the respective defects will be complemented. That is, the addition of Fe is reduced in order to suppress the decrease in heat resistance, and the strength is increased by Cu, and the deterioration of the formability due to the addition of Cu is improved by Fe. Where Cu
Is less than 0.003 wt%, the strength improving effect is not sufficient,
If it exceeds 0.3 wt%, the ductility is greatly reduced and the formability is deteriorated. Although Zr improves the heat resistance even in a solid solution state in Al, it considerably lowers the thermal conductivity of the alloy. However, if a fine and dense Al 3 Zr compound is deposited, the heat conductivity can be improved to a level higher than that in the solid solution state without substantially lowering the thermal conductivity. In this case, the Al 3 Zr particles hinder the movement of dislocations and delay the recrystallization to improve the heat resistance, but this effect is greater as the Al 3 Zr particles are finer and densely distributed. This Z
If r is less than 0.02 wt%, the effect is not sufficient, and 0.25
When it exceeds wt%, Al 3 Zr becomes coarse and not only the movement impeding effect of dislocations lowers but also the formability deteriorates. Further, in the present invention, the conductivity at 20 ° C. is 50% IACS
In the case of an aluminum alloy, the heat conductivity and the conductivity are generally in a substantially linear relationship, and if the conductivity is 50% IACS or more, it is a heat which is practically no problem as an aluminum alloy for a magnetron heat dissipation strip. This is because conductivity can be obtained.

【0007】次に本発明合金において残部のAl量を9
9.0wt%以上とすることが望ましい。これは不純物量
または不純物以外の添加元素の量は、多い程熱伝導度
(導電率)が低下するが残部のAl量は99.0wt%以
上であれば従来材料に比べて殆ど低下しない材料が得ら
れるからである。したがって添加元素以外のアルミニウ
ムの不純物Ti、Mnなどの他鋳塊の結晶粒微細化剤と
して用いられるTiやBは添加しても差支えない。また
Cr、Mnなど再結晶粒を微細化して成形性を向上させ
るような元素などをいずれも残部Al量が99.0wt%
以上となる範囲内で含有してもよい。次に本発明の製造
方法について説明すると、上記のようにZrはAl3
rの化合物として析出し、転位の移動を妨げるために再
結晶が遅れ、その結果耐熱性が向上するものであるが、
この化合物は微細で密に分布しているほど転位の移動を
妨害する効果が大きく、均質化処理温度が低い程、微細
で密に析出し、高温になるほど粗大で疎となる。また均
質化処理温度が高い程、Zrおよび不純物であるFeや
Siの固溶量が多くなり熱伝導度が低下する。しかし均
質化処理温度が低過ぎるとAl3 ZrやFeを含む化合
物が析出しなかったり、またはこれらが析出するのに長
時間を要することになる。したがって均質化処理温度は
400〜580℃が適当であり、400℃未満ではAl
3 Zrを析出させるのに長時間を要するため生産性やコ
ストの面で不利となり、580℃を越えるとAl3Zr
が粗大で疎となり耐熱性向上効果が低下するだけでなく
成形性や熱伝導度も低下する。
Next, in the alloy of the present invention, the balance of Al content is set to 9
It is desirable to set it to 9.0 wt% or more. This means that the thermal conductivity (conductivity) decreases as the amount of impurities or the amount of additional elements other than impurities increases, but if the remaining amount of Al is 99.0 wt% or more, there is almost no decrease in material compared with conventional materials. This is because it can be obtained. Therefore, it does not matter if Ti or B used as a grain refiner for other ingots such as impurities Ti and Mn of aluminum other than the additive element is added. In addition, the balance of Al content is 99.0 wt% for elements such as Cr and Mn that improve the formability by refining recrystallized grains.
It may be contained within the above range. Next, the production method of the present invention will be described. As described above, Zr is Al 3 Z
Although it precipitates as a compound of r and retards the movement of dislocations, recrystallization is delayed, and as a result, heat resistance is improved.
The finer and denser the distribution of this compound is, the greater the effect of hindering the movement of dislocations is. Further, the higher the homogenization temperature is, the larger the amount of Zr and the solid solution of Fe and Si that are impurities becomes, and the thermal conductivity decreases. However, if the homogenization temperature is too low, compounds containing Al 3 Zr and Fe will not be deposited, or it will take a long time for these to be deposited. Therefore, the homogenization treatment temperature is suitably 400 to 580 ° C., and if it is less than 400 ° C.
It takes a long time to precipitate 3 Zr, which is disadvantageous in terms of productivity and cost, and when it exceeds 580 ° C, Al 3 Zr
Is coarse and sparse, and not only the heat resistance improving effect is lowered, but also the formability and the thermal conductivity are lowered.

【0008】[0008]

【実施例】以下に本発明の一実施例について説明する。 実施例1 従来例(99.0wt%Al)をベースとして(但しNo.
8は99.85wt%Alをベースとする)これに表1に
示すようにZr量を変えた合金のDC鋳塊に520℃で
3時間の均質化処理を施した後400〜500℃で熱間
圧延し40〜50%の圧延率で冷間圧延により厚さ0.
6mmの素板とした。これらの素板について導電率、熱伝
導性、再結晶終了温度、穴拡がり率を調べた結果を表2
に示した。なお熱伝導性は厚さ0.6mm、巾30mm、長
さ200mmの試験片の一端を加熱し、他端の温度変化に
より評価した。再結晶終了温度は各温度で2時間保持し
た場合の熱軟化曲線を引張試験により求め軟化が終了し
たときの温度である。また穴拡がり率はブランク径76
mm、穴径12mm、ポンチ径33mm、しわ押え力1000
kgで穴拡げ試験を行った。
EXAMPLE An example of the present invention will be described below. Example 1 Based on a conventional example (99.0 wt% Al) (however, No.
No. 8 is based on 99.85 wt% Al). As shown in Table 1, DC ingots of alloys with different Zr contents were homogenized at 520 ° C for 3 hours and then heated at 400-500 ° C. Cold rolling at a rolling rate of 40 to 50% to a thickness of 0.
It was a 6 mm blank plate. Table 2 shows the results of examining the electric conductivity, thermal conductivity, recrystallization end temperature, and hole expansion rate of these base plates.
It was shown to. The thermal conductivity was evaluated by heating one end of a test piece having a thickness of 0.6 mm, a width of 30 mm and a length of 200 mm and changing the temperature at the other end. The recrystallization end temperature is a temperature at which softening is completed by obtaining a thermal softening curve by a tensile test when holding each temperature for 2 hours. In addition, the hole expansion ratio is a blank diameter of 76.
mm, hole diameter 12 mm, punch diameter 33 mm, wrinkle holding force 1000
A hole expansion test was conducted in kg.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】表1および表2から明らかなように本発明
によるものは従来例に比べ熱伝導度の低下を最小限に抑
え成形性を劣化させることなく強度と耐熱性の高いもの
が得られる。また残部Al量の多いものは熱伝導性(導
電率)が非常に良好なものが得られる。一方比較例2の
Si、Feの含有量の少ないものは、強度および成形性
が低下し、また比較例9のSi量の多いもの、比較例1
0のCuの多いもの、比較例11のZrの多いものは、
いずれも熱伝導度(導電率)が低く、成形性も悪くなる
ことが判る。 実施例2 実施例1におけるNo.5と同じ組成(Si0.17wt
%、Fe0.50wt%、Cu0.12wt%、Zr0.1
2wt%、Al99.8wt%)の合金のDC鋳塊に表3に
示す条件の均質化処理を施した後、実施例1と同一条件
で熱間圧延、冷間圧延を行い厚さ0.6mmの素板とし
た。これらの素板について実施例1と同様にして導電
率、熱伝導性、再結晶終了温度、穴拡がり率を調整し
た。この結果を表4に示した。
As is clear from Tables 1 and 2, the one according to the present invention has a high strength and a high heat resistance without deteriorating the moldability by minimizing the decrease in the thermal conductivity as compared with the conventional example. Further, when the residual Al content is large, the thermal conductivity (electrical conductivity) is very good. On the other hand, Comparative Example 2 with a low Si and Fe content has low strength and moldability, and Comparative Example 9 with a high Si content, Comparative Example 1
0 containing a large amount of Cu and Comparative Example 11 containing a large amount of Zr
It can be seen that both have low thermal conductivity (conductivity) and poor moldability. Example 2 No. in Example 1 Same composition as 5 (Si 0.17 wt
%, Fe 0.50 wt%, Cu 0.12 wt%, Zr 0.1
A DC ingot of an alloy of 2 wt% and Al 99.8 wt%) was homogenized under the conditions shown in Table 3 and then hot-rolled and cold-rolled under the same conditions as in Example 1 to obtain a thickness of 0.6 mm. It was used as a blank plate. The electric conductivity, thermal conductivity, recrystallization end temperature, and hole expansion ratio of these base plates were adjusted in the same manner as in Example 1. The results are shown in Table 4.

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】表3および表4から明らかなように本発明
の均質化処理条件によるものは、いずれも熱伝導度(導
電率)の低下を最小限に抑え耐熱性を向上させることが
できる。一方比較例No.12は処理温度が低いため、ま
た比較例No.16は処理温度が高いため耐熱性の向上は
見られないことが判る。
As is clear from Tables 3 and 4, under the homogenization treatment conditions of the present invention, the heat conductivity (conductivity) can be minimized and the heat resistance can be improved. On the other hand, Comparative Example No. No. 12 has a low treatment temperature, and therefore Comparative Example No. It can be seen that No. 16 does not show any improvement in heat resistance because the treatment temperature is high.

【0015】[0015]

【効果】以上に説明したように本発明によれば、熱伝導
度の低下を少なくして強度および耐熱性を向上させたマ
グネトロン放熱条用アルミニウム合金が得られるもので
工業上顕著な効果を奏するものである。
[Effect] As described above, according to the present invention, an aluminum alloy for a magnetron heat dissipation strip having a reduced thermal conductivity and an improved strength and heat resistance can be obtained, which has a remarkable industrial effect. It is a thing.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si0.03〜0.6wt%、Fe0.0
3〜0.8wt%、Cu0.003〜0.3wt%およびZ
r0.02〜0.25wt%を含み残部Alからなるマグ
ネトロン放熱条用アルミニウム合金。
1. Si0.03-0.6 wt%, Fe0.0
3 to 0.8 wt%, Cu 0.003 to 0.3 wt% and Z
An aluminum alloy for a magnetron heat dissipation strip containing 0.02-0.25 wt% r and the balance Al.
【請求項2】 20℃における導電率が50%IACS
以上であることを特徴とする請求項1記載のマグネトロ
ン放熱条用アルミニウム合金。
2. The conductivity at 20 ° C. is 50% IACS.
It is above, The aluminum alloy for magnetron heat dissipation strips of Claim 1 characterized by the above-mentioned.
【請求項3】 残部Alの量が99.0%以上となる範
囲において通常のアルミニウムの不純物Ti、Mnまた
はB、Crの1種または2種以上を含有することを特徴
とする請求項1または2記載のマグネトロン放熱条用ア
ルミニウム合金。
3. The method according to claim 1 or 2, which contains one or more of usual aluminum impurities Ti, Mn or B and Cr in the range where the balance Al is 99.0% or more. Aluminum alloy for magnetron heat dissipation strip as described in 2.
【請求項4】 Si0.03〜0.6wt%、Fe0.0
3〜0.8wt%、Cu0.003〜0.3wt%およびZ
r0.02〜0.25wt%を含み残部Alからなる合金
を400〜580℃の温度範囲で均質化処理を行うこと
を特徴とするマグネトロン放熱条用アルミニウム合金の
製造方法。
4. Si0.03-0.6 wt%, Fe0.0
3 to 0.8 wt%, Cu 0.003 to 0.3 wt% and Z
A method for producing an aluminum alloy for magnetron heat dissipation strip, which comprises homogenizing an alloy containing 0.02 to 0.25 wt% of r and a balance of Al in a temperature range of 400 to 580 ° C.
JP28369691A 1991-10-03 1991-10-03 Aluminum alloy for magnetron heat radiation bar and its production Pending JPH0598377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28369691A JPH0598377A (en) 1991-10-03 1991-10-03 Aluminum alloy for magnetron heat radiation bar and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28369691A JPH0598377A (en) 1991-10-03 1991-10-03 Aluminum alloy for magnetron heat radiation bar and its production

Publications (1)

Publication Number Publication Date
JPH0598377A true JPH0598377A (en) 1993-04-20

Family

ID=17668898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28369691A Pending JPH0598377A (en) 1991-10-03 1991-10-03 Aluminum alloy for magnetron heat radiation bar and its production

Country Status (1)

Country Link
JP (1) JPH0598377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003936A1 (en) * 2002-06-28 2004-01-08 Sumitomo Precision Products Co., Ltd. Conductor for movable electric circuit and vibration type gyro

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003936A1 (en) * 2002-06-28 2004-01-08 Sumitomo Precision Products Co., Ltd. Conductor for movable electric circuit and vibration type gyro
US7188524B2 (en) 2002-06-28 2007-03-13 Sumitomo Precision Products, Co., Ltd Conductive element for a movable electric circuit and a vibration gyroscope

Similar Documents

Publication Publication Date Title
EP3647440B1 (en) Aluminum alloy and preparation method therefor
CN109468500A (en) A kind of punching press 6082S aluminium alloy sheet and its processing technology
JP6247225B2 (en) Aluminum fin alloy and manufacturing method thereof
JP6695725B2 (en) Al-Mg-Si alloy plate
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
WO2014057738A1 (en) Plate-like conductor for bus bar, and bus bar comprising same
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
CN112522552B (en) Corrosion-resistant aluminum alloy and preparation method and application thereof
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP6718276B2 (en) Method for manufacturing Al-Mg-Si alloy plate
KR100508697B1 (en) Aluminum Alloy of 6XXX Series and Molded Parts Using It
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JPH0598377A (en) Aluminum alloy for magnetron heat radiation bar and its production
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH0447019B2 (en)
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0547616B2 (en)
JPH05279820A (en) Production of aluminum alloy sheet excellent in formability
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP4226208B2 (en) Al-Mn-Mg alloy annealed sheet reinforced by fine crystals and method for producing the same
JPH0598378A (en) Aluminum alloy for magnetron heat radiation bar and its production
JPH09176805A (en) Production of aluminum fin material
JPH02221356A (en) Production of aluminum alloy stock for heat radiation bar