JPH0594818A - Battery positive electrode sheet and its manufacture - Google Patents

Battery positive electrode sheet and its manufacture

Info

Publication number
JPH0594818A
JPH0594818A JP3278935A JP27893591A JPH0594818A JP H0594818 A JPH0594818 A JP H0594818A JP 3278935 A JP3278935 A JP 3278935A JP 27893591 A JP27893591 A JP 27893591A JP H0594818 A JPH0594818 A JP H0594818A
Authority
JP
Japan
Prior art keywords
positive electrode
polymer
battery positive
mixture
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3278935A
Other languages
Japanese (ja)
Inventor
Morihiko Matsumoto
守彦 松本
Toshihiro Ichino
敏弘 市野
Shigeo Sugihara
茂雄 杉原
Shigeto Okada
重人 岡田
Takahisa Masashiro
尊久 正代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3278935A priority Critical patent/JPH0594818A/en
Publication of JPH0594818A publication Critical patent/JPH0594818A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a battery positive electrode sheet which can be applied to a battery having a high energy density and the like, with a high utilizing efficiency of positive electrode, and of an easy manufacturing method. CONSTITUTION:In a high polymer solid electrolyte mainly of a phase-separated high polymer matrix and a metallic salt electrolyte, including a high polymer and/or an interface activator soluble to the water and/or a polar solvent, as the stabilizer of them, the minute particles of a battery positive electrode active material and an electron conductor are dispersed to form a battery positive electrode sheet. And as its manufacturing method, from a dispersed solution of the high polymer minute particles including the battery positive electrode active material and the electron conductor in the water and/or the polar solvent including the stabilizer (in this case, a metallic salt may be included in the dispersed solution), the water and/or the polar solvent are removed to form a high polymer matrix, and then, the water and/or the polar solvent, or the metallic salt electrolyte are impregnated. Consequently, a safe solid battery with no liquid leaking can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に、リチウム電池な
どの高エネルギー電池などに適用できる、効率がよく、
製造がしやすい電池正極シートに関する。
BACKGROUND OF THE INVENTION The present invention is particularly applicable to high energy batteries such as lithium batteries and has high efficiency,
The present invention relates to a battery positive electrode sheet that is easy to manufacture.

【0002】[0002]

【従来の技術】近年、小型、携帯電子機器用の電源とし
て、高エネルギー密度を有する電池のニーズが高まって
いる。このようなニーズを満たす電池の代表的なものと
して、アルカリ金属、特にリチウムを負極に使った電池
が挙げられる。現在リチウム電池は、電解質にリチウム
塩を溶解した有機電解液を用いているため、液漏れ、デ
ンドライトショートなど、安全面での信頼性が十分とは
いえない。このため無機物や高分子でできた固体電解質
を用いた、全固体型の電池の実現が期待されている。中
でも電解質に高分子固体電解質を、また正極にイオン伝
導性のある高分子固体電解質をバインダーとする正極シ
ートを用いて構成される固体電池は、大面積化が容易で
大容量の電池が実現可能であることや、作製法が比較的
簡易であることから、近年盛んに検討が進められてい
る。このような正極シート作製の試みとして、高分子電
解質に、リチウム塩を溶解したポリエチレンオキシド
(PEO)を使用した正極シートの作製〔例えば、M.Z.
A.ムンシ(M.Z.A.Munshi)ほか、ソリッド ステート
アイオニクス(Solid State Ionics)、第41巻、第4
1〜46頁(1988)〕が挙げられるが、PEOが軟
化する60℃以上では良好な特性を示すものの、室温付
近においては、正極シート中のイオン拡散が遅く、更に
正極活物質と高分子固体電解質との界面の接触が悪く、
正極の利用率が低くなるという欠点を有していた。
2. Description of the Related Art In recent years, there has been an increasing need for batteries having a high energy density as a power source for small and portable electronic devices. As a typical battery that meets such needs, a battery using an alkali metal, particularly lithium, as a negative electrode can be given. At present, a lithium battery uses an organic electrolytic solution in which a lithium salt is dissolved as an electrolyte, and therefore, safety cannot be said to be sufficient in terms of safety such as liquid leakage and dendrite short circuit. Therefore, realization of an all-solid-state battery using a solid electrolyte made of an inorganic material or a polymer is expected. Among them, a solid-state battery that uses a solid polymer electrolyte as the electrolyte and a positive electrode sheet that uses the solid polymer electrolyte with ion conductivity as the binder for the positive electrode can easily have a large area and realize a large-capacity battery. In addition, because of the fact that the manufacturing method is relatively simple and the manufacturing method is relatively simple, studies have been actively conducted in recent years. As an attempt to produce such a positive electrode sheet, a positive electrode sheet using polyethylene oxide (PEO) in which a lithium salt is dissolved is used as a polymer electrolyte [eg, MZ
A. MZAMunshi and other solid state
Solid State Ionics, Volume 41, Volume 4
1 to 46 (1988)], PEO softens at 60 ° C. or higher and shows good characteristics, but near room temperature, ion diffusion in the positive electrode sheet is slow, and the positive electrode active material and polymer solid Poor contact with the electrolyte at the interface,
It has a drawback that the utilization rate of the positive electrode is low.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような現
状にかんがみてなされたものであり、その目的は、リチ
ウム電池などの高エネルギー密度を有する電池などに適
用でき、正極利用効率が高く、製造法が容易な電池正極
シートを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to be applicable to a battery having a high energy density such as a lithium battery and having a high positive electrode utilization efficiency. It is to provide a battery positive electrode sheet that can be easily manufactured.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は電池正極シートに関する発明であっ
て、高分子固体電解質中に電池正極活物質微粒子及び電
子伝導体が分散した電池正極シートにおいて、前記高分
子固体電解質が、高分子マトリクスと金属塩電解液を主
成分とし、水、極性溶媒又は両者の混合物に可溶な高分
子、界面活性剤又は両者の混合物を含有しており、高分
子マトリクスと金属塩電解液が相分離し、前記の水、極
性溶媒又は両者の混合物に可溶な高分子、界面活性剤又
は両者の混合物が高分子マトリクスと金属塩電解液の相
互分散を安定させていることを特徴とする。また、本発
明の第2の発明は、第1の発明の電池正極シートの製造
方法に関する発明であって、水、極性溶媒又は両者の混
合物を分散媒体として、電池正極活物質微粒子及び電子
伝導体を含有し、更に該分散媒体に可溶な高分子、界面
活性剤又は両者の混合物を安定剤として含有する高分子
微粒子の分散液から、水、極性溶媒又は両者の混合物を
除去することにより、高分子微粒子同志を融着させて前
記電池正極活物質微粒子及び電子伝導体を内部に分散し
た高分子マトリクスを形成させた後、該高分子マトリク
ス中に金属塩電解液を含浸させることを特徴とする。そ
して、本発明の第3の発明は第1の発明の電池正極シー
トの他の製造方法に関する発明であって、水、極性溶媒
又は両者の混合物を分散媒体として、該分散媒体に可溶
な高分子、界面活性剤又は両者の混合物を安定剤として
含有すると共に金属塩、電池正極活物質微粒子及び電子
伝導体を含有した高分子微粒子の分散液から、水、極性
溶媒又は両者の混合物を除去することにより、高分子微
粒子同志を融着させて前記電池正極活物質微粒子及び電
子伝導体を内部に分散した高分子マトリクスを形成させ
た後、該高分子マトリクス中に金属塩を溶解する水、極
性溶媒又は両者の混合物を含浸させることを特徴とす
る。
Means for Solving the Problems To outline the present invention, the first invention of the present invention relates to a battery positive electrode sheet, in which battery positive electrode active material fine particles and an electron conductor are dispersed in a polymer solid electrolyte. In the battery positive electrode sheet, the polymer solid electrolyte contains a polymer matrix, a metal salt electrolyte as a main component, and a polymer soluble in water, a polar solvent or a mixture of both, a surfactant, or a mixture of both. The polymer matrix and the metal salt electrolyte are phase-separated, and the polymer soluble in water, the polar solvent, or the mixture of both of them, the surfactant, or the mixture of both are the polymer matrix and the metal salt electrolyte. It is characterized by stabilizing the mutual dispersion of. A second invention of the present invention is an invention relating to the method for producing a battery positive electrode sheet of the first invention, wherein the battery positive electrode active material fine particles and the electron conductor are used with water, a polar solvent or a mixture of both as a dispersion medium. From the dispersion of polymer fine particles containing a polymer soluble in the dispersion medium, a surfactant or a mixture of both as a stabilizer, by removing water, a polar solvent or a mixture of both, The polymer fine particles are fused together to form a polymer matrix having the battery positive electrode active material fine particles and an electron conductor dispersed therein, and the polymer matrix is then impregnated with a metal salt electrolyte. To do. And a third invention of the present invention is an invention relating to another method for producing the battery positive electrode sheet of the first invention, wherein water, a polar solvent or a mixture of both is used as a dispersion medium, and a high solubility in the dispersion medium is obtained. Water, a polar solvent or a mixture of both is removed from a dispersion of polymer particles containing a molecule, a surfactant or a mixture of both as a stabilizer and a metal salt, battery positive electrode active material particles and an electron conductor. As a result, the polymer fine particles are fused together to form a polymer matrix having the battery positive electrode active material fine particles and the electron conductor dispersed therein, and then water, which dissolves a metal salt in the polymer matrix, polar It is characterized in that it is impregnated with a solvent or a mixture of both.

【0005】本発明者らは、電池用正極シートのバイン
ダーに、電解液をイオン伝導路に有する高分子固体電解
質を用いることにより、従来よりも高い正極活物質利用
率の電池正極シートが得られることを見出し、本発明に
至った。
The inventors of the present invention can obtain a battery positive electrode sheet having a higher utilization ratio of the positive electrode active material than ever before by using a solid polymer electrolyte having an electrolytic solution in an ionic conduction path as a binder of the battery positive electrode sheet. The inventors have found out that, and have reached the present invention.

【0006】本発明の電池正極シートでは、高分子固体
電解質が正極活物質へのイオン輸送の役割を担ってい
る。この高分子固体電解質を用いた場合、高いイオン伝
導率を有する金属塩電解液がイオン伝導路となるため、
正極シート中のイオンの拡散が速く、更に電解液が正極
活物質と高分子固体電解質との界面にしみだして、界面
の接触抵抗が引下げられている。このため、電池を構成
した際の正極活物質の利用率並びに比容量の増大が期待
できる。更に、プロセスが単純なため、低い製造コスト
が期待できる。
In the battery positive electrode sheet of the present invention, the polymer solid electrolyte plays a role of ion transport to the positive electrode active material. When this polymer solid electrolyte is used, the metal salt electrolyte having high ionic conductivity serves as an ionic conduction path,
Diffusion of ions in the positive electrode sheet is fast, and the electrolytic solution seeps out to the interface between the positive electrode active material and the solid polymer electrolyte to reduce the contact resistance at the interface. Therefore, it is expected that the utilization rate of the positive electrode active material and the specific capacity when the battery is constructed are increased. Further, since the process is simple, low manufacturing cost can be expected.

【0007】本発明の正極シートに用いる正極活物質に
は、例えばV2 5 、MnO2 、TiS2 、V6 13
Cr3 8 、MoS2 、MoS3 、NbSeあるいはこ
れらの混合物等が、また電子伝導性物質には熱分解黒鉛
やアセチレンブラックあるいはこれらの混合物等が、そ
れぞれ好適に用いられる。
Examples of the positive electrode active material used in the positive electrode sheet of the present invention include V 2 O 5 , MnO 2 , TiS 2 , V 6 O 13 ,
Cr 3 O 8, MoS 2, MoS 3, NbSe or mixtures thereof are also the electron conductive material pyrolytic graphite or acetylene black or mixtures thereof are preferably used, respectively.

【0008】本発明の電池正極シート中の高分子固体電
解質を製造するときに使用する高分子微粒子の成分とし
ては、高分子マトリクスを形成したときに高分子成分が
電解液と相分離するものであればどのようなものでもよ
いが、極性が低い高分子、例えば、安価な炭化水素系高
分子又はその共重合体を成分とするものが好適である。
高分子微粒子中の高分子成分としては、例えば、次のよ
うなものの単独あるいは混合物が挙げられる:ポリスチ
レン、ポリプロピレン、ポリイソブテン、ポリエチレ
ン、ポリブタジエン、ポリイソプレン、ポリ(α−メチ
ルスチレン)、ポリブチルメタクリレート、ポリブチル
アクリレート、ポリ(2−エチルヘキシルアクリレー
ト)、ポリジブチルフタレート、ポリビニルブチルエー
テル、ポリビニルブチラール、ポリビニルホルマール及
びこれらの成分を含む共重合体。高分子微粒子について
も、異なる成分を持つ複数種の微粒子の混合でも良い。
微粒子の高分子微粒子の粒径は、0.01〜50μmの
ものが好適に用いられる。
As a component of the polymer fine particles used when producing the polymer solid electrolyte in the battery positive electrode sheet of the present invention, the polymer component is phase-separated from the electrolytic solution when the polymer matrix is formed. Although any polymer may be used, a polymer having a low polarity, for example, a polymer containing an inexpensive hydrocarbon polymer or a copolymer thereof is preferable.
Examples of the polymer component in the polymer fine particles include the following alone or as a mixture: polystyrene, polypropylene, polyisobutene, polyethylene, polybutadiene, polyisoprene, poly (α-methylstyrene), polybutyl methacrylate, Polybutyl acrylate, poly (2-ethylhexyl acrylate), polydibutyl phthalate, polyvinyl butyl ether, polyvinyl butyral, polyvinyl formal and copolymers containing these components. The polymer fine particles may also be a mixture of a plurality of types of fine particles having different components.
The fine polymer particles having a particle size of 0.01 to 50 μm are preferably used.

【0009】高分子微粒子分散液の安定剤には、界面活
性剤が好適に使われ、例えば、次のようなものが挙げら
れる:脂肪酸金属塩、アルキルベンゼンスルホン酸金属
塩、アルキル硫酸金属塩、ジオクチルスルホコハク酸金
属塩、ポリオキシエチレンノニルフェニルエーテル、ポ
リオキシエチレンステアリン酸エステル、ポリオキシエ
チレンソルビタンモノラウリン酸エステル、ポリオキシ
エチレン−ポリオキシプロピレンブロック共重合体、ポ
リエーテル変性シリコーンオイル等の単独あるいは混合
物。また、安定剤に分散媒体に溶解可能な高分子等を使
用して、高分子微粒子を分散させても良い。このような
高分子としては、分散媒体によって異なるが、水が分散
媒体の場合、ヒドロキシエチルセルロース、ポリビニル
アルコール、ポリアクリル酸金属塩、メチルセルロース
などが挙げられる。高分子微粒子分散液の分散媒体に
は、水が好適に用いられるが、アルコール類など極性有
機溶媒を使用することができる。
Surfactants are preferably used as stabilizers for the polymer particle dispersion, and examples thereof include the following: fatty acid metal salts, alkylbenzenesulfonic acid metal salts, alkylsulfate metal salts, dioctyl. Metal sulfosuccinate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearic acid ester, polyoxyethylene sorbitan monolauric acid ester, polyoxyethylene-polyoxypropylene block copolymer, polyether modified silicone oil, etc., alone or in a mixture. Moreover, the polymer fine particles may be dispersed by using a polymer or the like that is soluble in the dispersion medium as the stabilizer. Examples of such a polymer include hydroxyethyl cellulose, polyvinyl alcohol, polyacrylic acid metal salt, and methyl cellulose when water is the dispersion medium, although it depends on the dispersion medium. Water is preferably used as the dispersion medium of the polymer particle dispersion, but polar organic solvents such as alcohols can be used.

【0010】イオン伝導路となる電解液の構成要素であ
る金属塩は、作製する高分子電解質の用途によって異な
るが、例としてリチウム電池への適用を考えると、Li
ClO4 、LiAlCl4 、LiBF4 、LiPF6
LiAsF6 、LiNbF6 、LiSCN、LiCl、
Li(CF3 SO3 )、Li(C6 5 SO3 )等のリ
チウム塩及びこれらの混合物が例として挙げられる。ま
た、同様に例としてリチウム電池への適用を想定する
と、電解液の溶媒には、プロピレンカーボネート、エチ
レンカーボネート、γ−ブチロラクトン、ジメチルカー
ボネート、ジメチルスルホキシド、アセトニトリル、ス
ルホラン、ジメチルホルムアミド、ジメチルアセトアミ
ド、1,2−ジエトキシエタン、1,2−ジメトキシエ
タン、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、ジオキソラン、メチルアセテート等の非プロトン
性極性溶媒及びこれらの混合物が例として挙げられる。
上記金属塩と溶媒の混合比は、高分子固体電解質中に形
成されたイオン伝導路で、金属塩濃度で0.01〜5mo
l /lとなるよう調製することが好適である。
The metal salt, which is a component of the electrolytic solution forming the ionic conduction path, differs depending on the intended use of the polymer electrolyte to be produced.
ClO 4 , LiAlCl 4 , LiBF 4 , LiPF 6 ,
LiAsF 6 , LiNbF 6 , LiSCN, LiCl,
Examples include lithium salts such as Li (CF 3 SO 3 ), Li (C 6 H 5 SO 3 ), and mixtures thereof. Similarly, assuming application to a lithium battery as an example, the solvent of the electrolytic solution is propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, dimethyl sulfoxide, acetonitrile, sulfolane, dimethylformamide, dimethylacetamide, 1, Examples include aprotic polar solvents such as 2-diethoxyethane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate and mixtures thereof.
The mixing ratio of the metal salt to the solvent is 0.01 to 5 mol at the metal salt concentration in the ion conduction path formed in the solid polymer electrolyte.
It is preferable to prepare it so that it becomes 1 / l.

【0011】高分子微粒子分散液は、高分子溶液を分散
媒体中に展開、分散させて微粒子化し、界面活性剤又は
分散媒体に可溶性の高分子を用いて安定化させて製造す
ることができるが、水系分散媒体中で乳化重合法で製造
するのが好適である。また、高分子微粒子分散液は、ア
ルコールなどの極性溶媒中、分散重合で製造することも
できる〔例えば、Y.アルモク(Y.Almog )ほか、ブリ
テイッシュ ポリマージャーナル(British Polymer Jo
urnal )、第14巻、第131頁(1982)参照〕。
The polymer fine particle dispersion can be produced by dispersing and dispersing a polymer solution in a dispersion medium to form fine particles, and stabilizing the polymer solution with a surfactant or a polymer soluble in the dispersion medium. It is preferable to manufacture by an emulsion polymerization method in an aqueous dispersion medium. The polymer fine particle dispersion can also be produced by dispersion polymerization in a polar solvent such as alcohol [eg, Y. Y.Almog, as well as the British Polymer Jo
urnal), Vol. 14, p. 131 (1982)].

【0012】高分子微粒子分散液中に正極活物質微粒子
及び電子伝導体を分散させる方法は通常の方法でよく、
正極活物質微粒子及び電子伝導体を高分子微粒子分散液
中に入れて、かくはんすればよい。大容量の電池を得る
ためには、正極活物質の混合比を大きく、またシートと
して十分な機械的強度を得るには、逆に高分子微粒子の
混合比を大きくする必要がある。そのため、十分な機械
的強度を有し、かつ電池の大容量化が図れる正極シート
を得るには、これらの相反する関係を満足させるため
に、混合分散液中の正極活物質、電子伝導体、高分子微
粒子の重量混合比を、それぞれx,y,zとするとき、
x+y+z=1かつ0.3≦×≦0.8、0.05≦y
≦0.2、0.2≦z≦0.6の範囲にする必要があ
る。
The method for dispersing the positive electrode active material fine particles and the electron conductor in the polymer fine particle dispersion may be an ordinary method,
The positive electrode active material fine particles and the electron conductor may be placed in a polymer fine particle dispersion liquid and stirred. In order to obtain a large capacity battery, it is necessary to increase the mixing ratio of the positive electrode active material, and to obtain sufficient mechanical strength as a sheet, conversely, it is necessary to increase the mixing ratio of the polymer fine particles. Therefore, in order to obtain a positive electrode sheet having sufficient mechanical strength and capable of increasing the capacity of the battery, in order to satisfy these contradictory relationships, the positive electrode active material in the mixed dispersion, the electron conductor, When the weight mixing ratio of the polymer fine particles is x, y, z, respectively,
x + y + z = 1 and 0.3 ≦ × ≦ 0.8, 0.05 ≦ y
It is necessary to set the range of ≦ 0.2 and 0.2 ≦ z ≦ 0.6.

【0013】正極活物質微粒子及び電子伝導体を含有す
る上記高分子微粒子分散液から、水、極性溶媒又は両者
の混合物を除去する方法は通常の方法でよく、例えば加
熱、減圧あるいはその組合せで蒸発させればよい。この
プロセスにより、分散していた高分子微粒子はお互いに
融着し高分子マトリクスが形成され、正極活物質微粒
子、電子伝導体のバインダーとなり、本発明の電池正極
シートの前駆構造が作製される。作製は、高分子マトリ
クスのガラス転移温度以上かつ正極活物質が分解しない
温度領域で行う必要がある。また必要に応じて加圧プレ
スして、シートを任意の形状に成形することも可能であ
る。分散媒体の水あるいは溶媒が、固体電解質適用先の
電池等に悪影響を与えるときには、この分散媒体の沸点
以上に加熱するか、加熱と減圧処理を組合せて、分散媒
体を取除かなければならない。
The method for removing water, the polar solvent, or a mixture of both from the polymer particle dispersion containing the positive electrode active material particles and the electron conductor may be an ordinary method, for example, evaporation by heating, reduced pressure or a combination thereof. You can do it. By this process, the dispersed polymer fine particles are fused to each other to form a polymer matrix, which serves as the positive electrode active material fine particles and the binder of the electron conductor, and the precursor structure of the battery positive electrode sheet of the present invention is produced. The production needs to be performed in a temperature range not lower than the glass transition temperature of the polymer matrix and at which the positive electrode active material does not decompose. If necessary, the sheet can be pressed into a desired shape by pressurizing. When the water or solvent of the dispersion medium adversely affects the battery or the like to which the solid electrolyte is applied, it is necessary to remove the dispersion medium by heating it to a temperature above the boiling point of this dispersion medium or by combining heating and decompression treatment.

【0014】本発明の第2の発明の方法で電池正極シー
トを作製する場合、金属塩電解液の含浸は通常の方法で
よく、例えば作製した正極シート前駆構造を電解液中に
浸漬すればよい。電解液の含浸量は浸漬時の温度、並び
に浸漬時間の長さで制御できるが、高分子マトリクス成
分に対して10重量%以上含浸させることが好適であ
る。本発明の第3の発明の方法で電池正極シートを作製
する場合も同様に、溶媒、水又は両者の混合物の含浸は
通常の方法でよく、例えば作製した正極シート前駆構造
を溶媒、水又は両者の混合物の中に浸漬すればよい。溶
媒、水又は両者の混合物の含浸量は浸漬時の温度、並び
に浸漬時間の長さで制御できるが、高分子電解質成分に
対して10重量%以上含浸させることが好適である。
When the battery positive electrode sheet is produced by the method of the second aspect of the present invention, the metal salt electrolytic solution may be impregnated by an ordinary method, for example, the produced positive electrode sheet precursor structure may be immersed in the electrolytic solution. . The impregnated amount of the electrolytic solution can be controlled by the temperature at the time of immersion and the length of the immersion time, but it is preferable to impregnate the polymer matrix component with 10% by weight or more. Similarly, when a battery positive electrode sheet is prepared by the method of the third invention of the present invention, impregnation with a solvent, water or a mixture of both may be performed by an ordinary method. For example, the prepared positive electrode sheet precursor structure may be mixed with solvent, water or both. It may be dipped in the mixture. The impregnated amount of the solvent, water or a mixture of both can be controlled by the temperature at the time of immersion and the length of the immersion time, but it is preferable to impregnate the polymer electrolyte component with 10% by weight or more.

【0015】[0015]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1 界面活性剤を含んだ、低極性ポリマー微粒子分散液〔日
本ゼオン社製スチレン−ブタジエン系ラテックス(商品
名:Nipol LX206)〕10g中に五酸化二バナジウム
(関東化学社製)3g、並びにアセチレンブラック(電
気化学工業社製)0.6gを分散させた。60℃の温度
下、分散液中の固形分が約70%になるまで乾燥させた
後、塗布厚さ100μmのフィルムアプリケータでシー
ト状に引延ばした。常温で3時間、50℃で3時間真空
乾燥させ、正極シート前駆構造を得た。次に、過塩素酸
リチウムのプロピレンカーボネート溶液(濃度1mol /
l)を調製し、ここに上記シートを40℃の温度条件
下、浸漬し、本発明の電池正極シートを得た。得られた
電池正極シートは、十分な機械的強度を有しかつ柔軟性
のあるシートであり、含浸された電解液は、本シートを
加圧してもしみ出すことはなかった。
Example 1 A low-polarity polymer fine particle dispersion containing a surfactant [styrene-butadiene latex (trade name: Nipol LX206, manufactured by Nippon Zeon Co.)] in 10 g of divanadium pentoxide (manufactured by Kanto Chemical Co., Inc.) 3 g and 0.6 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) were dispersed. It was dried at a temperature of 60 ° C. until the solid content in the dispersion became about 70%, and then spread into a sheet with a film applicator having a coating thickness of 100 μm. It was vacuum dried at room temperature for 3 hours and at 50 ° C. for 3 hours to obtain a positive electrode sheet precursor structure. Next, a solution of lithium perchlorate in propylene carbonate (concentration: 1 mol /
1) was prepared and the above sheet was immersed therein under a temperature condition of 40 ° C. to obtain a battery positive electrode sheet of the present invention. The obtained battery positive electrode sheet was a flexible sheet having sufficient mechanical strength, and the impregnated electrolytic solution did not exude even when the sheet was pressed.

【0017】次に、本発明の電池正極シートを用いてコ
イン型電池を作製した。構成成分は負極にリチウム金属
箔(厚さ70μm)、電解質にエチレンカーボネート、
プロピレンカーボネート、ポリアクリロニトリル、ポリ
エチレングリコールジアクリレート、過塩素酸リチウム
が62:13:16:1:8の重量比からなる組成物に
紫外線を照射(ウシオ電機社製Hg−Xeランプで10
mW/cm2 、30分間)し、硬化させて得られた固体
電解質(厚さ30μm)、そして正極に本発明の電池正
極シート(厚さ93μm)をそれぞれ用いた。負極、電
解質、正極をこの順に積層し、これをコインセルケース
内に封入した。上記電池作製の全工程はアルゴン雰囲気
のグローブボックス内で行った。この電池を電圧範囲
3.5〜1.8V、放電電流1mA、充電電流1mAの
条件で充放電試験を行った結果、比容量145mAh/
gが得られた。
Next, a coin type battery was produced using the battery positive electrode sheet of the present invention. The constituent components are lithium metal foil (thickness 70 μm) for the negative electrode, ethylene carbonate for the electrolyte,
A composition comprising propylene carbonate, polyacrylonitrile, polyethylene glycol diacrylate, and lithium perchlorate in a weight ratio of 62: 13: 16: 1: 8 is irradiated with ultraviolet rays (using a Hg-Xe lamp manufactured by USHIO INC.
mW / cm 2 , 30 minutes), and cured to obtain a solid electrolyte (thickness 30 μm), and the battery positive electrode sheet of the present invention (thickness 93 μm) was used as a positive electrode. A negative electrode, an electrolyte, and a positive electrode were laminated in this order, and this was enclosed in a coin cell case. All the steps for producing the battery were performed in a glove box in an argon atmosphere. This battery was subjected to a charge / discharge test under the conditions of a voltage range of 3.5 to 1.8 V, a discharge current of 1 mA and a charge current of 1 mA, and as a result, a specific capacity of 145 mAh /
g was obtained.

【0018】実施例2 界面活性剤を含んだ、低極性ポリマー微粒子分散液〔日
本ゼオン社製スチレン−ブタジエン系ラテックス(商品
名:Nipol LX206)〕10g中に五酸化二バナジウム
(関東化学社製)3g、並びにアセチレンブラック(電
気化学工業社製)0.6gを分散させた。この分散液中
に過塩素酸リチウム0.07gを溶解させ、60℃の温
度下、分散液中の固形分が約70%になるまで乾燥させ
た後、塗布厚さ100μmのフィルムアプリケータでシ
ート状に引延ばした。常温で3時間、50℃で3時間真
空乾燥させ、正極シート前駆構造を得た。次に、プロピ
レンカーボネートに上記シートを40℃で浸漬し、本発
明の電池正極シートを得た。得られた電池正極シート
は、十分な機械的強度を有しかつ柔軟性のあるシートで
あり、含浸された電解液は、本シートを加圧してもしみ
出すことはなかった。
Example 2 A low-polarity polymer fine particle dispersion containing a surfactant [styrene-butadiene latex (trade name: Nipol LX206, manufactured by Nippon Zeon Co.)] in 10 g of divanadium pentoxide (manufactured by Kanto Chemical Co., Inc.) 3 g and 0.6 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) were dispersed. Lithium perchlorate (0.07 g) was dissolved in this dispersion, and the mixture was dried at a temperature of 60 ° C. until the solid content in the dispersion was about 70%, and then the sheet was coated with a film applicator having a coating thickness of 100 μm. I stretched it out. It was vacuum dried at room temperature for 3 hours and at 50 ° C. for 3 hours to obtain a positive electrode sheet precursor structure. Next, the above sheet was immersed in propylene carbonate at 40 ° C. to obtain a battery positive electrode sheet of the present invention. The obtained battery positive electrode sheet was a flexible sheet having sufficient mechanical strength, and the impregnated electrolytic solution did not exude even when the sheet was pressed.

【0019】次に、本発明の電池正極シートを用いてコ
イン型電池を作製した。構成成分は負極にリチウム金属
箔(厚さ70μm)、電解質にエチレンカーボネート、
プロピレンカーボネート、ポリアクリロニトリル、ポリ
エチレングリコールジアクリレート、過塩素酸リチウム
が62:13:16:1:8の重量比からなる組成物に
紫外線を照射(ウシオ電機社製Hg−Xeランプで10
mW/cm2 、30分間)し、硬化させて得られた固体
電解質(厚さ30μm)、そして正極に本発明の電池正
極シート(厚さ93μm)をそれぞれ用いた。負極、電
解質、正極をこの順に積層し、これをコインセルケース
内に封入した。上記電池作製の全行程はアルゴン雰囲気
のグローブボックス内で行った。この電池を電圧範囲
3.5〜1.8V、放電電流1mA、充電電流1mAの
条件で充放電試験を行った結果、比容量155mAh/
gが得られた。
Next, a coin type battery was produced using the battery positive electrode sheet of the present invention. The constituent components are lithium metal foil (thickness 70 μm) for the negative electrode, ethylene carbonate for the electrolyte,
A composition comprising propylene carbonate, polyacrylonitrile, polyethylene glycol diacrylate, and lithium perchlorate in a weight ratio of 62: 13: 16: 1: 8 is irradiated with ultraviolet rays (using a Hg-Xe lamp manufactured by USHIO INC.
The solid electrolyte (thickness: 30 μm) obtained by curing the solid electrolyte (mW / cm 2 , 30 minutes), and the positive electrode sheet of the present invention (thickness: 93 μm) were used as positive electrodes. A negative electrode, an electrolyte, and a positive electrode were laminated in this order, and this was enclosed in a coin cell case. All the steps for producing the battery were performed in a glove box in an argon atmosphere. This battery was subjected to a charge / discharge test under the conditions of a voltage range of 3.5 to 1.8 V, a discharge current of 1 mA and a charge current of 1 mA, and as a result, a specific capacity of 155 mAh /
g was obtained.

【0020】[0020]

【発明の効果】以上の説明で明らかなように、本発明の
電池正極シートはイオンの拡散が速く、またシート中の
正極活物質と高分子固体電解質との界面抵抗が小さいと
いう特徴を有しており、この電池正極シートをリチウム
2次電池のような高エネルギー電池に適用した場合、エ
ネルギー密度が高く、高効率で、しかも液漏れのない安
全な固体電池が得られる利点がある。
As is apparent from the above description, the battery positive electrode sheet of the present invention is characterized in that the diffusion of ions is fast and the interface resistance between the positive electrode active material and the polymer solid electrolyte in the sheet is small. Therefore, when this battery positive electrode sheet is applied to a high energy battery such as a lithium secondary battery, there is an advantage that a safe solid battery having high energy density, high efficiency and no liquid leakage can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 重人 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 正代 尊久 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shigeto Okada 1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corp. No. 6 Nihon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子固体電解質中に電池正極活物質微
粒子及び電子伝導体が分散した電池正極シートにおい
て、前記高分子固体電解質が、高分子マトリクスと金属
塩電解液を主成分とし、水、極性溶媒又は両者の混合物
に可溶な高分子、界面活性剤又は両者の混合物を含有し
ており、高分子マトリクスと金属塩電解液が相分離し、
前記の水、極性溶媒又は両者の混合物に可溶な高分子、
界面活性剤又は両者の混合物が高分子マトリクスと金属
塩電解液の相互分散を安定させていることを特徴とする
電池正極シート。
1. A battery positive electrode sheet in which fine particles of a battery positive electrode active material and an electronic conductor are dispersed in a solid polymer electrolyte, wherein the solid polymer electrolyte comprises a polymer matrix and a metal salt electrolyte as main components, and water, Contains a polymer soluble in a polar solvent or a mixture of both, a surfactant or a mixture of both, phase separation of the polymer matrix and the metal salt electrolyte,
Polymer soluble in water, polar solvent or mixture of both,
A battery positive electrode sheet, characterized in that a surfactant or a mixture of both stabilizes the mutual dispersion of the polymer matrix and the metal salt electrolyte.
【請求項2】 水、極性溶媒又は両者の混合物を分散媒
体として、電池正極活物質微粒子及び電子伝導体を含有
し、更に該分散媒体に可溶な高分子、界面活性剤又は両
者の混合物を安定剤として含有する高分子微粒子の分散
液から、水、極性溶媒又は両者の混合物を除去すること
により、高分子微粒子同志を融着させて前記電池正極活
物質微粒子及び電子伝導体を内部に分散した高分子マト
リクスを形成させた後、該高分子マトリクス中に金属塩
電解液を含浸させることを特徴とする請求項1に記載の
電池正極シートの製造方法。
2. A polymer, a surfactant, or a mixture of both, which contains fine particles of a battery positive electrode active material and an electron conductor and which is soluble in the dispersion medium, using water, a polar solvent or a mixture of both as a dispersion medium. By removing water, a polar solvent, or a mixture of both from the dispersion liquid of the polymer fine particles contained as a stabilizer, the polymer fine particles are fused and the battery positive electrode active material fine particles and the electron conductor are dispersed inside. The method for producing a battery positive electrode sheet according to claim 1, wherein after forming the polymer matrix, the polymer matrix is impregnated with a metal salt electrolyte.
【請求項3】 水、極性溶媒又は両者の混合物を分散媒
体として、該分散媒体に可溶な高分子、界面活性剤又は
両者の混合物を安定剤として含有すると共に金属塩、電
池正極活物質微粒子及び電子伝導体を含有した高分子微
粒子の分散液から、水、極性溶媒又は両者の混合物を除
去することにより、高分子微粒子同志を融着させて前記
電池正極活物質微粒子及び電子伝導体を内部に分散した
高分子マトリクスを形成させた後、該高分子マトリクス
中に金属塩を溶解する水、極性溶媒又は両者の混合物を
含浸させることを特徴とする請求項1に記載の電池正極
シートの製造方法。
3. Water, a polar solvent, or a mixture of both as a dispersion medium, and a polymer soluble in the dispersion medium, a surfactant or a mixture of both as a stabilizer, and a metal salt, fine particles of a battery positive electrode active material. And, by removing water, a polar solvent, or a mixture of both from the dispersion liquid of the polymer fine particles containing the electron conductor, the polymer fine particles are fused to each other so that the battery positive electrode active material fine particles and the electron conductor are internally contained. The method for producing a battery positive electrode sheet according to claim 1, wherein after forming a polymer matrix dispersed in the polymer matrix, water, a polar solvent or a mixture of both of which dissolves a metal salt is impregnated in the polymer matrix. Method.
JP3278935A 1991-10-01 1991-10-01 Battery positive electrode sheet and its manufacture Pending JPH0594818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3278935A JPH0594818A (en) 1991-10-01 1991-10-01 Battery positive electrode sheet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3278935A JPH0594818A (en) 1991-10-01 1991-10-01 Battery positive electrode sheet and its manufacture

Publications (1)

Publication Number Publication Date
JPH0594818A true JPH0594818A (en) 1993-04-16

Family

ID=17604126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3278935A Pending JPH0594818A (en) 1991-10-01 1991-10-01 Battery positive electrode sheet and its manufacture

Country Status (1)

Country Link
JP (1) JPH0594818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100436A (en) * 1998-09-18 2000-04-07 Nippon Zeon Co Ltd Polymer particle, polymer dispersing composition, slurry for battery electrode, electrode and battery
US7968188B2 (en) 1999-07-14 2011-06-28 Eic Laboratories, Inc. Electrically disbonding materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100436A (en) * 1998-09-18 2000-04-07 Nippon Zeon Co Ltd Polymer particle, polymer dispersing composition, slurry for battery electrode, electrode and battery
JP4543442B2 (en) * 1998-09-18 2010-09-15 日本ゼオン株式会社 Polymer particles, polymer dispersion composition, slurry for battery electrode, electrode and battery
US7968188B2 (en) 1999-07-14 2011-06-28 Eic Laboratories, Inc. Electrically disbonding materials

Similar Documents

Publication Publication Date Title
JP4370079B2 (en) Lithium polymer battery
KR101987008B1 (en) Solid polymer electrolytes, methods for manufacturing the same, and lithum cell including thereof
KR101655627B1 (en) Organic-inorganic complex solid polymer electrolytes membrane, manufacturing method thereof and all solid battery including thereof
JP5032773B2 (en) Lithium secondary battery using ionic liquid
EP0651455B1 (en) Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
US4740433A (en) Nonaqueous battery with special separator
JPH1135765A (en) Solid polyelectrolyte and its production
CN109004173B (en) Lithium-sulfur battery positive electrode and manufacturing method thereof
KR20040005550A (en) Method of making lithium ion polymer battery and porous polymeric electrolte
CN110959221B (en) Solid polymer electrolyte for battery
JPH05314965A (en) Battery positive electrode sheet, manufacture thereof and totally solid secondary battery
CN115064763A (en) Self-repairing composite solid electrolyte membrane, preparation method thereof and electrochemical device
JP3496287B2 (en) Battery using ion-conductive polymer compound
JPH0594818A (en) Battery positive electrode sheet and its manufacture
JP4112712B2 (en) Solid electrolyte, method for producing the same, and electrochemical device using the solid electrolyte
KR20220048905A (en) Method of manufacturing separator of secondary battery
JPH05283106A (en) Battery positive electrode sheet, its manufacture, fully-solid secondary battery
KR100407485B1 (en) Polymeric gel electrolyte and lithium battery employing the same
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JPH05315008A (en) Battery positive electrode sheet and manufacture thereof, and all solid secondary battery
JPH0594819A (en) Battery positive electrode sheet and its manufacture
JP4048105B2 (en) Method for producing polymer solid electrolyte for secondary battery and secondary battery
JPH05101849A (en) All-solid secondary battery
JPH087924A (en) Cell employing ion conductive highpolymer compound
JPH05101848A (en) All-solid secondary battery