JP4784767B2 - 3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium - Google Patents

3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium Download PDF

Info

Publication number
JP4784767B2
JP4784767B2 JP2007129843A JP2007129843A JP4784767B2 JP 4784767 B2 JP4784767 B2 JP 4784767B2 JP 2007129843 A JP2007129843 A JP 2007129843A JP 2007129843 A JP2007129843 A JP 2007129843A JP 4784767 B2 JP4784767 B2 JP 4784767B2
Authority
JP
Japan
Prior art keywords
coordinate
tool
axis
disk
thin disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007129843A
Other languages
Japanese (ja)
Other versions
JP2008264985A (en
Inventor
裕之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Research Organization
Original Assignee
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Research Organization filed Critical Hokkaido Research Organization
Priority to JP2007129843A priority Critical patent/JP4784767B2/en
Publication of JP2008264985A publication Critical patent/JP2008264985A/en
Application granted granted Critical
Publication of JP4784767B2 publication Critical patent/JP4784767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、木工用旋削装置の切削工具として円盤型回転工具1を用いた場合の立体輪郭加工に必要な工具経路を生成する方法に関する。The present invention relates to a method for generating a tool path necessary for solid contour machining when a disk-type rotary tool 1 is used as a cutting tool of a woodworking turning apparatus.

先ず、従来の技術を列挙する。
円盤型回転工具1を用いたNC旋盤としてバットや家具の脚、タマゴ形などを加工する2軸同時制御NC旋盤がある(例えば非特許文献1〜2)。
3次元形状を加工するNC旋盤としては回転工具との組み合わせによるターニングセンタ(例えば特許文献1)、材料の回転軸であるC軸に対し直角な平面内に回転軸をもつ円筒状回転工具を用いた自由曲面加工装置(特許文献2)を挙げることができる。
他に3次元形状の加工機には直交3軸と回転2軸の工具姿勢制御軸を持つ5軸加工機がある。
エンドミルを用いた直交3軸NC加工機による3次元加工に必要な工具経路を得るための技術が様々に発表されている。(例えば、特許文献3)。
以下、上述したそれぞれの従来技術について本発明に関わる特徴を説明する。
First, conventional techniques are listed.
As an NC lathe using the disk-type rotary tool 1 , there are two-axis simultaneous control NC lathes for machining bats, furniture legs, egg shapes, and the like (for example, Non-Patent Documents 1 and 2).
As an NC lathe for machining a three-dimensional shape, a turning center in combination with a rotary tool (for example, Patent Document 1), a cylindrical rotary tool having a rotation axis in a plane perpendicular to the C axis that is the rotation axis of the material is used. The free curved surface processing apparatus (patent document 2) which had been mentioned can be mentioned.
In addition, there is a five-axis processing machine having three orthogonal tool axes and two rotary tool attitude control axes.
Various techniques for obtaining a tool path necessary for three-dimensional machining by an orthogonal three-axis NC machine using an end mill have been announced. (For example, patent document 3).
Hereinafter, features related to the present invention will be described for each of the above-described conventional techniques.

円盤型回転工具1を用いた2軸同時制御NC旋盤の場合には、材料の回転数の高低に関係なく円盤型回転工具1の切刃における切削速度が極めて高速であることから重切削であっても切削抵抗が軽微で、バイトを用いた旋盤の場合のような少ない切り込みを多数回繰り返すことなしに一度の加工で目標形状に達することができ、生産性が高い。 In the case of a 2-axis simultaneous control NC lathe using the disk-type rotary tool 1, the cutting speed of the cutting blade of the disk-type rotary tool 1 is extremely high regardless of the rotational speed of the material. However, the cutting resistance is slight, and the target shape can be reached by one machining without repeating a small number of cuts as in the case of a lathe using a cutting tool, and the productivity is high.

次に、ターニングセンタでは直交3軸と回転2軸の合計5軸の構成であることから面加工や溝加工、および材料の回転に同期した加工によってコンプレッサーのスクリューなどの3次元形状を加工することができる。  Next, since the turning center has a total of 5 axes, 3 orthogonal axes and 2 rotating axes, 3D shapes such as compressor screws are processed by surface processing, grooving, and processing synchronized with material rotation. Can do.

次に、特許文献2の自由曲面加工機では回転軸に対して直角な断面の形状が常に凸面となる形状の加工が出来る。  Next, the free curved surface processing machine disclosed in Patent Document 2 can process a shape in which the shape of the cross section perpendicular to the rotation axis is always a convex surface.

次に5軸加工機は工具の向きをも制御できるので入り組んだ形状などの複雑な3次元形状の加工が可能である。  Next, since the 5-axis machine can control the direction of the tool, it can process complicated three-dimensional shapes such as complicated shapes.

次に、エンドミルを用いた直交3軸NC加工機による3次元加工に必要な工具経路を得るための技術では、加工形状に対する法絡面を工具半径だけオフセットした距離に生成し、法絡面上を工具中心が加工方向に沿って移動するように経路を計算している
弥栄鉄工株式会社「CNL−PROカタログ」 林産試だより「3軸NC木工旋盤の開発」、北海道立林産試験場、2006年3月号、P3〜4 特開2005−219197号公報、図1 特開平7−51989号公報、図1 特開2000−353005、段落003〜004、図1
Next, in the technology for obtaining the tool path necessary for three-dimensional machining by an orthogonal three-axis NC machine using an end mill, the normal surface for the machining shape is generated at a distance offset by the tool radius, The path is calculated so that the tool center moves along the machining direction.
Yasaka Iron Works Co., Ltd. “CNL-PRO Catalog” News from Forest Products Trial “Development of 3-axis NC Woodworking Lathe”, Hokkaido Forest Products Laboratory, March 2006, P3-4 Japanese Patent Laying-Open No. 2005-219197, FIG. Japanese Patent Laid-Open No. 7-51989, FIG. JP 2000-353005, paragraphs 003 to 004, FIG.

木材の3次元加工技術向上のためにはNC加工機の導入が重要であり、そのため安価で使い易い加工機である必要がある。特にNC加工機の導入経験のないユーザーにとって高価なNC加工機を導入するには経済的リスクを抱える上に「コンピュータ」や「プログラム」という言葉に対する難しいというイメージを抱いてしまう問題がある(非特許文献3参照)。
「NC制御機器による木材加工技術の合理化に関する研究」遠西隆文、寺門秀人著、茨城県工業技術センター研究報告、第22号、平成6年12月、P81、4.考察
In order to improve the three-dimensional processing technology of wood, it is important to introduce an NC processing machine. Therefore, it is necessary to provide a processing machine that is inexpensive and easy to use. Especially for users who have no experience of installing NC machines, there is a problem that introducing expensive NC machines has the image of being difficult for the words “computer” and “program” in addition to having an economic risk. (See Patent Document 3).
“Research on the rationalization of wood processing technology by NC control equipment” Takafumi Tonishi, Hideto Teramon, Research Report of Ibaraki Prefectural Industrial Technology Center, No. 22, December 1994, P81, 4. Consideration

従来の技術の中の円盤型回転工具1を用いた2軸同時制御NC旋盤の場合、回転中の材料に対して工具が2次元平面内の運動をするだけなので断面形状が円形に限られ3次元加工の技術向上に寄与することはできない。In the case of a two-axis simultaneous control NC lathe using the disk-type rotary tool 1 in the prior art, the tool only moves in a two-dimensional plane with respect to the rotating material. It cannot contribute to the improvement of dimensional machining technology.

次に、ターニングセンタの場合には、3軸に比べて高価なハードウエアとなり、また工具経路は直交座標系と回転座標系との合成によらなければ算出できず複雑で高価なソフトウエアである。更に、用いられる工具はエンドミルやドリルのような円筒形状であるから曲率半径の小さな凹面の加工の際には直径の細い工具を使う必要が生じ、その結果、切り込み量が小さくならざるを得ず加工能率が低下する。  Next, in the case of a turning center, it becomes expensive hardware compared to three axes, and the tool path is complicated and expensive software that cannot be calculated unless it is a combination of an orthogonal coordinate system and a rotating coordinate system. . Furthermore, since the tool used is a cylindrical shape such as an end mill or a drill, it is necessary to use a tool with a small diameter when processing a concave surface with a small radius of curvature. As a result, the amount of cutting must be reduced. Processing efficiency decreases.

次に、特許文献2の自由曲面加工機では、加工形状が材料の回転軸に対し直角な断面での形状が凸面に限られる。また、Z軸に沿った方向の曲率半径の小さな凹面を加工する際には直径の細い工具を使うことになり、その結果、切り込み量が小さくならざるを得ず加工能率が低下する。  Next, in the free curved surface processing machine of Patent Document 2, the shape of the cross section perpendicular to the rotation axis of the material is limited to the convex surface. Further, when machining a concave surface having a small curvature radius in the direction along the Z-axis, a tool having a small diameter is used, and as a result, the cutting amount is inevitably reduced, and the machining efficiency is lowered.

次に、5軸加工機は、材料をベッドに固定した状態で加工するので材料の全周に渡る加工の際には固定個所に工具が届かない問題が生じる。このため加工の途中で材料を反転させるなどの再固定工程を必要とし生産性が低い。また、3軸加工機に比べて高価なハードウエアとなり、また工具経路は直交座標系と回転座標系との合成によらなければ算出できず複雑で高価なソフトウエアとなる。更に、用いられる工具はエンドミルやドリルのような円筒形状であるから曲率半径の小さな凹面の加工の際には直径の細い工具を使う必要が生じ、その結果、切り込み量が小さくならざるを得ず加工能率が低下する。  Next, since the 5-axis processing machine performs processing with the material fixed to the bed, there is a problem that the tool does not reach the fixed portion when processing the entire circumference of the material. For this reason, a re-fixing step such as reversing the material in the middle of processing is required and productivity is low. Moreover, it becomes expensive hardware compared with a 3-axis processing machine, and a tool path cannot be calculated unless it is a combination of an orthogonal coordinate system and a rotary coordinate system, and becomes complicated and expensive software. Furthermore, since the tool used is a cylindrical shape such as an end mill or a drill, it is necessary to use a tool with a small diameter when processing a concave surface with a small radius of curvature. As a result, the amount of cutting must be reduced. Processing efficiency decreases.

次に、エンドミルを用いた直交3軸NC加工機による3次元加工に必要な工具経路を得るための技術では、工具の長さ(厚み)を考慮しておらず図1に示すようにくびれた部分の加工の際には干渉領域が生じる問題がある。  Next, in the technique for obtaining a tool path necessary for three-dimensional machining by an orthogonal three-axis NC machine using an end mill, the length (thickness) of the tool is not taken into consideration and the constriction as shown in FIG. There is a problem in that an interference region is generated when processing a portion.

この発明は、上述したような問題点を考慮してなされたものであり、木材を3次元加工するときに安価な加工機でしかも複雑な知識を必要とせず3次元形状を加工するための3軸NC木工旋盤システムを提供することを目的とする。  The present invention has been made in consideration of the above-mentioned problems, and is an inexpensive processing machine for processing a three-dimensional shape without using complicated knowledge when processing a three-dimensional wood. An object is to provide an axis NC woodworking lathe system.

そこで、上記目的を達成すべく、本発明に係る3軸NC木工旋盤システムは次の手段を採用する。In order to achieve the above object, the three-axis NC woodworking lathe system according to the present invention employs the following means.

すなわち、請求項1記載の、円盤型回転工具1を用いた3軸NC木工旋盤システムであって、
表面が三角形で分割されコンピュータに入力されている製品の3次元形状モデルを3軸NC木工旋盤上の旋回角度の制御が可能な旋回軸であるC軸にチャッキングしたと仮定し、
切削工具としての円盤型回転工具1を外径と厚さが同一である回転軸をもつ薄肉円盤3と仮定し、
当該薄肉円盤3の外周が、旋回中の前記3次元形状モデルに対し干渉なしに接した状態を維持しながらZ軸に沿って移動することを前提に当該薄肉円盤3の回転中心のX座標を求めること
円盤型回転工具1のX座標を得ることを特徴とする工具経路生成方法を有する。
That is, a 3-axis NC woodworking lathe system using the disk-type rotary tool 1 according to claim 1,
Assuming that the 3D shape model of the product whose surface is divided into triangles and input to the computer is chucked to the C axis, which is a pivot axis capable of controlling the pivot angle on the three-axis NC woodworking lathe,
Assuming that the disk-type rotary tool 1 as a cutting tool is a thin disk 3 having a rotating shaft having the same outer diameter and thickness,
The X coordinate of the center of rotation of the thin disk 3 is assumed on the assumption that the outer periphery of the thin disk 3 moves along the Z axis while maintaining a state in which the outer periphery of the thin disk 3 is in contact with the rotating three-dimensional shape model without interference. It has a tool path generation method characterized by obtaining the X coordinate of disk type rotary tool 1 by obtaining.

請求項2記載の工具経路生成方法は、円盤型回転工具1を用いた3次元加工に必要な工具経路生成方法であって、
表面が三角形で分割されコンピュータに入力されている前記3次元形状モデルを3軸NC木工旋盤上の旋回角度の制御が可能な旋回軸であるC軸にチャッキングしたと仮定し、
切削工具としての円盤型回転工具1を外径と厚さが同一である回転軸をもつ薄肉円盤3と仮定し、
当該薄肉円盤3の外周が、旋回中の前記3次元形状モデルに対し干渉なしに接した状態を維持しながらZ軸に沿って移動することを前提に当該薄肉円盤3の回転中心のX座標を求めるために、
当該薄肉円盤3の片方の側面1を含む平面である第1の平面と三角形の辺との交点からなる第1の交点群のうち、交点を中心として当該薄肉円盤3の半径と同じ半径の円を第1の平面上に描いたときの、薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第1の工具中心のX座標とし、
もう片方の側面2を含む平面である第2の平面と三角形の辺との交点からなる第2の交点群のうち、交点を中心として当該薄肉円盤3の半径と同じ半径の円を描いたときの、薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第2の工具中心のX座標とし、
三角形の頂点に関し第1の平面と第2の平面の間に存在する頂点群のうち、頂点を中心として当該薄肉円盤3の半径と同じ半径の円を描いたときの、薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第3の工具中心のX座標としたとき、
第1の工具中心のX座標と第2の工具中心のX座標と第3の工具中心のX座標のうち最も旋回軸から遠いX座標を工具経路にすることを特徴とする。
The tool path generation method according to claim 2 is a tool path generation method necessary for three-dimensional machining using the disk-type rotary tool 1,
Assuming that the three-dimensional shape model whose surface is divided into triangles and input to the computer is chucked on the C axis, which is a pivot axis capable of controlling the pivot angle on a three-axis NC woodworking lathe,
Assuming that the disk-type rotary tool 1 as a cutting tool is a thin disk 3 having a rotating shaft having the same outer diameter and thickness,
The X coordinate of the center of rotation of the thin disk 3 is assumed on the assumption that the outer periphery of the thin disk 3 moves along the Z axis while maintaining a state in which the outer periphery of the thin disk 3 is in contact with the rotating three-dimensional shape model without interference. To seek
A circle having the same radius as the radius of the thin disk 3 centering on the intersection among the first group of intersections of the first plane, which is a plane including one side surface 1 of the thin disk 3, and the sides of the triangle. Is the X coordinate of the first tool center, the intersection of which the X coordinate is the farthest from the swivel axis among the intersection coordinates with the XZ plane passing through the rotation center of the thin disk when drawn on the first plane,
When a circle having the same radius as the radius of the thin disk 3 is drawn from the second intersection group consisting of the intersections of the second plane, which is the plane including the other side surface 2, and the sides of the triangle. Of the intersection coordinates with the XZ plane passing through the center of rotation of the thin disk, the intersection where the X coordinate is farthest from the pivot axis is the X coordinate of the second tool center,
Of the group of vertices existing between the first plane and the second plane with respect to the vertex of the triangle, the rotation center of the thin disk when a circle having the same radius as that of the thin disk 3 is drawn around the vertex. Of the intersection coordinates with the passing XZ plane, the intersection where the X coordinate is farthest from the turning axis is the X coordinate of the third tool center.
Of the X coordinate of the first tool center, the X coordinate of the second tool center, and the X coordinate of the third tool center, the X coordinate farthest from the turning axis is used as the tool path.

請求項3記載のプログラムは工具経路生成プログラムであって、
コンピュータに
表面が三角形で分割されコンピュータに入力されている前記3次元形状モデルを3軸NC木工旋盤上の旋回角度の制御が可能な旋回軸であるC軸にチャッキングしたと仮定し、
切削工具としての円盤型回転工具1を外径と厚さが同一である回転軸をもつ薄肉円盤3と仮定し、
当該薄肉円盤3の外周が、旋回中の前記3次元形状モデルに対し干渉なしに接した状態を維持しながらZ軸に沿って移動することを前提に当該薄肉円盤3の回転中心のX座標を求めるために
当該薄肉円盤3の片方の側面1を含む平面である第1の平面と三角形の辺との交点からなる第1の交点群のうち、交点を中心として当該薄肉円盤3の半径と同じ半径の円を第1の平面上に描いたときの、薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第1の工具中心のX座標とし、
もう片方の側面2を含む平面である第2の平面と三角形の辺との交点からなる第2の交点群のうち、交点を中心として当該薄肉円盤3の半径と同じ半径の円を描いたときの、薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第2の工具中心のX座標とし、
三角形の頂点に関し第1の平面と第2の平面の間に存在する頂点群のうち、頂点を中心として当該薄肉円盤3の半径と同じ半径の円を描いたときの、当該薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第3の工具中心のX座標としたとき、
第1の工具中心のX座標と第2の工具中心のX座標と第3の工具中心座標のうち最も旋回軸から遠いX座標を工具経路にすることで円盤型回転工具1の工具経路を得る手段として
機能させることを特徴とする。
The program according to claim 3 is a tool path generation program,
Assume that the computer has chucked the three-dimensional shape model whose surface is divided into triangles and input to the computer into the C axis, which is a pivot axis capable of controlling the pivot angle on a three-axis NC woodworking lathe,
Assuming that the disk-type rotary tool 1 as a cutting tool is a thin disk 3 having a rotating shaft having the same outer diameter and thickness,
The X coordinate of the center of rotation of the thin disk 3 is assumed on the assumption that the outer periphery of the thin disk 3 moves along the Z axis while maintaining a state in which the outer periphery of the thin disk 3 is in contact with the rotating three-dimensional shape model without interference. In order to obtain the same value, the radius of the thin disk 3 is the same as the radius of the thin disk 3 around the intersection among the first intersection group consisting of the intersection of the first plane which is the plane including the one side surface 1 of the thin disk 3 and the sides of the triangle. Of the intersection coordinates with the XZ plane passing through the rotation center of the thin disk when a circle of radius is drawn on the first plane, the intersection with the X coordinate farthest from the swivel axis is taken as the X coordinate of the first tool center,
When a circle having the same radius as the radius of the thin disk 3 is drawn from the second intersection group consisting of the intersections of the second plane, which is the plane including the other side surface 2, and the sides of the triangle. Of the intersection coordinates with the XZ plane passing through the center of rotation of the thin disk, the intersection where the X coordinate is farthest from the pivot axis is the X coordinate of the second tool center,
The rotation center of the thin disk when a circle having the same radius as the radius of the thin disk 3 is drawn around the vertex among the vertex group existing between the first plane and the second plane with respect to the vertex of the triangle Of the intersection coordinates with the XZ plane passing through the intersection where the X coordinate is farthest from the turning axis is the X coordinate of the third tool center,
The tool path of the disk-type rotary tool 1 is obtained by setting the X coordinate farthest from the turning axis among the X coordinate of the first tool center, the X coordinate of the second tool center, and the third tool center coordinate as the tool path. It is made to function as a means.

また請求項4の発明においては、
請求項3に記載の工具経路計算プログラムを記録したことを特徴とする記録媒体であるようにする。
In the invention of claim 4,
According to a third aspect of the present invention, there is provided a recording medium in which the tool path calculation program according to claim 3 is recorded.

以上のことから、本発明によると、製品の3次元形状の表面が三角形に分割されたモデル(以後、ポリゴンサーフェイスモデル2と呼ぶ)さえあれば円盤型回転工具1を用いた3軸NC旋盤システムにより3次元加工が可能になり、以下の効果がある。From the above, according to the present invention, a three-axis NC lathe system using a disk-type rotary tool 1 as long as there is a model in which the surface of the three-dimensional shape of the product is divided into triangles (hereinafter referred to as polygon surface model 2). Enables three-dimensional processing and has the following effects.

3軸構成の旋盤タイプで3次元加工が可能になるので5軸加工機よりも安価な加工機になる。Since the three-axis lathe type enables three-dimensional processing, the processing machine is cheaper than a 5-axis processing machine.

工具経路計算に必要な情報は円盤型回転工具1の直径と厚みのみであるから工具姿勢をも求める5軸加工機のような複雑な計算は不要であり、単純な計算のみで複雑な3次元加工のための工具経路を求めることができる。Since the information required for the tool path calculation is only the diameter and thickness of the disk-type rotary tool 1, complicated calculations such as a 5-axis machine that also requires the tool orientation are not required, and complex three-dimensional calculations are possible with only simple calculations. A tool path for machining can be determined.

円盤型回転工具1を用いることでZ軸に直角な断面の形状は円盤型回転工具1の半径以上の曲率半径凹面を含む3次元形状を加工することができ、例えば図2に示すような厚みの薄い非円形の器の加工が短時間で可能になる。By using the disk-type rotary tool 1, the shape of the cross section perpendicular to the Z-axis can be processed into a three-dimensional shape including a concave surface with a radius of curvature greater than the radius of the disk-type rotary tool 1, for example, as shown in FIG. Thin non-circular vessel can be processed in a short time.

図3に示すような、Z軸に沿った凹面を加工する際の加工可能な曲率半径は円盤型回転工具1の厚みに依存するので円筒型の回転工具よりも小さな曲率半径の凹面を含んだ3次元形状を加工することができる。As shown in FIG. 3, the radius of curvature that can be machined when machining a concave surface along the Z-axis depends on the thickness of the disk-type rotary tool 1, and therefore includes a concave surface having a smaller radius of curvature than the cylindrical rotary tool. A three-dimensional shape can be processed.

以下、ポリゴンサーフェイスモデル2と円盤型回転工具1との位置関係、運動を説明し、その後工具経路生成法を説明する。Hereinafter, the positional relationship and motion between the polygon surface model 2 and the disk-type rotary tool 1 will be described, and then the tool path generation method will be described.

図4−aはポリゴンサーフェイスモデル2が仮想的にチャッキングされている様子と、旋盤の刃物台上に存在する工具として薄肉円盤3に仮定された円盤型回転工具1を示している。図中のポリゴンサーフェイスモデル2は例として鳥の頭部のモデルを表しており、その根元が四角形のチャックによって把持されている状態を示している。また、図中の薄肉円盤3は、円盤型回転工具1の厚みと直径が同一な円盤に仮定されていることを示している。FIG. 4A shows a state in which the polygon surface model 2 is virtually chucked and a disk-type rotary tool 1 that is assumed to be a thin disk 3 as a tool existing on a tool post of a lathe. Polygon surface model 2 in the figure represents a bird's head model as an example, and shows a state in which the root is gripped by a square chuck. Moreover, the thin disk 3 in the figure indicates that the disk type rotating tool 1 is assumed to be a disk having the same thickness and diameter.

工具経路を求めるには、先ず、図5に示すように薄肉円盤3のチャック側の側面がポリゴンサーフェイスモデル2先端のZ座標上にあり、かつ薄肉円盤3の外周面が旋回軸心に接する位置にあるとする。この状態を開始として、薄肉円盤3をポリゴンサーフェイスモデル2と干渉することなく接しながら旋回させる、と同時に−Z方向へ移動させる。すると、薄肉円盤3とポリゴンサーフェイスモデル2の接触点の軌跡は図6のようにスパイラル状に描かれる。その際、薄肉円盤3はポリゴンサーフェイスモデル2の凹凸によってX軸方向に運動を引き起こす。このときのX座標を旋回角度とZ座標に応じて求めることが本発明の趣旨である工具経路を求めることであり、次にその方法を説明する。  In order to obtain the tool path, first, as shown in FIG. 5, the side surface on the chuck side of the thin disk 3 is on the Z coordinate of the tip of the polygon surface model 2 and the outer peripheral surface of the thin disk 3 is in contact with the pivot axis. Suppose that Starting from this state, the thin disk 3 is turned while contacting the polygon surface model 2 without interfering with the polygonal surface model 2, and simultaneously moved in the -Z direction. Then, the locus of the contact point between the thin disk 3 and the polygon surface model 2 is drawn in a spiral shape as shown in FIG. At this time, the thin disk 3 causes movement in the X-axis direction due to the unevenness of the polygon surface model 2. Obtaining the X coordinate at this time according to the turning angle and the Z coordinate is to obtain a tool path which is the gist of the present invention, and the method will be described next.

図7は薄肉円盤3と、その両側面を含む2つの平面の間である薄肉円盤空間に存在するポリゴンサーフェイスモデル2上の三角形との幾何学的位置関係を示している。図8は図7を横から見た図である。本来は薄肉円盤3と接触するであろう候補として薄肉円盤空間に存在する三角形すべてを図示しなければならないが簡単のため任意の隣り合う三角形を2つ想定する。  FIG. 7 shows the geometric positional relationship between the thin disk 3 and the triangles on the polygon surface model 2 existing in the thin disk space between the two planes including both side surfaces thereof. FIG. 8 is a side view of FIG. Although all the triangles existing in the thin disk space must be illustrated as candidates that would normally come into contact with the thin disk 3, two arbitrary adjacent triangles are assumed for simplicity.

ここで、一般にXY平面内においてX軸上に中心を持つ半径Rcの円のうち任意の点Aを通る円の中心のX座標は、点Aを中心とする半径Rcの円とX軸との交点として求められる(図9)。この考え方で図4−aを正面から見た図4−bに示すような接触点Aに対する薄肉円盤3の中心のX座標を求めることができる。  Here, in general, the X coordinate of the center of a circle passing through an arbitrary point A among the circles having a radius Rc centered on the X axis in the XY plane is the circle between the circle with the radius Rc centered on the point A and the X axis. It is obtained as an intersection (FIG. 9). With this concept, the X coordinate of the center of the thin disk 3 with respect to the contact point A as shown in FIG.

以上の位置関係と運動および任意の点Aに接する円の中心のX座標を求める手法により、旋回するポリゴンサーフェイスモデル2に対して干渉することなく接しているときの薄肉円盤3の中心X座標を以下のように求め工具経路を得る。  The center X coordinate of the thin disk 3 when it is in contact with the rotating polygon surface model 2 without interfering with the above-described positional relationship, motion and the method for obtaining the X coordinate of the center of the circle in contact with the arbitrary point A. The tool path is obtained as follows.

図7において
側面1を含む平面である第1の平面と三角形の辺との交点C1,C2,C5を中心として当該薄肉円盤3の半径と同じ半径の円を第1の平面上に描いたときに、その円がX軸と交わる交点のうち、最も旋回軸から遠い交点のX座標を第1の工具中心のX座標とする。
In FIG. 7, when a circle having the same radius as the radius of the thin disk 3 is drawn on the first plane around the intersections C1, C2, C5 of the first plane, which is the plane including the side surface 1, and the sides of the triangle. Furthermore, among the intersections where the circle intersects the X axis, the X coordinate of the intersection farthest from the turning axis is taken as the X coordinate of the first tool center.

次に、側面2を含む平面である第2の平面と三角形の辺との交点C3,C4,C6を中心として当該薄肉円盤3の半径と同じ半径の円を第2の平面上に描いたときに、その円がX軸と交わる交点のうち、最も旋回軸から遠い交点のX座標を第2の工具中心のX座標とする。  Next, when a circle having the same radius as that of the thin disk 3 is drawn on the second plane centering on the intersections C3, C4, C6 of the second plane, which is the plane including the side surface 2, and the sides of the triangle Furthermore, among the intersections where the circle intersects the X axis, the X coordinate of the intersection farthest from the turning axis is taken as the X coordinate of the second tool center.

そして、三角形の頂点に関し当該薄肉円盤3と接する可能性のある頂点は、第1の平面と第2の平面の間に存在する頂点P2、P4である。そこで、P2,P4を頂点を中心として当該薄肉円盤3の半径と同じ半径の円を、第1および第2の平面に平行に描いたときに、その円がX軸と交わる交点のうち、最も旋回軸から遠い交点を第3の工具中心のX座標とする。  And the vertex which may contact | connect the said thin disk 3 regarding the vertex of a triangle is the vertex P2 and P4 which exist between a 1st plane and a 2nd plane. Therefore, when a circle having the same radius as the radius of the thin disk 3 with P2 and P4 as the center is drawn in parallel to the first and second planes, the intersection of the circles intersecting the X axis is the most. The intersection far from the pivot axis is taken as the X coordinate of the third tool center.

第1、第2、第3の工具中心のX座標のうち最も旋回軸から遠い座標が、求める薄肉円盤中心のX座標である。  Of the X coordinates of the first, second and third tool centers, the coordinate farthest from the turning axis is the X coordinate of the thin disk center to be obtained.

図4−bはポリゴンサーフェイスモデル上の点Aに接している薄肉円盤3を示している。言い換えれば、薄肉円盤3がポリゴンサーフェイスに外接するときの中心のX座標を求めることを意味する。FIG. 4-b shows the thin disk 3 in contact with the point A on the polygon surface model. In other words, it means obtaining the X coordinate of the center when the thin disk 3 circumscribes the polygon surface.

以上の計算をポリゴンサーフェイスモデル2の先端から加工終端までに渡り、旋回角ごとに、またZ軸方向の送りごとに求めGコードとともに保存することで工具経路を得る(図10)。  The above calculation is performed from the tip of the polygon surface model 2 to the end of machining, and is obtained for each turning angle and for each feed in the Z-axis direction and saved together with the G code to obtain a tool path (FIG. 10).

エンドミルを用いた直交3軸NC加工機による3次元加工の際の問題点説明図  Explanatory drawing of problems in 3D machining with orthogonal 3-axis NC machine using end mill 発明の効果の説明図  Illustration of the effect of the invention 発明の効果の説明図  Illustration of the effect of the invention ポリゴンサーフェイスモデル2と薄肉円盤3に仮定された円盤型回転工具1を示す図The figure which shows the disk type rotary tool 1 assumed by the polygon surface model 2 and the thin disk 3 図4−aを正面から見た図  The figure which looked at Fig.4-a from the front 工具経路を求めるための開始位置を示す図  Diagram showing the starting position for finding the tool path ポリゴンサーフェイスモデル2と薄肉円盤3との接触点がスパイラル状になることを示す  Indicates that the contact point between the polygon surface model 2 and the thin disk 3 is spiral. ポリゴンサーフェイスモデル2と薄肉円盤3との位置開係を示す図  The figure which shows the position opening relation of the polygon surface model 2 and the thin disk 3 図7を横から見た図  A side view of FIG. 点Aを通る円の中心X座標を求める方法を示す解説図  Illustration showing how to find the center X coordinate of the circle passing through point A 工具経路の計算手順を表すフローチャート  Flow chart showing tool path calculation procedure

円盤型回転工具
2 ポリゴンサーフェイスモデル
3 薄肉円盤
1 disc type rotary tool 2 polygon surface model 3 thin disc

Claims (4)

工具として、Z方向およびX方向に移動可能な円盤型回転工具1を用いた3軸NC木工旋盤システムであって、
表面が三角形で分割されコンピュータに入力されている製品の3次元形状モデルを3軸NC木工旋盤上の旋回角度の制御が可能な旋回軸であるC軸にチャッキングしたと仮定し、
切削工具としての円盤型回転工具1を外径と厚さが同一である回転軸をもつ薄肉円盤3と仮定し、
当該薄肉円盤3の外周が、旋回中の前記3次元形状モデルに対し干渉なしに接した状態を維持しながらZ軸に沿って移動することを前提に、
C軸の任意の角度と当該薄肉円盤の任意のZ座標に対して当該薄肉円盤3の回転中心のX座標を求める際、
▲1▼当該薄肉円盤の片側の側面の外周に並ぶ刃先を通る円から成る厚みゼロの円盤と前記3次元形状モ デルとが接するときの加工点と、▲2▼当該薄肉円盤の前述の側面とは反対側の側面に関して外周に並ぶ刃先を通る円から成る厚みゼロの円盤と前記3次元形状モデルとが接するときの加工点と、▲3▼両側面の間の円筒面と前記3次元モデルとが接するときの加工点の3通りの加工点の候補の中から実際に加工に寄与すべき加工点を1つだけ抽出することで円盤型回転工具1のX座標を得ることを特徴とする、
工具経路生成方法を有する3軸NC木工旋盤システム。
A three-axis NC woodworking lathe system using a disk-type rotary tool 1 movable in the Z direction and the X direction as a tool ,
Assuming that the 3D shape model of the product whose surface is divided into triangles and input to the computer is chucked to the C axis, which is a pivot axis capable of controlling the pivot angle on the three-axis NC woodworking lathe,
Assuming that the disk-type rotary tool 1 as a cutting tool is a thin disk 3 having a rotating shaft having the same outer diameter and thickness,
Assuming that the outer periphery of the thin disk 3 moves along the Z axis while maintaining a state in which the outer periphery of the thin disk 3 is in contact with the rotating three-dimensional shape model without interference.
When obtaining the X coordinate of the rotation center of the thin disk 3 with respect to an arbitrary angle of the C axis and an arbitrary Z coordinate of the thin disk,
▲ 1 ▼ the a processing point when the disc and the three-dimensional shape model of zero thickness consisting of a circle passing through the cutting edges arranged on the outer peripheral side of the one side of the thin disc is in contact, ▲ 2 ▼ sides of the aforementioned the thin disc The processing point when the zero-thickness disk consisting of a circle passing through the cutting edge arranged on the outer periphery on the side opposite to the side and the three-dimensional shape model are in contact with each other, and (3) the cylindrical surface between both side surfaces and the three-dimensional model The X-coordinate of the disk-type rotary tool 1 is obtained by extracting only one machining point that should actually contribute to machining from the three machining point candidates of the machining point when and are in contact with each other. ,
3 axis NC woodworking lathe system with tool path generation method.
請求項1に記載の工具経路生成方法は、
円盤型回転工具1を用いた3次元加工に必要な工具経路生成方法であって
表面が三角形で分割されコンピュータに入力されている製品の3次元形状モデルを3軸NC木工旋盤上の旋回角度の制御が可能な旋回軸であるC軸にチャッキングしたと仮定し、
切削工具としての前記円盤型回転工具1を外径と厚さが同一である回転軸をもつ薄肉円盤3と仮定し、
当該薄肉円盤3の外周が、旋回中の前記3次元形状モデルに対し干渉なしに接した状態を維持しながらZ軸に沿って移動することを前提に当該薄肉円盤3の回転中心のX座標を求めるために、
前記3次元形状モデルの任意のC軸周りの回転角度と前記円盤型回転工具1の任意のZ軸座標において、
当該薄肉円盤3の片方の側面1を含む平面である第1の平面と前記三角形の辺との交点からなる第1の交点群のうち、各交点を中心として当該薄肉円盤3の半径と同じ半径の円を第1の平面上に描いたときの、当該薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第1の工具中心のX座標とし、
もう片方の側面2を含む平面である第2の平面と前記三角形の辺との交点からなる第2の交点群のうち、各交点を中心として当該薄肉円盤3の半径と同じ半径の円を描いたときの薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第2の工具中心のX座標とし、
前記三角形の頂点に関し第1の平面と第2の平面の間に存在する頂点群のうち、頂点を中心として当該薄肉円盤3の半径と同じ半径の円を描いたときの、当該薄肉円盤3の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第3の工具中心のX座標としたとき、
第1の工具中心のX座標と第2の工具中心のX座標と第3の工具中心のX座標のうち最も旋回軸から遠いX座標を工具経路にすることを特徴とする
工具経路生成方法。
The tool path generation method according to claim 1,
A tool path generation method necessary for three-dimensional machining using the disk-type rotary tool 1, wherein a three-dimensional shape model of a product whose surface is divided into triangles and inputted to a computer is converted into a turning angle on a three-axis NC woodworking lathe. Assuming that chucking is performed on the C axis, which is the pivot axis that can be controlled,
Assuming that the disk-type rotating tool 1 as a cutting tool is a thin disk 3 having a rotating shaft having the same outer diameter and thickness,
The X coordinate of the center of rotation of the thin disk 3 is assumed on the assumption that the outer periphery of the thin disk 3 moves along the Z axis while maintaining a state in which the outer periphery of the thin disk 3 is in contact with the rotating three-dimensional shape model without interference. To seek
In the rotation angle around the arbitrary C-axis of the three-dimensional shape model and the arbitrary Z-axis coordinate of the disk type rotary tool 1,
The same radius as the radius of the thin disk 3 centering on each intersection among the first group of intersections of the first plane, which is a plane including one side surface 1 of the thin disk 3, and the sides of the triangle. When the circle is drawn on the first plane, of the intersection coordinates with the XZ plane passing through the rotation center of the thin disk, the intersection with the X coordinate farthest from the turning axis is the X coordinate of the first tool center,
A circle having the same radius as the radius of the thin-walled disk 3 is drawn from the second intersection point group consisting of the intersection points of the second plane, which is the plane including the other side face 2, and the sides of the triangle. Of the intersection coordinates with the XZ plane passing through the rotation center of the thin disk when the X coordinate is the furthest from the turning axis, the intersection of the second tool center X
Of the vertices existing between the first and second planes respect vertices of the triangle, when a circle of the same radius as the radius of the thin disk 3 around the apex, of the thin disk 3 Of the intersection coordinates with the XZ plane passing through the rotation center, the intersection with the X coordinate farthest from the turning axis is the X coordinate of the third tool center.
A tool path generation method characterized in that an X coordinate farthest from the turning axis among the X coordinate of the first tool center, the X coordinate of the second tool center, and the X coordinate of the third tool center is used as the tool path.
円盤型回転工具1を用いた3次元加工に必要な工具経路生成プログラムであって
コンピュータを
表面が三角形で分割されコンピュータに入力されている製品の3次元形状モデルを3軸NC木工旋盤上の旋回角度の制御が可能な旋回軸であるC軸にチャッキングしたと仮定し、
切削工具としての円盤型回転工具1を外径と厚さが同一である回転軸をもつ薄肉円盤3と仮定し、
当該薄肉円盤3の外周が、旋回中の前記3次元形状モデルに対し干渉なしに接した状態を維持しながらZ軸に沿って移動することを前提に当該薄肉円盤3の回転中心のX座標を求めるために
前記3次元形状モデルの任意のC軸周りの回転角度と円盤型回転工具1の任意のZ軸座標において、
当該薄肉円盤3の片方の側面1を含む平面である第1の平面と三角形の辺との交点からなる第1の交点群のうち、交点を中心として当該薄肉円盤3の半径と同じ半径の円を第1の平面上に描いたときの、薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第1の工具中心のX座標とし、
もう片方の面を含む平面である第2の平面と三角形の辺との交点からなる第2の交点群のうち、交点を中心として当該薄肉円盤3の半径と同じ半径の円を描いたときの、薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第2の工具中心のX座標とし、
三角形の頂点に関し第1の平面と第2の平面の間に存在する頂点群のうち、頂点を中心として当該薄肉円盤3の半径と同じ半径の円を描いたときの、薄肉円盤の回転中心を通るXZ平面との交点座標のうちX座標が最も旋回軸から遠い交点を第3の工具中心のX座標としたとき、
第1の工具中心のX座標と第2の工具中心のX座標と第3の工具中心のX座標のうち最も旋回軸から遠いX座標を工具経路にすることで円盤型回転工具1の工具経路を得る手段として機能させることを特徴とする
工具経路生成プログラム。
A tool path generation program necessary for three-dimensional machining using the disk-type rotary tool 1, and turning a three-dimensional NC model wood lathe into a three-dimensional shape model of a product whose surface is divided into triangles and input to the computer Assuming that chucking is performed on the C-axis, which is a swiveling axis capable of controlling the angle,
Assuming that the disk-type rotary tool 1 as a cutting tool is a thin disk 3 having a rotating shaft having the same outer diameter and thickness,
The X coordinate of the center of rotation of the thin disk 3 is assumed on the assumption that the outer periphery of the thin disk 3 moves along the Z axis while maintaining a state in which the outer periphery of the thin disk 3 is in contact with the rotating three-dimensional shape model without interference. in order to obtain,
In a rotation angle around an arbitrary C axis of the three-dimensional shape model and an arbitrary Z axis coordinate of the disk-type rotary tool 1,
A circle having the same radius as the radius of the thin disk 3 centering on the intersection among the first group of intersections of the first plane, which is a plane including one side surface 1 of the thin disk 3, and the sides of the triangle. Is the X coordinate of the first tool center, the intersection of which the X coordinate is the farthest from the swivel axis among the intersection coordinates with the XZ plane passing through the rotation center of the thin disk when drawn on the first plane,
When a circle having the same radius as the radius of the thin-walled disk 3 is drawn from the second intersection point group consisting of the intersection points of the second plane, which is the plane including the other surface, and the sides of the triangle. , Of the intersection coordinates with the XZ plane passing through the rotation center of the thin disk, the intersection with the X coordinate farthest from the turning axis is taken as the X coordinate of the second tool center,
Of the group of vertices existing between the first plane and the second plane with respect to the vertex of the triangle, the rotation center of the thin disk when a circle having the same radius as that of the thin disk 3 is drawn around the vertex. Of the intersection coordinates with the passing XZ plane, the intersection where the X coordinate is farthest from the turning axis is the X coordinate of the third tool center.
The tool path of the disk-type rotary tool 1 is made the X coordinate farthest from the turning axis among the X coordinate of the first tool center, the X coordinate of the second tool center, and the X coordinate of the third tool center. A tool path generation program which functions as means for obtaining
請求項3記載の工具経路生成プログラムを記録したことを特徴とする記録媒体。  A recording medium in which the tool path generation program according to claim 3 is recorded.
JP2007129843A 2007-04-16 2007-04-16 3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium Active JP4784767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129843A JP4784767B2 (en) 2007-04-16 2007-04-16 3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129843A JP4784767B2 (en) 2007-04-16 2007-04-16 3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium

Publications (2)

Publication Number Publication Date
JP2008264985A JP2008264985A (en) 2008-11-06
JP4784767B2 true JP4784767B2 (en) 2011-10-05

Family

ID=40045208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129843A Active JP4784767B2 (en) 2007-04-16 2007-04-16 3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium

Country Status (1)

Country Link
JP (1) JP4784767B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111930073A (en) * 2020-08-19 2020-11-13 上海熙锐信息科技有限公司 Five-axis laser tool path rotating method and device and storage medium
JP7422906B1 (en) 2023-01-30 2024-01-26 アルム株式会社 Processing control device, control method and program for the processing control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751989A (en) * 1993-08-06 1995-02-28 Yachiyoda Kogyo Kk Free-form surface machining device
JP3753640B2 (en) * 2001-09-21 2006-03-08 川崎重工業株式会社 Cutting apparatus, processing method, program and recording medium
JP4375944B2 (en) * 2002-06-07 2009-12-02 コマツ工機株式会社 Camshaft or crankshaft machining method

Also Published As

Publication number Publication date
JP2008264985A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
Warkentin et al. Computer aided 5-axis machining
CN109597357B (en) Numerical control programming method and device for blade rotary milling process
JP2001009603A (en) Cutting method and tool for inner corner
Lin et al. Non-singular tool path planning by translating tool orientations in C-space
JPS5868112A (en) Computer numerical control system
JPWO2014002270A1 (en) Grooving method, machine tool control device, and tool path generation device
CN104275516B (en) The processing method of impeller and the impeller
Sato et al. Motion accuracy enhancement of five-axis machine tools by modified CL-data
JP2007018495A (en) Contour machining method by numerical control single cutting tool
WO2014068709A1 (en) Machine tool control device and machine tool
JP4784767B2 (en) 3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium
JP6623478B2 (en) Multi-axis NC woodworking lathe system, tool path generation method, tool path generation program, and recording medium
JPWO2014057562A1 (en) Tool path generation method, machine tool control apparatus, and tool path generation apparatus
US20200139546A1 (en) Robotic saw and water jet control
Nishiguchi et al. Evaluation method for behavior of rotary axis around motion direction changing
KR100833112B1 (en) Impeller making for roughing work method of generating
JPH08229770A (en) Preparing method for five-axis nc data
Takasugi et al. Development of CAM system for 3D surface machining with CNC lathe
WO2021117893A1 (en) Tool path generation method, tool path generation device, and machine tool control device
JP6531353B2 (en) Gear processing device
CN110297458B (en) Method for realizing processing path of vacuum cup polishing machine
JP5636841B2 (en) Machining method and NC program creation device
Liang et al. A 5-Axis coordinated CNC grinding method for the flank of a non-coaxial helical micro-drill with the cylinder grinding wheel
JP2005202792A (en) Tool height calculation device, calculation method therefor, and program
Li et al. Sensitivity analysis between error motions and machined shape errors in five-axis machining centers: in case of S-shaped machining test by a square end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4784767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250