JPH0596447A - Method for simplifying machining software for solid curved surface - Google Patents

Method for simplifying machining software for solid curved surface

Info

Publication number
JPH0596447A
JPH0596447A JP28380291A JP28380291A JPH0596447A JP H0596447 A JPH0596447 A JP H0596447A JP 28380291 A JP28380291 A JP 28380291A JP 28380291 A JP28380291 A JP 28380291A JP H0596447 A JPH0596447 A JP H0596447A
Authority
JP
Japan
Prior art keywords
axis
spindle
curved surface
tool
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28380291A
Other languages
Japanese (ja)
Inventor
Eisuke Yokoyama
英輔 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28380291A priority Critical patent/JPH0596447A/en
Publication of JPH0596447A publication Critical patent/JPH0596447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Milling Processes (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To synthetically and substantially simply work software. CONSTITUTION:A method for simplifying machining software for solid curved surface comprises a two-axis turn spindle holding mechanism of tilting a spindle relating to front/rear right/left solid angles with a tool point end serving as the center and a three-axis orthogonal moving structure of moving the spindle in directions X, Y, Z. A tool of providing a recessed part in a rotational center part and a cutting edge in also an inner directed part of the recessed part in addition to an edge, provided in a plane rotational part and its outside of a lower part end face, is mounted to the spindle. A turn angle alpha about an X-axis and a turn angle beta about a Y-axis, of the spindle, at the time of machining points Xm, Yn, Zmn on a three-dimensional solid object are set by a formula Tanalpha=(Zm, n+1 - Zm, n-1)/(Yn+1 - Yn-1) and Tanbeta=(Zm+1, n - Zm-1, n)/(Xm+1 - Xm-1).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は5軸加工機により立体曲
面を加工する際に必要な制御ソフトを単純化することが
できる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method capable of simplifying control software necessary for processing a three-dimensional curved surface by a 5-axis machine.

【0002】[0002]

【従来の技術】自動車のボデイライン等の滑らかな曲面
を持った立体に関して、クレーモデルや板金の絞り型等
を製作する場合など従来のボールエンドミルによるピッ
クフィードにより機械加工が行われていた。
2. Description of the Related Art A solid body having a smooth curved surface such as a body line of an automobile has been machined by a pick feed by a conventional ball end mill, such as when a clay model or a sheet metal drawing die is manufactured.

【0003】[0003]

【発明が解決しようとする課題】上記従来例において
は、機械加工4割、手仕上げ6割との常識がある如く、
機械加工のみで滑らかな面を直接得ることは困難であっ
た。これを解決する為に近年5軸加工機が開発されてい
るが、これらの機械はその機構上角度2軸の動きは位置
3軸に直接影響し極めて大きな、かつ不必要な変移を伴
い、この補正の為に複雑にして膨大な修正計算と修正運
動の必要がある。特に近年は加工面の質を向上させる為
にピックフィードを小とし、工具回転主軸の回転速度を
極度に上げて高速送りを行う傾向があり、この送りスピ
ードに同期して上記修正計算と補正移動を行うには極め
て高速計算を行う必要を生じ、極めて高級高価な大型N
C駆動装置を必要とするに到っている。しかもそのソフ
ト製作に多大な技術労力を要するのみならず、コンピュ
ーター能力の大部分は修正計算に使用され、本来の加工
物形状に相当する利用の割合は大幅に低下せざるを得な
いことが実用上問題となっている。
In the above-mentioned conventional example, it is common knowledge that machining is 40% and hand finishing is 60%.
It was difficult to directly obtain a smooth surface only by machining. In order to solve this problem, 5-axis machine tools have been developed in recent years. Due to the mechanism of these machines, the movement of the angle 2 axis directly affects the position 3 axis, resulting in an extremely large and unnecessary transition. It is necessary to make complicated and enormous correction calculations and correction motions for correction. Especially in recent years, there is a tendency to reduce the pick feed in order to improve the quality of the machined surface and raise the rotation speed of the tool rotation spindle extremely to perform high-speed feed.In synchronization with this feed speed, the above correction calculation and correction movement In order to perform the calculation, it is necessary to perform extremely high-speed calculation, and it is extremely expensive and large N
The need for a C drive has been reached. Moreover, not only a great deal of technical effort is required to create the software, but also most of the computer power is used for correction calculations, and it is inevitable that the proportion of utilization corresponding to the original shape of the workpiece must be greatly reduced. It is a problem above.

【0004】また、在来方式では、小さなピックフィー
ドではボールエンドミルの下端の中心の、切削速度も切
削力も微弱な部分の仕上り面のみが、加工面に残るの
で、この欠点を補う為に、外周に近い切削力のある部分
を使用出来ることが、5軸加工機の利点であるが、この
接点の主軸に対する角度の設定も極めて複雑な設定方式
を伴うものが多く、近年出始めている角度設定がリニア
なものでは、変移角度範囲が少い上に上記修正により加
工範囲が極度に小となるもののみである。
Further, in the conventional method, only the finished surface of the center of the lower end of the ball end mill, where the cutting speed and the cutting force are weak, remains on the machined surface with a small pick feed. The advantage of the 5-axis machine is that it can use a part with a cutting force close to the above. However, the angle setting of this contact point with respect to the spindle is often accompanied by an extremely complicated setting method. In the linear type, only the displacement angle range is small and the processing range is extremely small by the above correction.

【0005】本発明の目的は、この点を総合的に大幅な
簡略化を行い、小容量のNC装置においても容易に複雑
な曲面の加工を行はしめることにある。
An object of the present invention is to comprehensively simplify this point and to easily process a complicated curved surface even in a small capacity NC device.

【0006】[0006]

【課題を解決するための手段】本発明の立体曲面加工ソ
フト単純化法は、工具先端を中心として主軸を前後・左
右の立体角に関して傾斜させる2軸旋回主軸保持機構
と、前記主軸をX、Y、Z方向に移動させる3軸直行移
動構造と、を備えた加工機において、回転中心部に凹部
があり、下部端面の平面回転部及びその外側に設けられ
た刃に加え、凹部の内向きの部分にも切刃を設けた工具
を前記主軸に取り付け、3次元立体物上のXm、Yn、
Zmn点加工時の主軸のX軸回りの旋回角αとY軸回り
の旋回角βを、 Tanα=(Zm,n+1 − Zm,n−1)/(Yn+1 − Yn−1) Tanβ=(Zm+1,n − Zm−1,n)/(Xm+1 − Xm−1) で設定することを特徴とする。
SUMMARY OF THE INVENTION A solid curved surface machining softening method according to the present invention comprises a two-axis turning spindle holding mechanism for tilting a spindle about a front and rear / left and right solid angles around a tool tip, and the spindle is X, In a machine equipped with a three-axis orthogonal moving structure for moving in the Y and Z directions, there is a concave portion at the center of rotation, and in addition to the flat rotary portion of the lower end face and the blade provided outside thereof, the concave portion is directed inward. A tool provided with a cutting edge on the part of 3 is attached to the main spindle, and Xm, Yn,
The turning angle α around the X-axis and the turning angle β around the Y-axis of the main axis at the time of Zmn point machining are expressed as Tan α = (Zm, n + 1−Zm, n−1) / (Yn + 1−Yn−1) Tanβ = (Zm + 1, n−Zm−1, n) / (Xm + 1−Xm−1).

【0007】[0007]

【実施例】本発明においては、工具先端を中心に主軸が
前後・左右の立体角の傾斜を夫々のアクチュエーターの
単純比例関係傾斜機構により行いうる2軸旋回主軸保持
機構が、X、Y、Z、3軸直行移動構造と夫々独立して
組合はさった5軸以上の機械を使用している。ワークの
回転と主軸の軸方向送りを伴えば7軸マシンとなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a two-axis turning spindle holding mechanism which can perform tilting of a solid angle of the front and rear and left and right around a tool tip by a simple proportional relationship tilting mechanism of respective actuators is an X, Y, Z axis. The machine uses more than 5 axes which are combined independently of the 3 axes orthogonal movement structure. A 7-axis machine is possible if the work is rotated and the spindle is fed in the axial direction.

【0008】また、加工機においては、回転中心部に凹
部があり、下部端面の平面回転部及びその外側の刃に加
え、この内向きの部分にも切削の為に特に切刃を設けた
エンドミルを使用し、図1に示す如く1の機構により加
工物曲面の加工部に対し常に工具軸が直立するように主
軸保持機構の旋回を前後左右に行はしめている。加工物
の平面部には下端、凹曲面には外部刃、凸部曲面には内
側切刃がクロス目の切削を行う。
Further, in the processing machine, there is a concave portion at the center of rotation, and in addition to the plane rotating portion on the lower end face and the blade on the outer side thereof, an end mill provided with a cutting blade especially for cutting on the inward portion as well. As shown in FIG. 1, the main shaft holding mechanism is swung forward, backward, leftward and rightward so that the tool shaft is always upright with respect to the machining portion on the curved surface of the workpiece by the mechanism 1. The lower end of the flat surface of the workpiece, the outer blade on the concave curved surface, and the inner cutting edge on the convex curved surface perform cross-cutting.

【0009】この工具形状では図2に示す如く、(イ)
の円弧状や、(ロ)の円錐直線部を含む滑らかに連続し
た刃形を有するもの、(ハ)、(ニ)の如く下端又は中
間にシャープなカドを持つもの、(ホ)の多角形にて近
似させたもの、又は(ヘ)の中央部に切刃のない孔を有
するもの等上記条件を満たすものが本発明工具形状の例
示である。
With this tool shape, as shown in FIG.
That have a smoothly continuous blade shape including the circular arc shape of (b) and the conical straight line portion of (b), those that have a sharp edge at the lower end or middle such as (c) and (d), and polygons of (e) The shape of the tool of the present invention is an example of the shape of the tool of the present invention that is approximated by the above, or that has the hole without a cutting edge in the center of (f).

【0010】上記工具軸の加工物表面に直立させる為の
計算ソフトに関する本発明は次の如くである。通常3次
元立体物は碁盤目のX、Y、番地に対するZ座標値とし
て数値表現される。現在XmYn点の加工を行い、その
高さ位置はZmnとすると、図3の如くに表される。
The present invention relating to calculation software for making the tool shaft upright on the surface of the workpiece is as follows. Generally, a three-dimensional solid object is numerically expressed as a Z coordinate value for the X, Y, and address of the grid. If the current XmYn point is processed and its height position is Zmn, it is expressed as shown in FIG.

【0011】主軸のX軸回りの旋回角をα、同じくY軸
回りの旋回角をβとすると、この角度は加工点O、即ち
Xm、Yn、Zmn点の隣接番地のZ値より下記により
決定する。 Tanα=(Zm,n+1 − Zm,n−1)/(Yn+1 − Yn−1) Tanβ=(Zm+1,n − Zm−1,n)/(Xm+1 − Xm−1)
If the turning angle of the main axis about the X axis is α and the turning angle about the Y axis is β, this angle is determined by the following from the Z value of the processing point O, that is, the adjacent address of the Xm, Yn, and Zmn points. To do. Tanα = (Zm, n + 1-Zm, n-1) / (Yn + 1-Yn-1) Tanβ = (Zm + 1, n-Zm-1, n) / (Xm + 1-Xm-1)

【0012】この加工位置O及び隣接4点の数値は通常
の3軸加工機の場合に既に必要としたものであり、本発
明の5軸加工の為に何等追加データーを必要とせずして
角度設定を行うことが出来るもので、本発明の単純化の
中心項目の1つである。
The machining position O and the numerical values of the four adjacent points are already required in the case of a normal three-axis machine, and the angle can be obtained without any additional data for the five-axis machining of the present invention. It can be set and is one of the central items of the simplification of the present invention.

【0013】主軸旋回機構には剛性や主軸部の大きさ、
全体の旋回構造ブロックの大きさ、之等の駆動システム
等の必要から、±90度に到る迄充分に旋回角度を取る
ことが不可能な場合がある。この場合は可能旋回角より
大なる傾斜面に対しては通常のボールエンドミル又は円
筒エンドミル加工方式に切替えることが必要で、その為
に上部がボールエンドミル形状又は円筒エンドミル形
状、下部が前述の中凹形切刃カッターの複合形状カッタ
ーを使用することにより、極めて容易に全立体面を加工
ソフトを複雑化することなく加工し得ることも、本発明
中心項目の1つである。図4、図5及び図6にその代表
例を例示する。
The spindle turning mechanism has rigidity, a size of the spindle,
Due to the size of the entire swing structure block, the drive system, etc., it may not be possible to achieve a sufficient swing angle up to ± 90 degrees. In this case, it is necessary to switch to the normal ball end mill or cylindrical end mill processing method for the inclined surface with a larger swivel angle. It is also one of the main items of the present invention that it is possible to extremely easily process all three-dimensional surfaces without complicating the processing software by using the complex shape cutter of the shape cutting blade cutter. Typical examples thereof are shown in FIGS. 4, 5 and 6.

【0014】加工物の曲面は前記X、Y、Z軸の加工点
の番地及びデータにより正確に示されるが、端面による
クロス切削加工では切刃のどの部分を中心に加工軸が旋
回運動を行うか、またこの先端切刃が曲面に円切削で接
することにより、曲面の凹凸によってZ方向の喰い込
み、又は浮き上がりが起きる。通常は回転切刃の円運動
径が加工曲面の曲率に対し小である為にこの喰い込み又
は浮き上がりの値は僅かであり、従来の加工法の表面粗
さ又は仕上げ代以下であるので問題とはならないが、更
に厳密に指示された曲面に近付ける為には、高次の補正
値を工具軸の軸方向移動、即ち第6軸に与えることによ
り、加工精度を上げることが出来る。又修正ソフトの追
加を避ける場合は、ピックフィードを小として刃先回転
径とワーク曲面曲率との比を小となるシステムとするこ
とでも充分に効果を上げることが出来る。
The curved surface of the workpiece is accurately indicated by the addresses and data of the machining points on the X, Y and Z axes, but in the cross cutting machining by the end face, the machining axis makes a turning motion around which part of the cutting edge. In addition, when the tip cutting edge comes into contact with the curved surface by circular cutting, the unevenness of the curved surface causes biting in the Z direction or lifting. Normally, the value of this biting or lifting is small because the circular motion diameter of the rotary cutting edge is small relative to the curvature of the processing curved surface, and it is less than the surface roughness or finishing allowance of the conventional processing method, so there is a problem. However, in order to bring it closer to the curved surface that is specified more strictly, it is possible to improve the processing accuracy by giving a higher-order correction value to the axial movement of the tool axis, that is, the sixth axis. Further, in the case of avoiding the addition of correction software, the effect can be sufficiently enhanced by making the pick feed small so that the ratio of the blade edge rotation diameter to the work curved surface curvature becomes small.

【0015】次に、修正方式を図5の形状のエンドミル
の場合を例に図7に示す。加工物の凸の曲率半径をR
1、凹の曲率半径をR2とし、夫々のカッターの接触角
をθ1、θ2とすれば、
Next, the correction method is shown in FIG. 7 by taking the case of the end mill having the shape of FIG. 5 as an example. R for the convex curvature radius of the workpiece
1. If the radius of curvature of the concave is R2 and the contact angles of the respective cutters are θ1 and θ2,

【0016】[0016]

【数1】 [Equation 1]

【0017】で与えられる。 r1=a=2mm、 f=2mm、 R1=R2=20
mm を例にとれば、 OQ1=0.021mm OQ2=0.031mm となる。
Is given by r1 = a = 2 mm, f = 2 mm, R1 = R2 = 20
Taking mm 2 as an example, OQ1 = 0.021 mm and OQ2 = 0.031 mm.

【0018】このような誤差を修正ソフトにより算出、
第6軸に修正変移を与えれば、誤差はサブミクロン以下
となり、更に高次の修正は不必要となる。
Such an error is calculated by a correction software,
If a correction shift is given to the sixth axis, the error becomes submicron or less, and higher-order correction becomes unnecessary.

【0019】ピックフィード量が1/2のシステムとす
れば、 OQ1=0.006mm OQ2=0.007mm となり、通常の要求精度は充分に満たすが、更に1/2
とすれば、理論値は次の如くである。 OQ1=0.0015mm OQ2=0.0016mm
If the pick feed amount is 1/2, the system will have OQ1 = 0.006 mm and OQ2 = 0.007 mm, which is sufficient to satisfy the usual required accuracy.
Then, the theoretical value is as follows. OQ1 = 0.0015 mm OQ2 = 0.0016 mm

【0020】通常フライスでの精密加工では、3s〜6
sの粗さであることを考えれば、面粗度に含まれて寸法
差を無視し得る加工条件値を容易に選定し得ることは明
らかであり、図4、図5、図6に例示した如く工具形状
を設定し、修正計算ソフトの負担を少なくすることも単
純化に関しては重要となるので、このような簡素なプロ
ポーションの複合カッター形状も本発明の主要項目であ
る。
In precision machining with a normal milling machine, 3s to 6s
Considering that the roughness is s, it is obvious that a processing condition value included in the surface roughness and capable of ignoring the dimensional difference can be easily selected, and this is illustrated in FIGS. 4, 5, and 6. Since it is also important to simplify the setting of the tool shape so as to reduce the load on the correction calculation software, such a complex cutter shape having a simple proportion is also a main item of the present invention.

【0021】次に、前記円筒エンドミルの発展形につい
て述べる。既に記した如く、主軸旋回角の及ぶ限りはエ
ンドミル下端の円形切削力によるクロス目の加工を行う
が、旋回角限界以上の傾斜部では、上記複合カッター上
部のボールエンドミル部又は円筒エンドミル部の通常5
軸加工方式に切替える。しかるに、ボールエンドミルに
よるピックフィード加工では円弧溝が発生し、面粗さは
下端面加工と同様なピックフィードピッチでは非常に低
下する。ボールエンドミルの外径曲率が利用出来る凹面
ではやや緩和されるが、凸面にては特に悪くなる。之を
緩和する為には上記円筒エンドミル側面カットを利用す
れば、ボールエンドミルの円弧溝は多平面構成となって
面粗さは向上する。あたかも円筒エンドミルの主軸旋回
中心に図8点線のボールエンドミルがあるが如くに工具
軸中心を旋回中心に一致せしめ、外筒面が求める加工面
に接する角、即ち下端面加工の軸角より90度の位置と
すれば良いことになる。この場合主軸軸方向の移動はカ
ッター切刃の使用部分を軸方向に移すことになり切刃を
万遍無く利用することになるが、前述の下端面加工での
軸方向移動を追加することによる切り込み量の補正は行
うことが出来ない。もしも切り込みを変化させる必要が
あれば軸を半径方向に移動すればできるが、位置補正プ
ログラムに更に追加修正プログラムを累加する必要を生
じ、ソフトは益々複雑膨大とならざるを得ない。ここで
本発明の追加項目としてのテーパーカッターの応用を上
げる。
Next, a development of the cylindrical end mill will be described. As mentioned above, as long as the main spindle turning angle is reached, the cross cutting is performed by the circular cutting force at the lower end of the end mill, but in the inclined part above the turning angle limit, the ball end mill part or the cylindrical end mill part above the above composite cutter is usually processed. 5
Switch to the axis machining method. However, arc-shaped grooves are generated in the pick-feed machining with the ball end mill, and the surface roughness is extremely lowered at the same pick-feed pitch as in the machining of the lower end surface. The outer diameter curvature of the ball end mill can be slightly eased on the concave surface, but is especially bad on the convex surface. To alleviate this problem, if the side cut of the cylindrical end mill is used, the arc groove of the ball end mill has a multi-planar structure and the surface roughness is improved. Match the tool axis center with the center of rotation as if there were a ball end mill with a dotted line in Fig. 8 at the center of rotation of the main axis of the cylindrical end mill, and make an angle of 90 ° from the angle at which the outer cylinder surface contacts the machining surface, that is, the machining angle of the lower end surface. It would be good to set the position. In this case, the movement of the main shaft in the axial direction means that the used part of the cutter cutting edge is moved in the axial direction and the cutting edge is used evenly, but by adding the axial movement in the lower end surface machining described above. The depth of cut cannot be corrected. If it is necessary to change the depth of cut, it is possible to move the axis in the radial direction, but it is necessary to add additional correction programs to the position correction program, and the software is inevitably complicated and huge. Here, the application of the taper cutter as an additional item of the present invention will be described.

【0022】円筒カツターに代りテーパー外面のカッタ
ーが前記同様に加工面に当る状況を図9に示す。この場
合主軸の傾きはテーパーの半角だけ補正された値とな
る。この場合主軸軸方向の前進移動(イ)を行えばカッ
ター面はワークに深く入り、逆に(ロ)の後進移動では
浮き上ることとなり、前記下端面加工の軸方向送り同様
な補正能力を持つことが出来る。
FIG. 9 shows a situation in which a cutter having a tapered outer surface hits the machined surface in the same manner as described above, instead of the cylindrical cutter. In this case, the inclination of the main axis is a value corrected by the half angle of the taper. In this case, if the forward movement (a) in the spindle axis direction is carried out, the cutter surface will go deep into the work, and conversely (b) will be lifted up in the backward movement, which has the same correction capability as the axial feed of the lower end surface machining. You can

【0023】次に多平面による凸面加工を更に上質にす
る為には図10に示すような富士山倒立形のカッターを
使用する。あたかも(イ)に図中央点線のボールエンド
ミルが存するが如く加工物に接すれば、円筒又は円錐カ
ッター面による平面よりも加工物の曲率にカッター曲率
が近付き仕上り面は向上する。工具の軸方向送りでは、
前進で(ロ)の如く、後退で(ハ)の如き中心に移動す
ることであり、それに伴い若干の角度修正を補えば前項
同様の補正機能を持たせることが出来る。
Next, in order to further improve the quality of the convex surface processing using multiple planes, an inverted Mt. Fuji type cutter as shown in FIG. 10 is used. If the ball end mill with the dotted line in the center of the figure is in contact with the workpiece as if in (a), the cutter curvature will be closer to the curvature of the workpiece than the plane formed by the cylindrical or conical cutter surface, and the finished surface will be improved. With the axial feed of the tool,
It is to move to the center as shown in (b) when moving forward, and to move to the center as shown in (c) when moving backward. Along with this, a slight angle correction can be supplemented to provide the same correction function as in the preceding paragraph.

【0024】以上に述べた傾斜部位を複合カッターに取
り入れた形状例を図11に示す。図5のボールエンドミ
ル部と円筒部の中間に円錐又は凹曲面部(図の点線部)
を複合させた例である。
FIG. 11 shows an example of a shape in which the above-mentioned inclined portion is incorporated in the composite cutter. A conical or concave curved surface part (dotted line part in the figure) in the middle between the ball end mill part and the cylindrical part in FIG.
It is an example of compounding.

【0025】前に示した概念図の実際の各部のプロポー
ションは、工具制作及び加工ソフト、修正法ソフト等に
多大な影響を与える。ここでは主軸首振り角度が±45
度及び±60度の場合の代表的簡素プロポーションの具
体案を示す。図12は±45度の場合であり、図13は
±45度の首振りによってカッター切刃の各部位によ
り、ワークの如何なる部分が加工し得るのかを例示す
る。(イ)に各部名称を示し、(ロ)には凸形状ワーク
を、(ハ)には凹形状ワークを、(ニ)には上広がり形
ワークの例を示す。前述の説明に従って、直線刃c部に
はスピンドル軸方向の送りによる切り込み量の微調整機
能があるが、外周部直線刃E部にはこの機能がなく、そ
の長さをf以上としておけば、切刃の使用部分を切替え
て長持ちさせる利点がある。
The actual proportions of each part of the conceptual diagram shown above have a great influence on tool making and machining software, correction method software and the like. Here, the spindle swing angle is ± 45
The specific proposals of typical simple proportions for the case of ± 60 degrees are shown below. FIG. 12 shows the case of ± 45 degrees, and FIG. 13 exemplifies what part of the work can be machined by each part of the cutter cutting blade by swinging by ± 45 degrees. The name of each part is shown in (a), the convex work is shown in (b), the concave work is shown in (c), and the upward spread work is shown in (d). According to the above description, the linear blade c section has a function of finely adjusting the cutting amount by the feed in the spindle axial direction, but the outer peripheral linear blade E section does not have this function, and if the length is set to f or more, There is an advantage that the used part of the cutting blade can be switched to make it last longer.

【0026】図14には主軸首振り角度±60度の場合
を例示するが、加工部位は上記に準ずる範囲を持つもの
である。
FIG. 14 exemplifies a case where the spindle swing angle is ± 60 degrees, but the processed portion has a range according to the above.

【0027】[0027]

【考案の効果】本発明は、5軸加工機及び複合カッター
を用いることにより、加工機を制御するデータの量を減
らし、総合的に大幅な簡略化を行い、小容量のNC装置
においても容易に複雑な曲面の滑らかな加工をすること
ができる方法を提供することができる。
The present invention reduces the amount of data for controlling the processing machine by using a 5-axis processing machine and a compound cutter, and greatly simplifies overall, and is easy even for a small capacity NC device. It is possible to provide a method capable of smoothly processing a complicated curved surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】加工物曲面の加工部に対し常に工具軸が直立す
るように主軸保持機構の旋回を前後左右に行はしめた状
態を示す説明図である。
FIG. 1 is an explanatory view showing a state in which a main shaft holding mechanism is swung forward, backward, leftward, and rightward so that a tool axis is always upright with respect to a machining part on a curved surface of a workpiece.

【図2】本発明工具形状の例を示す図である。FIG. 2 is a diagram showing an example of a tool shape of the present invention.

【図3】工具軸の加工物表面に直立させる為の計算ソフ
トに関する説明図である。
FIG. 3 is an explanatory diagram related to calculation software for making the tool shaft stand upright on the surface of the workpiece.

【図4】本発明における複合形状カッターの詳細な形状
を示す図である。
FIG. 4 is a diagram showing a detailed shape of a composite shape cutter according to the present invention.

【図5】本発明における複合形状カッターの詳細な形状
を示す図である。
FIG. 5 is a diagram showing a detailed shape of a composite shape cutter according to the present invention.

【図6】本発明における複合形状カッターの詳細な形状
を示す図である。
FIG. 6 is a diagram showing a detailed shape of a composite shape cutter according to the present invention.

【図7】図5の形状のエンドミルの場合を例とした修正
方式を示す図である。
FIG. 7 is a diagram showing a correction method taking the case of the end mill having the shape of FIG. 5 as an example.

【図8】カッターが加工面に当る状況を示す図である。FIG. 8 is a diagram showing a situation where a cutter hits a processing surface.

【図9】カッターが加工面に当る状況を示す図である。FIG. 9 is a diagram showing a situation where a cutter hits a processing surface.

【図10】カッターが加工面に当る状況を示す図であ
る。
FIG. 10 is a diagram showing a situation where a cutter hits a processing surface.

【図11】傾斜部位を複合カッターに取り入れた形状例
を示す図である。
FIG. 11 is a view showing a shape example in which an inclined portion is incorporated in a compound cutter.

【図12】複合カッターのプロポーションの具体案を示
す図である。
FIG. 12 is a diagram showing a specific proposal for proportions of a composite cutter.

【図13】複合カッターのプロポーションの具体案を示
す図である。
FIG. 13 is a diagram showing a specific proposal for proportions of a composite cutter.

【図14】複合カッターのプロポーションの具体案を示
す図である。
FIG. 14 is a diagram showing a specific proposal for proportions of a composite cutter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 工具先端を中心として主軸を前後・左右
の立体角に関して傾斜させる2軸旋回主軸保持機構と、
前記主軸をX、Y、Z方向に移動させる3軸直行移動構
造と、を備えた加工機において、回転中心部に凹部があ
り、下部端面の平面回転部及びその外側に設けられた刃
に加え、凹部の内向きの部分にも切刃を設けた工具を前
記主軸に取り付け、3次元立体物上のXm、Yn、Zm
n点加工時の主軸のX軸回りの旋回角αとY軸回りの旋
回角βを、 Tanα=(Zm,n+1 − Zm,n−1)/(Yn+1 − Yn−1) Tanβ=(Zm+1,n − Zm−1,n)/(Xm+1 − Xm−1) で設定することを特徴とする立体曲面加工ソフト単純化
法。
1. A two-axis turning spindle holding mechanism for tilting the spindle about a front-back and left-right solid angle around a tool tip,
In a processing machine provided with a three-axis orthogonal movement structure for moving the main axis in X, Y, and Z directions, in addition to a flat rotary portion of a lower end face and a blade provided outside thereof, there is a concave portion at the center of rotation. , A tool provided with a cutting edge also on the inward part of the recess is attached to the spindle, and Xm, Yn, Zm on a three-dimensional solid object
The rotation angle α around the X-axis and the rotation angle β around the Y-axis of the spindle at the time of n-point machining are Tan α = (Zm, n + 1−Zm, n−1) / (Yn + 1−Yn−1) Tanβ = (Zm + 1, n−Zm−1, n) / (Xm + 1−Xm−1).
JP28380291A 1991-10-04 1991-10-04 Method for simplifying machining software for solid curved surface Pending JPH0596447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28380291A JPH0596447A (en) 1991-10-04 1991-10-04 Method for simplifying machining software for solid curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28380291A JPH0596447A (en) 1991-10-04 1991-10-04 Method for simplifying machining software for solid curved surface

Publications (1)

Publication Number Publication Date
JPH0596447A true JPH0596447A (en) 1993-04-20

Family

ID=17670335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28380291A Pending JPH0596447A (en) 1991-10-04 1991-10-04 Method for simplifying machining software for solid curved surface

Country Status (1)

Country Link
JP (1) JPH0596447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151511A (en) * 1996-11-25 1998-06-09 Hitachi Tool Eng Co Ltd Multiblade ball end mill
JP2014008576A (en) * 2012-06-29 2014-01-20 Makino Milling Mach Co Ltd Machining method and machining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151511A (en) * 1996-11-25 1998-06-09 Hitachi Tool Eng Co Ltd Multiblade ball end mill
JP2014008576A (en) * 2012-06-29 2014-01-20 Makino Milling Mach Co Ltd Machining method and machining device

Similar Documents

Publication Publication Date Title
JP4451381B2 (en) NC machining program creation method and NC machining program creation device of NC machining apparatus
JP2007229849A (en) Endmill, and machining method using the same
JP2736359B2 (en) Tool post of cam cutting lathe
JPH089124B2 (en) Free curved surface processing method
KR101200171B1 (en) Post Processing Method for Rough Machining of Drum Cam with Rotational Followers using 5-Axis CNC Machine
JPH0596447A (en) Method for simplifying machining software for solid curved surface
JP2002224902A (en) Spherical processing method of workpiece for lathe
JP4531297B2 (en) 6-axis control NC program generation method and generation apparatus, 6-axis control NC program generation program, and computer-readable recording medium storing the program
JPH0788737A (en) Five-axis working machine
WO2018011990A1 (en) Machining program generation device and machining method
JP2002304203A (en) Nc machine tool and machining method
JPH0224031A (en) Support structure for spindle in work machine
JP3085339B2 (en) Machining method
JP2000280101A (en) Curved surface processing method
JP2845710B2 (en) Machining method
JPH04152011A (en) Smooth profile working system
JP2000084780A (en) Nc machining machinery
JP2008110458A (en) Manufacturing method of end mill having circular arc blade
JP4784767B2 (en) 3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium
JP2020114616A (en) Gear processor and gear processing method
JP3093933B2 (en) Spindle rotation angle controlled cutting method using a bite tool
JP2002307203A (en) Method of machining inclined conical surface
WO2021149639A1 (en) Machining program creation method, workpiece machining method, and machine tool control device
JPS6052903B2 (en) How to grind the cutting edge of a ball end mill
TWM584227U (en) 3D curved surface machining device with multi-axis simultaneous motion