JPH0590721A - Composite printed wiring board - Google Patents

Composite printed wiring board

Info

Publication number
JPH0590721A
JPH0590721A JP24898791A JP24898791A JPH0590721A JP H0590721 A JPH0590721 A JP H0590721A JP 24898791 A JP24898791 A JP 24898791A JP 24898791 A JP24898791 A JP 24898791A JP H0590721 A JPH0590721 A JP H0590721A
Authority
JP
Japan
Prior art keywords
resin
wiring board
printed wiring
ceramic
impregnating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24898791A
Other languages
Japanese (ja)
Inventor
Kiyotaka Tsukada
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP24898791A priority Critical patent/JPH0590721A/en
Publication of JPH0590721A publication Critical patent/JPH0590721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enable easy and reliable formation of a through hole conductor even when an insulating resin layer prepared by impregnating an alamide fiber with thermosetting resin is provided, to enable approximation of the thermal expansion coefficient of the whole of a board to that of a semiconductor integrated circuit TSOP or a bare chip IC, and thereby to attain improvement of the reliability in connection with an electronic component and prevention of a damage on the electronic component. CONSTITUTION:The title board has an insulating resin layer 10 prepared by impregnating alamide fiber nonwoven fabric with thermo-setting resin and ceramic resin composite layers 20 prepared by impregnating porous ceramic with the thermosetting resin and provided at least on the opposite surfaces of the resin layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合プリント配線板に関
し、特にはプリント配線板の熱膨張を抑えるためのアラ
ミド繊維樹脂層と多孔性セラミックス樹脂複合層とを有
する複合プリント配線板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite printed wiring board, and more particularly to a composite printed wiring board having an aramid fiber resin layer for suppressing thermal expansion of the printed wiring board and a porous ceramic resin composite layer.

【0002】[0002]

【従来の技術】従来、配線板材料はガラスエポキシ等の
有機材料とアルミナ等の無機材料とに大別される。無機
材料を使用したセラミックス配線板は高耐熱性や高放熱
性、低熱膨張性を生かして特徴のある分野を築いてい
る。しかし、セラミックス配線板は蒸着やスパッタリン
グによる薄膜技術によるにせよ、グリーンシートを使用
し、印刷した導体ペーストとコファイヤーによる厚膜技
術によるにせよ加工工程が複雑であり量産性に劣るもの
であった。
2. Description of the Related Art Conventionally, wiring board materials are roughly classified into organic materials such as glass epoxy and inorganic materials such as alumina. Ceramic wiring boards using inorganic materials are building a unique field by taking advantage of their high heat resistance, high heat dissipation and low thermal expansion. However, the ceramic wiring board is inferior in mass productivity due to the complicated processing steps, regardless of whether the thin-film technology by vapor deposition or sputtering is used or the green sheet is used and the thick-film technology by the printed conductor paste and co-fire is used. ..

【0003】一方、有機材料を使用したプリント配線板
は量産性に富み、さらにパターンの微細加工や多層化が
容易なため民生機器用のほか産業機器用にも広く使用さ
れている。しかし、電子機器の高密度実装化が進み高速
化が要求される昨今においては、プリント配線板の高放
熱性が要求されるに到った。また、半導体集積回路(I
C)の小型薄型化によりTSOP(Thin Smal
l OutlinePackage)が多く使用され、
プリント配線板の低熱膨張化が要求されたのである。
On the other hand, a printed wiring board using an organic material is highly producible in mass production, and since it is easy to perform fine pattern processing and multi-layering, it is widely used not only for consumer equipment but also for industrial equipment. However, in recent years when high-density mounting of electronic devices has progressed and high speed is required, high heat dissipation of printed wiring boards has been required. In addition, a semiconductor integrated circuit (I
C) is smaller and thinner than TSOP (Thin Small)
lOutlinePackage) is often used,
The low thermal expansion of the printed wiring board was required.

【0004】即ち、小型薄型化により半導体集積回路パ
ッケージの熱膨張係数が従来よりシリコン寄りに小さ
く、およそ7×10-6/℃となったため、それを搭載す
るプリント配線板の熱膨張を、従来のおよそ1.2〜
1.6×10-5/℃から小さくし近似させないと、実装
時に熱膨張差によって半田接続部が破損したり、半導体
集積回路パッケージに亀裂が入ったりする不良が発生し
たのである。
That is, the thermal expansion coefficient of the semiconductor integrated circuit package is smaller than that of the conventional silicon due to the miniaturization and thinning, and is about 7 × 10 −6 / ° C. Therefore , the thermal expansion of the printed wiring board on which it is mounted is About 1.2 ~
Unless it is made smaller than 1.6 × 10 −5 / ° C. and approximated, defects such as breakage of the solder connection portion and cracking of the semiconductor integrated circuit package occurred due to thermal expansion difference during mounting.

【0005】このプリント配線板の低熱膨張化の要求に
対応するために、アラミド繊維不織布に熱硬化性樹脂を
含浸させたアラミド基板が注目されている。アラミド繊
維は低い熱膨張係数を有し、アラミド繊維によって強固
に樹脂間を結びつけたことによってアラミド基板は低熱
膨張で寸法安定性の良いプリント配線板材料として注目
されているのである。しかしアラミド繊維は非常に固
く、プリント配線板に使用すると、スルーホールのため
のNC穴明時にドリルによってアラミド繊維を切断でき
ない問題があった。そしてドリルによって切断されない
アラミド不織布は、穴明によって基板表面にまで引き出
されバリとなったり、穴内を塞いだ場合にはスルーホー
ル導体の信頼性を低下させたりまた部品接続のための半
田づけの障害となった。また、アラミド基板の外形加工
時にも、同様に、金型もしくは切削加工でアラミド繊維
が切断できずバリを発生させる問題があった。
In order to meet the demand for low thermal expansion of the printed wiring board, an aramid substrate obtained by impregnating an aramid fiber non-woven fabric with a thermosetting resin is drawing attention. The aramid fiber has a low coefficient of thermal expansion, and since the aramid fiber firmly bonds the resins, the aramid substrate is attracting attention as a printed wiring board material having a low thermal expansion and good dimensional stability. However, the aramid fiber is extremely hard, and when it is used for a printed wiring board, there is a problem that the aramid fiber cannot be cut by a drill at the time of NC drilling for a through hole. And the aramid non-woven fabric that is not cut by the drill is pulled out to the surface of the board by drilling and becomes a burr.If the inside of the hole is blocked, the reliability of the through-hole conductor is reduced, and the soldering failure for connecting components is obstructed. Became. Further, also when the outer shape of the aramid substrate is processed, similarly, there is a problem that the aramid fiber cannot be cut by a die or a cutting process and burrs are generated.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の経緯
に鑑みてなされたものでありその解決しようとする課題
は、アラミド基板を使用しスルーホール穴明を行っても
アラミド繊維がドリルによって切断できるようにするこ
とにある。そして、本発明の目的はアラミド繊維に熱硬
化樹脂を含浸した樹脂絶縁層を有してもスルーホール導
体が容易に信頼性良く形成でき、且つ半導体集積回路T
SOPやベアチップICの熱膨張係数に基板全体の熱膨
張係数を近似させることができ、それにより電子部品と
の接続信頼性を向上させ且つ電子部品の破損を防止する
ことのできる複合プリント配線板を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the problem that the aramid fiber can be drilled by using an aramid substrate and through-hole drilling. To be able to disconnect. The object of the present invention is to easily form a through-hole conductor with high reliability even if the aramid fiber has a resin insulating layer impregnated with a thermosetting resin, and the semiconductor integrated circuit T
A composite printed wiring board capable of approximating the thermal expansion coefficient of the entire substrate to the thermal expansion coefficient of the SOP or bare chip IC, thereby improving the connection reliability with the electronic component and preventing the electronic component from being damaged. To provide.

【0007】[0007]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明の採った手段は、実施例において使用する
符号を付して説明すると、「アラミド繊維不織布に熱硬
化性樹脂を含浸させた樹脂絶縁層(10)と、前記樹脂
絶縁層の少なくとも両面に多孔性セラミックスに熱硬化
性樹脂を含浸させたセラミックス樹脂複合層(20)と
を有することを特徴とする複合プリント配線板」であ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the means adopted by the present invention will be described with reference to the reference numerals used in the following examples: "Aramid fiber nonwoven fabric is impregnated with a thermosetting resin. And a ceramic resin composite layer (20) in which porous ceramics are impregnated with a thermosetting resin on at least both surfaces of the resin insulation layer (10). Is.

【0008】[0008]

【作用】本発明の複合プリント配線板(50)にあって
は、アラミド繊維樹脂絶縁層(10)の少なくとも両面
に多孔性セラミックスに熱硬化性樹脂を含浸させたセラ
ミックス樹脂複合層(20)が積層してある。そして穴
明や外形加工時には、アラミド繊維樹脂絶縁層(10)
がセラミックス樹脂複合層(20)で挟まれた状態にな
っているため、アラミド繊維は固いセラミックス樹脂複
合層(10)の端面とドリルあるいは切削刃物との間で
挟み切られ、従ってバリが発生しないのである。なお、
多孔性セラミックスに熱硬化性樹脂を含浸させたセラミ
ックス樹脂複合層(20)は、選んだセラミックスの種
類組成、多孔性セラミックスの空孔間隙率、基板厚みに
占めるセラミックス樹脂複合層(20)の厚みにより熱
膨張係数が決定されるが、およそ3.5〜8×10-6
℃と小さな熱膨張係数を有するものとなっている。また
セラミックス材料を含むため熱放散性に優れたものとな
っている。
In the composite printed wiring board (50) of the present invention, the ceramic resin composite layer (20) obtained by impregnating porous ceramics with a thermosetting resin is provided on at least both surfaces of the aramid fiber resin insulating layer (10). It is laminated. And at the time of punching and external processing, aramid fiber resin insulation layer (10)
Is sandwiched between the ceramic resin composite layer (20), the aramid fiber is sandwiched between the end surface of the hard ceramic resin composite layer (10) and the drill or the cutting blade, and thus no burr is generated. Of. In addition,
The ceramic resin composite layer (20) obtained by impregnating porous ceramics with a thermosetting resin is used to determine the type composition of the selected ceramics, the porosity of the porous ceramics, and the thickness of the ceramic resin composite layer (20) in the substrate thickness. Determines the coefficient of thermal expansion, but it is approximately 3.5-8 × 10 -6 /
It has a small coefficient of thermal expansion of ℃. In addition, since it contains a ceramic material, it has excellent heat dissipation.

【0009】[0009]

【実施例】次に、本発明を実施例に従って詳細に説明す
る。図1には、本発明に関わる複合プリント配線板の1
実施例の断面図が示してある。この実施例の場合のセラ
ミックス樹脂複合層(20)は多孔性セラミックスの空
孔に熱硬化性樹脂を含浸したものである。その製造方法
は、まずコージェライト(2MgO・2Al23 ・5
SiO2)またはアルミナ(Al23)組成のセラミッ
クス原料をバインダーとともに混練し、ドクターブレイ
ドによるシート成形法かプレス成形法で板状に成形す
る。次にそれを焼成して多孔性セラミックスとするので
あるが、それは焼成温度及び時間を調整することにより
空孔率が決定される。即ち、セラミックス粒間の溶融を
完全に行わせず、接点のみの溶融に抑えることによって
多孔性とする。本実施例では空孔率を略30%とした。
30%としたのは、後の熱硬化性樹脂の含浸性及び目的
とする熱膨張率により決定した。そして多孔性セラミッ
クスに対して真空下で熱硬化性樹脂であるエポキシ樹脂
を含浸し、120〜170℃で60〜360分加熱し熱
硬化性樹脂を硬化させセラミックス樹脂複合層(20)
を得た。なお、コージェライト組成の場合のセラミック
ス樹脂複合層(20)の熱膨張係数は略3.5×10-6
/℃であった。上記実施例では他に、熱硬化性樹脂とし
て、ポリイミド樹脂、トリアジン樹等の一般にプリント
配線板材料に使用される熱硬化性樹脂が使用できた。
EXAMPLES Next, the present invention will be described in detail according to examples. FIG. 1 shows a composite printed wiring board 1 according to the present invention.
A cross-sectional view of the embodiment is shown. The ceramic-resin composite layer (20) in this embodiment is a porous ceramic having pores impregnated with a thermosetting resin. First, the manufacturing method is cordierite (2MgO.2Al 2 O 3 .5).
A ceramic raw material having a composition of SiO 2 ) or alumina (Al 2 O 3 ) is kneaded together with a binder, and formed into a plate by a sheet forming method using a doctor blade or a press forming method. Next, it is fired to obtain a porous ceramic, and the porosity of the porous ceramic is determined by adjusting the firing temperature and time. That is, the porosity is obtained by not completely melting the ceramic particles but by suppressing the melting of only the contact. In this example, the porosity was set to about 30%.
The value of 30% was determined by the subsequent impregnation of the thermosetting resin and the target coefficient of thermal expansion. Then, the porous ceramics is impregnated with an epoxy resin which is a thermosetting resin under vacuum, and heated at 120 to 170 ° C. for 60 to 360 minutes to cure the thermosetting resin, and the ceramic resin composite layer (20).
Got The coefficient of thermal expansion of the ceramic resin composite layer (20) in the case of cordierite composition is about 3.5 × 10 −6.
/ ° C. In addition to the above examples, as the thermosetting resin, a thermosetting resin generally used for printed wiring board materials such as polyimide resin and triazine resin can be used.

【0010】そして、アラミド繊維不織布に熱硬化性樹
脂を含浸させた樹脂絶縁層(10)の両面に公知のパタ
ーン形成法を使って銅の導体回路を形成し内層基板と
し、その両面に前述したセラミックス樹脂複合層(2
0)2枚をガラス織布エポキシ樹脂プリプレグ(11)
を介して積層プレスを行い、適宜スルーホール穴明、メ
ッキ、エッチング等を施して、アラミド繊維不織布に熱
硬化性樹脂を含浸させた樹脂絶縁層(10)とセラミッ
クス樹脂複合層(20)及び4層の導体回路層(30)
とを有する複合プリント配線板(10)を得た。
Then, a copper conductor circuit is formed on both sides of the resin insulating layer (10) obtained by impregnating the aramid fiber nonwoven fabric with a thermosetting resin to form an inner layer substrate, and both sides thereof are described above. Ceramic resin composite layer (2
0) Two pieces of glass woven epoxy resin prepreg (11)
Laminate pressing is performed through the plate, and through hole drilling, plating, etching and the like are appropriately performed to impregnate the aramid fiber non-woven fabric with a thermosetting resin, and the resin insulating layer (10) and the ceramic resin composite layers (20) and 4 Layer conductor circuit layer (30)
A composite printed wiring board (10) having

【0011】ここでガラス織布エポキシ樹脂プリプレグ
(11)はプリント配線板に使用される他のトリアジン
等の樹脂を含浸したプリプレグも使用できる。また、積
層プレスは真空下の低圧プレスが望ましく、オートクレ
ーブ法がよい。その理由は、セラミックス樹脂複合層
(20)のセラミックスに余分な圧力を加えて破損させ
ないためである。
As the glass woven epoxy resin prepreg (11), a prepreg impregnated with other resin such as triazine used for printed wiring boards can be used. The lamination press is preferably a low pressure press under vacuum, and an autoclave method is preferable. The reason is that excessive pressure is not applied to the ceramics of the ceramic resin composite layer (20) to damage them.

【0012】こうして得た複合プリント配線板(50)
の熱膨張係数はセラミックス樹脂複合層(20)に使用
した多孔性セラミックスの種類組成(A)、その厚さ
(B)、アラミド繊維不織布に熱硬化性樹脂を含浸させ
た樹脂絶縁層(10)の厚さ(C)及び介在する0.1
mmプリプレグの枚数(D)によって決定される。その
数例を表1に示す。
The composite printed wiring board (50) thus obtained
The coefficient of thermal expansion is the kind composition (A) of the porous ceramics used in the ceramic resin composite layer (20), its thickness (B), and the resin insulation layer (10) obtained by impregnating the aramid fiber nonwoven fabric with the thermosetting resin. Thickness (C) and intervening 0.1
It is determined by the number of mm prepregs (D). Some examples are shown in Table 1.

【0013】 表1 I II III 比較例 ────────────────────────────────── (A) コージェライト アルミナ アルミナ − (B) 0.3mm 0.3mm 0.5mm − (C) 0.4mm 0.4mm 0.4mm 1.2mm (D) 表裏とも1枚 表裏とも1枚 表裏とも1枚 − 総厚さ 1.2mm 1.2mm 1.6mm 1.2mm ────────────────────────────────── 熱膨張 4×10-6/℃ 7×10-6/℃ 8×10-6/℃ 7×10-6/℃ バリ 0.1mm以下 0.1mm以下 0.1mm以下 0.3mm以上Table 1 I II III Comparative Example ─────────────────────────────────── (A) Cordierite Alumina Alumina- (B) 0.3 mm 0.3 mm 0.5 mm- (C) 0.4 mm 0.4 mm 0.4 mm 1.2 mm (D) 1 sheet on both front and back 1 sheet on both front and back-Total thickness 1 .2mm 1.2mm 1.6mm 1.2mm ────────────────────────────────── Thermal expansion 4 × 10 -6 / ° C 7 × 10 -6 / ° C 8 × 10 -6 / ° C 7 × 10 -6 / ° C Burr 0.1 mm or less 0.1 mm or less 0.1 mm or less 0.3 mm or more

【0014】なお、表1のIの複合プリント配線板(5
0)は熱膨張係数が半導体ベアチップのそれに非常に近
く、10mm角以上の大型チップ向けや、フリップチッ
プ実装に好適である。またII、IIIは熱膨張係数が
TSOPのそれに近く、TSOPの実装に好適な他、表
面がアルミナであるため放熱性に優れた特徴がある。ま
た、セラミックス樹脂複合層(20)は多孔性であり空
孔間隙に熱硬化性樹脂が含浸されているのでドリルによ
る穴明が容易であるが、ドリルの磨耗が早いのでダイア
モンドドリルを使用するとよい。また、以上は4層基板
について述べたが、4層に限定されず1層以上の導体回
路層(30)があればよい。
The composite printed wiring board (5) of I in Table 1 is
0) has a coefficient of thermal expansion very close to that of a semiconductor bare chip, and is suitable for large chips of 10 mm square or more and flip chip mounting. Further, II and III have a coefficient of thermal expansion close to that of TSOP, and are suitable for mounting TSOP, and have a characteristic of excellent heat dissipation because the surface is alumina. Further, since the ceramic resin composite layer (20) is porous and the voids are impregnated with a thermosetting resin, it is easy to drill with a drill, but since the drill wears quickly, it is better to use a diamond drill. .. Further, the four-layer substrate has been described above, but the number of conductor circuit layers (30) is not limited to four, and may be one or more conductor circuit layers (30).

【0015】また本発明は、発明の構成を逸脱しない範
囲で、次のように実施することもできる。即ち、前述し
たセラミックス樹脂複合層(20)に替えて、多孔性セ
ラミックスの表裏にガラスクロスを配し多孔性セラミッ
クスとともに真空下で熱硬化性樹脂を含浸しその後銅箔
をさらにその表裏にラミネートして熱硬化させたもの
(当社イビデン開発のCERACOM基板)を使用し、
そのセラミックス樹脂複合層(20)2枚の間にアラミ
ド繊維不織布に熱硬化性樹脂を含浸させた樹脂絶縁層
(10)を挟んでプリプレグ(11)を介して積層し、
複合プリント配線板(50)としたものである。この場
合は、セラミックス樹脂複合層(20)の2枚の表裏及
び樹脂絶縁層(10)の表裏で合計6層の導体回路層
(30)とすることができる。さらに、CERACOM
セラミックス樹脂複合層(20)2枚の間に、アラミド
繊維不織布に熱硬化性樹脂を含浸させたものをプリプレ
グとして使用し、積層させて複合プリント配線板(5
0)とすることもできる。
The present invention can be carried out as follows without departing from the constitution of the invention. That is, in place of the ceramic resin composite layer (20) described above, glass cloth is placed on the front and back of the porous ceramic, a thermosetting resin is impregnated with the porous ceramic under vacuum, and then copper foil is further laminated on the front and back. Heat cured (CERACOM substrate developed by our company IBIDEN),
A resin insulating layer (10) obtained by impregnating an aramid fiber non-woven fabric with a thermosetting resin is sandwiched between two ceramic resin composite layers (20) and laminated via a prepreg (11),
This is a composite printed wiring board (50). In this case, a total of 6 conductor circuit layers (30) can be formed on the front and back of the two ceramic resin composite layers (20) and the front and back of the resin insulating layer (10). Furthermore, CERACOM
An aramid fiber non-woven fabric impregnated with a thermosetting resin was used as a prepreg between two ceramic resin composite layers (20) and laminated to form a composite printed wiring board (5).
It can be set to 0).

【0016】[0016]

【発明の効果】以上詳述した如く、本発明の複合プリン
ト配線板にあっては、穴明や外形加工時にバリ等を発生
させることはなく、しかも半導体集積回路TSOPやベ
アチップに熱膨張係数を近似させることができ、電子部
品の接続信頼性を向上させ電子部品の破損を防止でき
る。また、構成材料の種類、厚さ等を種々変化させるこ
とができ、その場合にはいろんな電子部品との熱膨張係
数の整合を行ったり、放熱性を改善したりすることが可
能である。
As described above in detail, in the composite printed wiring board of the present invention, burrs and the like are not generated at the time of drilling and external processing, and moreover, the semiconductor integrated circuit TSOP and the bare chip have a coefficient of thermal expansion. It can be approximated, the connection reliability of the electronic component can be improved, and the electronic component can be prevented from being damaged. Further, the type and thickness of the constituent materials can be variously changed, and in that case, it is possible to match the coefficient of thermal expansion with various electronic parts and improve the heat dissipation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる複合プリント配線板の1実施例
を示す平面図である。
FIG. 1 is a plan view showing one embodiment of a composite printed wiring board according to the present invention.

【図2】本発明に係わる複合プリント配線板の別の実施
例を示す断面図である。
FIG. 2 is a cross-sectional view showing another embodiment of the composite printed wiring board according to the present invention.

【符号の説明】[Explanation of symbols]

10 樹脂絶縁層 11 プリプレグ 20 セラミックス樹脂複合層 30 導体回路層 50 複合プリント配線板 10 Resin Insulation Layer 11 Prepreg 20 Ceramics Resin Composite Layer 30 Conductor Circuit Layer 50 Composite Printed Wiring Board

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アラミド繊維不織布に熱硬化性樹脂を含
浸させた樹脂絶縁層と、前記樹脂絶縁層の少なくとも両
面に多孔性セラミックスに熱硬化性樹脂を含浸させたセ
ラミックス樹脂複合層とを有することを特徴とする複合
プリント配線板。
1. A resin insulating layer obtained by impregnating an aramid fiber non-woven fabric with a thermosetting resin, and a ceramic resin composite layer obtained by impregnating porous ceramics with a thermosetting resin on at least both sides of the resin insulating layer. A composite printed wiring board featuring.
JP24898791A 1991-09-27 1991-09-27 Composite printed wiring board Pending JPH0590721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24898791A JPH0590721A (en) 1991-09-27 1991-09-27 Composite printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24898791A JPH0590721A (en) 1991-09-27 1991-09-27 Composite printed wiring board

Publications (1)

Publication Number Publication Date
JPH0590721A true JPH0590721A (en) 1993-04-09

Family

ID=17186344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24898791A Pending JPH0590721A (en) 1991-09-27 1991-09-27 Composite printed wiring board

Country Status (1)

Country Link
JP (1) JPH0590721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531945A (en) * 1992-04-13 1996-07-02 Mitsubishi Gas Chemical Company, Inc. Process for the production of base board for printed wiring
JP2018199256A (en) * 2017-05-26 2018-12-20 株式会社村田製作所 Method for producing ceramic plate-like body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531945A (en) * 1992-04-13 1996-07-02 Mitsubishi Gas Chemical Company, Inc. Process for the production of base board for printed wiring
JP2018199256A (en) * 2017-05-26 2018-12-20 株式会社村田製作所 Method for producing ceramic plate-like body

Similar Documents

Publication Publication Date Title
KR100451949B1 (en) Method for manufacturing multilayer ceramic substrates
KR100211852B1 (en) Electronic circuit board and fabricating method thereof
KR101548816B1 (en) Printed circuit board and method of manufacturing the same
CN100409435C (en) Electric circuit elements, electric circuit assembly, electric circuit built-in modules and manufacture thereof
US20050230848A1 (en) Component built-in module and method for producing the same
JP5598212B2 (en) Hybrid core substrate and manufacturing method thereof, semiconductor integrated circuit package, build-up substrate and manufacturing method thereof
JP2005108950A (en) Ceramic modular component and its manufacturing method
WO2003072325A1 (en) Ceramic multilayer substrate manufacturing method and unfired composite multilayer body
JP4746422B2 (en) Capacitor manufacturing method and capacitor
JP2007194617A (en) Wiring board, and capacitor incorporated therein
US20100038013A1 (en) Method for manufacturing multilayer ceramic electronic device
JP4718314B2 (en) Dielectric laminated structure, manufacturing method thereof, and wiring board
KR101824001B1 (en) Radiating durable printed circuit board and method for manufacturing the same
JPH0590721A (en) Composite printed wiring board
JP3199637B2 (en) Method for manufacturing multilayer wiring board
JP4746423B2 (en) Wiring board built-in capacitor manufacturing method and wiring board built-in capacitor
JP2956370B2 (en) Copper clad laminate and method for producing the same
KR100895241B1 (en) Method for manufacturing substrate for package
JP3554171B2 (en) Circuit board manufacturing method
JPH09293968A (en) Method of manufacturing multilayer wiring substrate
JP2005159268A (en) Wiring substrate and its manufacturing method
JPH0590720A (en) Composite printed wiring board
JPH0582929A (en) Ceramics-resin composite wiring board
JP2006128226A (en) Multilayer printed circuit board with built-in electric part, and its manufacturing method
JP4089356B2 (en) Manufacturing method of multilayer ceramic substrate