JPH0596279A - Production of ultrapure water - Google Patents

Production of ultrapure water

Info

Publication number
JPH0596279A
JPH0596279A JP3287216A JP28721691A JPH0596279A JP H0596279 A JPH0596279 A JP H0596279A JP 3287216 A JP3287216 A JP 3287216A JP 28721691 A JP28721691 A JP 28721691A JP H0596279 A JPH0596279 A JP H0596279A
Authority
JP
Japan
Prior art keywords
water
pure water
membrane
filter
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3287216A
Other languages
Japanese (ja)
Inventor
Fumio Yokoyama
史夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP3287216A priority Critical patent/JPH0596279A/en
Publication of JPH0596279A publication Critical patent/JPH0596279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To reduce the production cost of ultrapure water by extending the water passing life of a membrane separator used in a primary pure water producing apparatus by arranging a filter having a charged filter material built therein to the front stage of the membrane separator of the primary pure water producing apparatus, and treating the filtered water of the filter by the membrane separator. CONSTITUTION:Raw water is treated in a pretreatment device 2 to remove the suspended matter in the raw water and treated in a two-bed three-tower type pure water producing device 3 using a vacuum degassing tower as a decarbonation tower to produce pure water which is, in turn, treated in a mixed bed type pure water producing device 4 to produce pure water with relatively high specific resistivity. Subsequently, pure water is treated with a filter 5 having a charged filter material built therein to remove fine particles and the filtered water is treated in a membrane separator 6 using a permeable membrane having a pore size smaller than that of the charged filter material to remove remaining fine particles or TOC. The primary pure water obtained in a primary pure water producing apparatus A is received in a storage tank 7 and treated in a secondary pure water producing apparatus B to obtain ultrapure water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体洗浄用あるいは
医薬品製造用等に用いられる超純水の製造方法に関する
ものであり、特に一次系純水製造装置に用いられる精密
濾過装置(MF膜装置)や限外濾過膜装置(UF膜装
置)や逆浸透膜装置(RO膜装置)等の透過膜を用いる
膜分離装置の圧力損失の上昇を低減する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrapure water used for semiconductor cleaning, pharmaceutical production, etc., and more particularly to a microfiltration apparatus (MF membrane apparatus) used in a primary pure water production apparatus. ), An ultrafiltration membrane device (UF membrane device), a reverse osmosis membrane device (RO membrane device) and the like, and a method for reducing an increase in pressure loss of a membrane separation device using a permeable membrane.

【0002】[0002]

【従来の技術】半導体洗浄あるいは医薬品製造に用いら
れる水には電解質,微粒子,有機炭素,生菌等が極めて
少ない高度に精製された超高度純水、いわゆる超純水が
必要とされている。
2. Description of the Related Art Water used for cleaning semiconductors or producing pharmaceuticals requires highly purified ultrapure water, that is, so-called ultrapure water, in which electrolytes, fine particles, organic carbon, viable bacteria and the like are extremely small.

【0003】近年、これらの工業技術が高度化されるに
従い、要求される水質も高くなってきており、更に高度
に精製した超純水の製造が必要になっている。超純水は
従来から種々の単位装置の組み合わせで製造されるのが
一般的であり、たとえば半導体洗浄用の超純水の製造フ
ローの一例は図3の通りである。
In recent years, as these industrial technologies have become more sophisticated, the required water quality has also become higher, and it has become necessary to produce highly purified ultrapure water. Conventionally, ultrapure water is generally manufactured by combining various unit devices. For example, an example of a manufacturing flow of ultrapure water for cleaning semiconductors is shown in FIG.

【0004】すなわち上水,工業用水等の原水(イ)を
まず凝集沈殿,砂濾過,活性炭濾過などの前処理装置
(ロ)で処理した後、2床3塔式純水製造装置(ハ)で
処理し、次いで混床式純水製造装置(ニ)で処理し、次
いでMF膜装置やUF膜装置やRO膜装置等の透過膜を
内蔵した膜分離装置(ホ)で処理して原水中に含まれる
大半の電解質,微粒子,有機炭素等の除去を行い、この
ような一次系純水製造装置(A)から得られる一次純水
を貯槽(ヘ)に一旦貯留する。なお2床3塔式純水製造
装置(ハ)に用いる脱炭酸塔としては炭酸ガスとともに
溶存酸素も除去し得る真空脱気塔が用いられることが多
い。
That is, raw water (a) such as tap water and industrial water is first treated with a pretreatment device (b) such as coagulation sedimentation, sand filtration, activated carbon filtration, and the like, followed by a two-bed, three-column type pure water production device (c). Water, then mixed bed pure water production equipment (d), then MF membrane equipment, UF membrane equipment, RO membrane equipment, etc. Most of the electrolytes, fine particles, organic carbon, etc. contained in (1) are removed, and the primary pure water obtained from the primary pure water producing apparatus (A) is temporarily stored in the storage tank (F). As the decarbonation tower used in the two-bed, three-column pure water production apparatus (c), a vacuum degassing tower that can remove dissolved oxygen as well as carbon dioxide is often used.

【0005】貯槽(ヘ)に貯留した一次純水は更に紫外
線照射装置(ト),混床式ポリシャー(チ),UF膜装
置(リ)から構成される二次系純水製造装置(B)で処
理され、得られた超純水は循環配管(ヌ)を用いて前記
貯槽(ヘ)に循環され、また循環配管(ヌ)の途中に付
設したユースポイント(ル)から必要に応じて超純水が
採水される。またユースポイント(ル)より採用した超
純水を半導体の洗浄等に用いた後、その洗浄廃水(ヲ)
が水質的に良質なものは、紫外線酸化装置,活性炭濾過
装置,イオン交換装置,膜分離装置等を適当に組み合わ
せた回収装置(ワ)で処理され、一次系純水製造装置
(A)に用いる原水の一部として回収される場合が多
い。
The primary pure water stored in the storage tank (f) further comprises a secondary pure water producing device (B) comprising an ultraviolet irradiation device (g), a mixed bed polisher (h) and a UF membrane device (d). The ultrapure water obtained by the treatment is circulated in the storage tank (f) using a circulation pipe (g), and if necessary from the use point (l) attached in the middle of the circulation pipe (g). Pure water is sampled. Also, after using ultrapure water adopted from the point of use (L) for cleaning semiconductors, etc., the cleaning wastewater (W)
Water quality is treated with a recovery device (wa) that is an appropriate combination of an ultraviolet oxidation device, an activated carbon filtration device, an ion exchange device, a membrane separation device, etc., and is used in the primary pure water production device (A). Often collected as part of raw water.

【0006】上記一次系純水製造装置(A)で用いられ
る膜分離装置(ホ)は、圧力損失が増大した場合、薬品
等を用いる洗浄を用いその圧力損失の増大を回復した
り、あるいは上記洗浄によって膜が劣化したり、あるい
は上記洗浄による効果がなくなった場合、新しい透過膜
と交換される。よって膜分離装置(ホ)の洗浄の頻度、
あるいは透過膜の交換頻度が少なくなればなる程、その
ランニングコストは低減される。従来から膜分離装置
(ホ)の前段に、その膜分離装置に用いる透過膜の孔径
より大きい孔径を有する濾過体を内蔵した濾過器を設置
し、膜分離装置の圧力損失が増大するのを防止し、通水
ライフの延長を計ることが行われている。
When the pressure loss increases, the membrane separator (e) used in the primary pure water producing apparatus (A) recovers the increase in pressure loss by using cleaning with a chemical or the like, or When the membrane is deteriorated by the washing or the effect of the washing is lost, the membrane is replaced with a new permeable membrane. Therefore, the frequency of cleaning the membrane separator (e),
Alternatively, the less frequently the permeable membrane is replaced, the lower its running cost will be. A filter with a built-in filter having a pore size larger than that of the permeable membrane used in the membrane separator has been installed in the previous stage of the membrane separator (e) to prevent the pressure loss of the membrane separator from increasing. However, the water flow life is being extended.

【0007】この場合、前段に用いる濾過体の孔径が後
段の膜分離装置に用いる透過膜の孔径に接近すればする
程、後段の膜分離装置の通水ライフは長くなるが、前段
濾過体の閉塞が早くなり、前段濾過体の交換頻度が多く
なり全体的なランニングコストの低減にはならない。一
方、前段に用いる濾過体の孔径を後段の膜分離装置に用
いる透過膜の孔径と比較して大きくすればする程、当然
なこととして前段濾過体の通水ライフは長くなる。しか
しこの場合は、後段の膜分離装置に用いる透過膜の通水
ライフの延長には効果がない。上述のような現象は透過
膜がMF膜,UF膜,RO膜共に同様にあらわれる。
In this case, the closer the pore size of the filter body used in the former stage is to the pore size of the permeable membrane used in the latter stage membrane separator, the longer the water passing life of the latter stage membrane separator becomes. The clogging becomes early, the frequency of replacement of the pre-stage filter increases, and the overall running cost cannot be reduced. On the other hand, the larger the pore size of the filter body used in the former stage is compared with the pore size of the permeable membrane used in the membrane separator in the latter stage, the longer the water passage life of the former stage filter body becomes naturally. However, in this case, there is no effect in extending the water flow life of the permeable membrane used in the latter-stage membrane separation device. The above-described phenomenon occurs in the permeable membrane in the MF membrane, the UF membrane, and the RO membrane.

【0008】したがって膜分離装置の前段に濾過体を内
蔵する濾過器を設置した場合、両者共に通水ライフが延
び全体的なランニングコストが低減できることが強く望
まれている。
Therefore, when a filter incorporating a filter is installed in the preceding stage of the membrane separation device, it is strongly desired that the water-passing life of both of them is extended and the overall running cost can be reduced.

【0009】[0009]

【発明が解決しようとする問題点】本発明はかかる問題
点に鑑みてなされたものであり、MF膜やUF膜やRO
膜等の透過膜を用いる膜分離装置の前段に、当該透過膜
の孔径より大きな孔径を有する濾過体を内蔵する濾過器
を設置する場合において、前段濾過器として通水ライフ
の長い比較的孔径の大きい濾過体を用い、しかも後段膜
分離装置の通水ライフを大幅に延長できる超純水の製造
方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention has been made in view of the above problems, and it is an MF film, a UF film, or an RO film.
In the case where a filter having a filter body having a pore size larger than that of the permeation membrane is installed in the front stage of a membrane separation device using a permeable membrane such as a membrane, the front stage filter has a relatively long pore size with a long water life. It is an object of the present invention to provide a method for producing ultrapure water that uses a large filter and that can significantly extend the water passage life of the latter stage membrane separation device.

【0010】[0010]

【問題点を解決するための手段】上記目的を達成するた
めになされた本発明よりなる超純水の製造方法は、原水
を少なくともイオン交換装置および透過膜を内蔵する膜
分離装置を含む一次系純水製造装置で処理し、当該一次
系純水製造装置から得られる一次純水を二次系純水製造
装置で更に処理して超純水を製造する方法において、一
次系純水製造装置に用いる膜分離装置の前段に荷電濾過
体を内蔵する濾過器を設置し、当該濾過器の濾過水を膜
分離装置で処理することを特徴とするものである。
The method for producing ultrapure water according to the present invention, which has been made to achieve the above object, comprises a primary system including a membrane separation device containing at least an ion exchange device and a permeable membrane for raw water. In the method for producing ultrapure water by treating the primary pure water obtained by the primary pure water producing apparatus with the secondary pure water producing apparatus, the primary pure water producing apparatus is used. It is characterized in that a filter having a built-in charged filter is installed in the preceding stage of the membrane separator to be used, and filtered water of the filter is treated by the membrane separator.

【0011】図1は本発明の実施態様の一例である半導
体洗浄用の超純水を製造するフローを示す説明図であ
る。上水,工業用水等の原水1をまず凝集沈殿装置,砂
濾過器あるいはマイクロフロック濾過器等の前処理装置
2で処理して原水中の懸濁物質等を除く。次いで真空脱
気塔を脱炭酸塔として用いる2床3塔式純水製造装置3
で処理して純水を製造し、当該純水を混床式純水製造装
置4で更に処理して比較的比抵抗率の高い純水を製造す
る。次いで荷電濾過体を内蔵する濾過器5で純水を処理
して、当該純水中に存在する微粒子を除去した後、当該
荷電濾過体の孔径より小さい孔径を有する透過膜を用い
る精密濾過器(MF膜装置)や限外濾過膜装置(UF膜
装置)や逆浸透膜装置(RO膜装置)等の膜分離装置6
で処理して残留する微粒子,TOC等を除去する。
FIG. 1 is an explanatory view showing a flow for producing ultrapure water for cleaning semiconductors, which is an example of an embodiment of the present invention. Raw water 1 such as tap water or industrial water is first treated with a pretreatment device 2 such as a coagulating sedimentation device, a sand filter or a microfloc filter to remove suspended substances and the like in the raw water. Then, a two-bed, three-column type pure water production apparatus 3 using a vacuum degassing tower as a decarbonation tower 3
To produce pure water, which is further processed by the mixed bed type pure water producing apparatus 4 to produce pure water having a relatively high specific resistance. Then, the pure water is treated by a filter 5 having a built-in charge filter to remove fine particles existing in the pure water, and then a microfilter using a permeable membrane having a pore size smaller than that of the charge filter ( Membrane separation device 6 such as MF membrane device), ultrafiltration membrane device (UF membrane device) or reverse osmosis membrane device (RO membrane device)
To remove residual fine particles, TOC, etc.

【0012】このような一次系純水製造装置(A)で得
た一次純水を貯槽7で受け、次いで紫外線照射装置8,
混床式ポリシャー9,UF膜装置10からなる二次系純
水製造装置(B)で処理して超純水を得る。得られた超
純水は循環配管11を用いて貯槽7に循環し、循環配管
11の途中に設けたユースポイント12により必要に応
じて採水し、半導体の洗浄に供する。なお半導体を洗浄
することにより得られる洗浄廃水の内、比較的水質が良
好な洗浄廃水は図3に示したと同様に、これを回収処理
し、一次系純水製造装置の原水の一部として用いること
もできる。図1では2床3塔式純水製造装置3,混床式
純水製造装置4等のイオン交換装置の後段に膜分離装置
6を設置したが、膜分離装置6の設置位置はこれに限定
されず、イオン交換装置の前段に設置することもでき
る。但し、荷電濾過体を内蔵する濾過器5は必ず膜分離
装置6の前段に設置する。
The primary pure water obtained by such a primary pure water producing apparatus (A) is received in the storage tank 7, and then the ultraviolet irradiation device 8,
Ultrapure water is obtained by processing with a secondary pure water producing apparatus (B) including a mixed bed polisher 9 and a UF membrane apparatus 10. The obtained ultrapure water is circulated in the storage tank 7 using the circulation pipe 11, and water is sampled as needed by the use point 12 provided in the middle of the circulation pipe 11 to be used for cleaning the semiconductor. Of the cleaning wastewater obtained by cleaning the semiconductor, the cleaning wastewater having a relatively good water quality is recovered and used as a part of the raw water of the primary-system pure water production apparatus as shown in FIG. You can also In FIG. 1, the membrane separation device 6 is installed at the subsequent stage of the ion exchange device such as the two-bed / three-tower pure water production device 3 and the mixed-bed pure water production device 4, but the installation position of the membrane separation device 6 is limited to this. Instead, it can be installed before the ion exchange device. However, the filter 5 having the built-in charged filter is always installed before the membrane separation device 6.

【0013】本発明に用いる濾過器5はプラス荷電ある
いはマイナス荷電を有する荷電濾過体を内蔵するもので
あって、またその孔径は後段に設置する膜分離装置6に
用いる透過膜の孔径よりかなり大きいものを用いる。荷
電濾過体の形状はプリー状,平膜状,中空糸状,スパイ
ラル状等のいかなる形状のものも使用でき、またその材
質はポリスルフォン,ナイロン,ポリプロピレン,ポリ
エステル等あらゆるものを使用することができる。この
ような荷電濾過体を内蔵する濾過器5を膜分離装置6の
前段に設置することにより、膜分離装置6の通水ライフ
を飛躍的に延長させることができる。
The filter 5 used in the present invention has a built-in charged filter having a positive charge or a negative charge, and its pore size is considerably larger than the pore size of the permeable membrane used in the membrane separation device 6 installed in the subsequent stage. Use one. The shape of the charged filter may be any shape such as a pleated shape, a flat membrane shape, a hollow fiber shape, a spiral shape, and any material such as polysulfone, nylon, polypropylene or polyester may be used. By installing the filter 5 containing such a charged filter in the preceding stage of the membrane separation device 6, the water passing life of the membrane separation device 6 can be remarkably extended.

【0014】なお当該濾過器5として孔径が同じである
が荷電を有しない濾過体を用いた場合、被処理水中の微
粒子が漏洩するため後段の膜分離装置6の通水ライフの
延長にはあまり効果がない。荷電を有しない濾過体を用
いて、荷電を有した濾過体を用いたと同様な効果を得る
ためには、当該濾過体の孔径をかなり小さいものとしな
ければならず、その結果濾過器5の通水ライフが短くな
り全体的なランニングコストの低減にはならない。
When a filter body having the same pore size but no electric charge is used as the filter 5, fine particles in the water to be treated leak out, which is not sufficient for extending the water flow life of the membrane separation device 6 in the subsequent stage. has no effect. In order to obtain the same effect as that obtained by using a filter body having a charge by using a filter body having no charge, the pore size of the filter body must be made considerably small, and as a result, the passage of the filter 5 is reduced. The water life will be shortened and the overall running cost will not be reduced.

【0015】[0015]

【作用】水中に存在する微粒子は通常マイナスかあるい
はプラスの荷電を有しているが、たとえばマイナス荷電
を有する微粒子をプラス荷電を有する濾過体で濾過した
場合、いわゆる孔径による濾過作用だけでなく静電気的
な吸着作用によっても微粒子が除去される。本発明の場
合、比較的大きい孔径を有する濾過体を内蔵する濾過器
を用いても後段に設置する膜分離装置の通水ライフを延
長させることができるのは、本来であれば濾過体を通過
してしまうような比較的小さい微粒子が静電気的な吸着
作用によって除去されるためと考えられる。このように
濾過器5に用いる濾過体として荷電濾過体を用いること
により、濾過器5および膜分離装置6の両者共にその通
水ライフを延長させることができるが、処理する水によ
ってプラス荷電を有する濾過体が効果的な場合と、マイ
ナス荷電を有する濾過体が効果的な場合がある。
The fine particles present in water usually have a negative or positive charge. For example, when fine particles having a negative charge are filtered by a filter body having a positive charge, not only the so-called pore size filtering action but also static electricity Fine particles are also removed by a specific adsorption action. In the case of the present invention, even if a filter having a filter body having a relatively large pore size is used, the water flow life of the membrane separation device to be installed in the latter stage can be extended only by passing through the filter body. It is considered that the relatively small particles that would be removed are removed by the electrostatic adsorption action. By thus using the charged filter as the filter used in the filter 5, both the filter 5 and the membrane separation device 6 can extend their water-passing life, but have positive charge depending on the water to be treated. There are cases where the filter body is effective and cases where the filter body having a negative charge is effective.

【0016】したがって処理する水によってどちらかを
選定することが必要となるが、ほとんどの水はプラス荷
電を有する濾過体が効果的である。この理由は水中に含
まれる微粒子がほとんどの場合、マイナス荷電となって
いるためと考えられる。しかし時として微粒子がプラス
荷電となっている被処理水も存在するので、このような
場合マイナス荷電を有する濾過体を用いるとよい。
Therefore, it is necessary to select one of them depending on the water to be treated, but most of the water is a filter body having a positive charge. It is considered that this is because most of the fine particles contained in water are negatively charged. However, sometimes there is water to be treated in which the fine particles are positively charged, and in such a case, it is preferable to use a negatively charged filter.

【0017】[0017]

【効果】以上説明したごとく本発明によって一次系純水
製造装置に用いられるMF膜装置,UF膜装置,RO膜
装置等の透過膜を用いる膜分離装置の通水ライフを延長
することができる。また膜分離装置の前段に設置する濾
過器は孔径の大きな濾過体を用いることができるので濾
過器の通水ライフも長く、したがって超純水の全体的な
製造コストを低減させることができる。
As described above, according to the present invention, it is possible to extend the water flow life of a membrane separation device using a permeable membrane such as an MF membrane device, a UF membrane device, and an RO membrane device used in a primary pure water producing apparatus. Further, since the filter installed in the preceding stage of the membrane separation device can use a filter having a large pore size, the water passage life of the filter is long, and therefore the overall production cost of ultrapure water can be reduced.

【0018】[0018]

【実施例】以下に本発明の実施例を説明するが、本発明
は以下の実施例に限定されるものではない。上水を前処
理装置およびイオン交換装置で処理することにより得た
比抵抗率10MΩ−cmの純水をUF膜(FIT301
6、旭化成(株)製)を内蔵した膜分離装置で処理する
にあたり、前段でプラス荷電を有する孔径10μのナイ
ロン製の濾過体を内蔵する濾過器で処理し、その濾過水
を前記膜分離装置で処理した。その際の処理日数と膜分
離装置の圧力損失の上昇の関係を図2のAに示した。一
方比較のため同じ純水を濾過器で処理することなく、そ
のまま同じ膜分離装置で処理した場合の結果を図2のB
に示した。また同じ純水を荷電を有していない孔径10
μの濾過体を内蔵する濾過器で処理し、その濾過水を同
じ膜分離装置で処理した場合の結果を図2のCに示し
た。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to the following examples. Pure water having a resistivity of 10 MΩ-cm obtained by treating clean water with a pretreatment device and an ion exchange device was used as a UF membrane (FIT301).
6. Asahi Kasei Co., Ltd. built-in membrane separator is treated with a filter having a positively charged nylon filter body with a pore size of 10 μ in the previous stage, and the filtered water is treated by the membrane separator. Processed in. The relationship between the number of treatment days and the increase in pressure loss of the membrane separation device at that time is shown in A of FIG. On the other hand, for comparison, the same pure water was not treated with the filter but was treated with the same membrane separator as it is.
It was shown to. In addition, the same pure water has a pore size of 10
The result of treating with a filter having a built-in filter body of μ and treating the filtered water with the same membrane separator is shown in C of FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様の一例である半導体洗浄用の
超純水を製造するフローの説明図である。
FIG. 1 is an explanatory view of a flow for producing ultrapure water for cleaning semiconductors, which is an example of an embodiment of the present invention.

【図2】実施例の膜分離装置の通水結果を示すグラフで
ある。
FIG. 2 is a graph showing the results of passing water through the membrane separation device of the example.

【図3】従来の半導体洗浄用の超純水の製造フローを示
す説明図である。
FIG. 3 is an explanatory diagram showing a conventional manufacturing flow of ultrapure water for cleaning semiconductors.

【符号の説明】[Explanation of symbols]

1:原水 2:前処理装置 3:2床3塔式純水製造装置 4:混床式純水製造装置 5:濾過器 6:膜分離装置 7:貯槽 8:紫外線照射装置 9:混床式ポリシャー 10:UF膜装置 11:循環配管 12:ユースポイント 1: Raw water 2: Pretreatment device 3: 2-bed 3-tower pure water production device 4: Mixed bed pure water production device 5: Filter 6: Membrane separation device 7: Storage tank 8: Ultraviolet irradiation device 9: Mixed bed type Polisher 10: UF membrane device 11: Circulation piping 12: Use point

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月11日[Submission date] September 11, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】本発明は、半導体洗浄用あるいは
医薬品製造用等に用いられる超純水の製造方法に関する
ものであり、特に一次系純水製造装置に用いられる精密
濾過装置(MF膜装置)や限外濾過膜装置(UF膜装
置)や逆浸透膜装置(RO膜装置)等の透過膜を用いる
膜分離装置の圧力損失の上昇を低減する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrapure water used for cleaning semiconductors, pharmaceuticals, etc., and particularly to a microfiltration membrane apparatus (MF membrane) used in a primary pure water producing apparatus. Device), an ultrafiltration membrane device (UF membrane device), a reverse osmosis membrane device (RO membrane device) and the like, and a method for reducing an increase in pressure loss of a membrane separation device using a permeable membrane.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】貯槽(へ)に貯留した一次純水は更に紫外
線照射装置(ト),混床式ポリシャー(チ),UF膜装
置(リ)から構成される二次系純水製造装置(B)で処
理され、得られた超純水は循環配管(ヌ)を用いて前記
貯槽(ヘ)に循環され、また循環配管(ヌ)の途中に付
設したユースポイント(ル)から必要に応じて超純水が
採水される。またユースポイント(ル)より採した超
純水を半導体の洗浄等に用いた後、その洗浄廃水(ヲ)
が水質的に良質なものは、紫外線酸化装置,活性炭濾過
装置,イオン交換装置,膜分離装置等を適当に組み合わ
せた回収装置(ワ)で処理され、一次系純水製造装置
(A)に用いる原水の一部として回収される場合が多
い。
The primary pure water stored in the storage tank (he) further comprises a secondary pure water producing device (B) comprising an ultraviolet irradiation device (G), a mixed bed polisher (H) and a UF membrane device (R). The ultrapure water obtained by the treatment is circulated in the storage tank (f) using a circulation pipe (g), and if necessary from the use point (l) attached in the middle of the circulation pipe (g). Pure water is sampled. The point of use after using the ultrapure water was water adopted from (Le) or the like in semiconductor washing, the washing waste liquid (wo)
Water quality is treated with a recovery device (wa) that is an appropriate combination of an ultraviolet oxidation device, an activated carbon filtration device, an ion exchange device, a membrane separation device, etc., and is used in the primary pure water production device (A). Often collected as part of raw water.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】上記一次系純水製造装置(A)で用いられ
る膜分離装置(ホ)は、圧力損失が増大した場合、薬品
等を用いる洗浄をいその圧力損失の増大を回復した
り、あるいは上記洗浄によって膜が劣化したり、あるい
は上記洗浄による効果がなくなった場合、新しい透過膜
と交換される。よって膜分離装置(ホ)の洗浄の頻度、
あるいは透過膜の交換頻度が少なくなればなる程、その
ランニングコストは低減される。従来から膜分離装置
(ホ)の前段に、その膜分離装置に用いる透過膜の孔径
より大きい孔径を有する濾過体を内蔵した濾過器を設置
し、膜分離装置の圧力損失が増大するのを防止し、通水
ライフの延長を計ることが行われている。
[0006] The membrane separation device used in the primary system water purifying system (A) (e), when the pressure loss is increased, or to recover the increase in pressure loss in line iso washing using chemicals or the like, or When the membrane is deteriorated by the washing or the effect of the washing is lost, the membrane is replaced with a new permeable membrane. Therefore, the frequency of cleaning the membrane separator (e),
Alternatively, the less frequently the permeable membrane is replaced, the lower its running cost will be. A filter with a built-in filter having a pore size larger than that of the permeable membrane used in the membrane separator has been installed in the previous stage of the membrane separator (e) to prevent the pressure loss of the membrane separator from increasing. However, the water flow life is being extended.

【手続補正4】[Procedure correction 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】図1は本発明の実施態様の一例である半導
体洗浄用の超純水を製造するフローを示す説明図であ
る。上水,工業用水等の原水1をまず凝集沈澱装置,砂
濾過器あるいはマイクロフロック濾過器等の前処理装置
2で処理して原水中の懸濁物質等を除く。次いで真空脱
気塔を脱炭酸塔として用いる2床3塔式純水製造装置3
で処理して純水を製造し、当該純水を混床式純水製造装
置4で更に処理して比較的比抵抗率の高い純水を製造す
る。次いで荷電濾過体を内蔵する濾過器5で純水を処理
して、当該純水中に存在する微粒子を除去した後、当該
荷電濾過体の孔径より小さい孔径を有する透過膜を用い
る精密濾過膜装置(MF膜装置)や限外濾過膜装置(U
F膜装置)や逆浸透膜装置(RO膜装置)等の膜分離装
置6で処理して残留する微粒子,TOC等を除去する。
FIG. 1 is an explanatory view showing a flow for producing ultrapure water for cleaning semiconductors, which is an example of an embodiment of the present invention. Raw water 1 such as tap water or industrial water is first treated with a pretreatment device 2 such as a coagulating sedimentation device, a sand filter or a microfloc filter to remove suspended substances and the like in the raw water. Then, a two-bed, three-column type pure water production apparatus 3 using a vacuum degassing tower as a decarbonation tower 3
To produce pure water, which is further processed by the mixed bed type pure water producing apparatus 4 to produce pure water having a relatively high specific resistance. Then, the pure water is treated with a filter 5 having a built-in charge filter to remove fine particles existing in the pure water, and then a microfiltration membrane device using a permeable membrane having a pore size smaller than that of the charge filter. (MF membrane device) and ultrafiltration membrane device (U
The residual fine particles, TOC and the like are removed by treatment with a membrane separation device 6 such as an F membrane device) or a reverse osmosis membrane device (RO membrane device).

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】本発明に用いる濾過器5はプラス荷電ある
いはマイナス荷電を有する荷電濾過体を内蔵するもので
あって、またその孔径は後段に設置する膜分離装置6に
用いる透過膜の孔径よりかなり大きいものを用いる。荷
電濾過体の形状はプリー状,平膜状,中空糸状,スパ
イラル状等のいかなる形状のものも使用でき、またその
材質はポリスルフォン,ナイロン,ポリプロピレン,ポ
リエステル等あらゆるものを使用することができる。こ
のような荷電濾過体を内蔵する濾過器5を膜分離装置6
の前段に設置することにより、膜分離装置6の通水ライ
フを飛躍的に延長させることができる。
The filter 5 used in the present invention has a built-in charged filter having a positive charge or a negative charge, and its pore size is considerably larger than the pore size of the permeable membrane used in the membrane separation device 6 installed in the subsequent stage. Use one. Charged filter body shape pulley Tsu-shaped, flat membrane, hollow fiber, it can be used of any shape spiral like, and the material can be used polysulfone, nylon, polypropylene, polyester or the like everything .. The filter 5 containing such a charged filter is used as a membrane separation device 6
By installing it in the previous stage, the water passing life of the membrane separation device 6 can be dramatically extended.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水を少なくともイオン交換装置および
透過膜を内蔵する膜分離装置を含む一次系純水製造装置
で処理し、当該一次系純水製造装置から得られる一次純
水を二次系純水製造装置でさらに処理して超純水を製造
する方法において、一次系純水製造装置に用いる膜分離
装置の前段に荷電濾過体を内蔵する濾過器を設置し、当
該濾過器の濾過水を膜分離装置で処理することを特徴と
する超純水の製造方法。
1. Raw water is treated by a primary pure water producing apparatus including at least an ion exchange apparatus and a membrane separator having a permeable membrane, and primary pure water obtained from the primary pure water producing apparatus is treated as secondary pure water. In a method for producing ultrapure water by further processing with a water producing device, a filter having a built-in charged filter is installed in front of the membrane separation device used in the primary pure water producing device, and the filtered water of the filter is filtered. A method for producing ultrapure water, which comprises treating with a membrane separator.
【請求項2】 請求項1に記載の濾過器がプラス荷電を
有する濾過体を内蔵する濾過器である超純水の製造方
法。
2. A method for producing ultrapure water, wherein the filter according to claim 1 is a filter incorporating a filter body having a positive charge.
JP3287216A 1991-10-08 1991-10-08 Production of ultrapure water Pending JPH0596279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287216A JPH0596279A (en) 1991-10-08 1991-10-08 Production of ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287216A JPH0596279A (en) 1991-10-08 1991-10-08 Production of ultrapure water

Publications (1)

Publication Number Publication Date
JPH0596279A true JPH0596279A (en) 1993-04-20

Family

ID=17714555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287216A Pending JPH0596279A (en) 1991-10-08 1991-10-08 Production of ultrapure water

Country Status (1)

Country Link
JP (1) JPH0596279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003350A1 (en) * 1994-07-22 1996-02-08 Organo Corporation Method of manufacturing pure water or ultrapure water and apparatus for manufacturing the same
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003350A1 (en) * 1994-07-22 1996-02-08 Organo Corporation Method of manufacturing pure water or ultrapure water and apparatus for manufacturing the same
GB2295822A (en) * 1994-07-22 1996-06-12 Organo Corp Method of manufacturing pure water or ultrapure water and apparatus for manufacturing the same
GB2295822B (en) * 1994-07-22 1998-02-04 Organo Corp Purifying water using a boron selective ion exchange resin
US5811012A (en) * 1994-07-22 1998-09-22 Organo Corporation Deionized water or high purity water producing method and apparatus
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method

Similar Documents

Publication Publication Date Title
WO2013054810A1 (en) Organic sewage collection processing device and collection processing method
JP4309633B2 (en) Water treatment method
JP2876978B2 (en) Water purification method
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
JP6689435B2 (en) Wastewater treatment system and wastewater treatment method
JPH04227099A (en) Method for purifying underground water and waste water
JPH0679272A (en) Device for production of pure water
KR100352740B1 (en) Pretreatment Method of Water Reuse System using Air Flotation and Continuous Microfilter
CN110862167A (en) Electrode foil corrosion wastewater treatment system and treatment process thereof
JP2002224543A (en) Water purification treatment method and apparatus therefor
JPH0596279A (en) Production of ultrapure water
JP2007203144A (en) Water treatment method and water treatment equipment
JP3185398B2 (en) Water purification equipment
KR19990070114A (en) Central water purification system using highly permeable ultrafiltration membrane module
JP2002346347A (en) Method and apparatus for filtration
JP2002370089A (en) Washing wastewater cleaning system
JPH074598B2 (en) Human waste system treatment equipment
JP2002346548A (en) Method for utilizing used active carbon
JP3218077B2 (en) Surface water purification method and apparatus
JP2000051855A (en) Water treatment apparatus
JP2001239136A (en) Treating system and operating method therefor
JPH03293087A (en) Production of ultra-pure water
JP2005238152A (en) Organic material-containing water treatment method
JPH0966296A (en) Water treatment method and apparatus
JP2006272200A (en) Method for operating emergency water purifying apparatus and emergency water purifying apparatus using it