JPH0587333A - Diagnosing method of state of combustion - Google Patents

Diagnosing method of state of combustion

Info

Publication number
JPH0587333A
JPH0587333A JP24614291A JP24614291A JPH0587333A JP H0587333 A JPH0587333 A JP H0587333A JP 24614291 A JP24614291 A JP 24614291A JP 24614291 A JP24614291 A JP 24614291A JP H0587333 A JPH0587333 A JP H0587333A
Authority
JP
Japan
Prior art keywords
flow rate
emission spectrum
flame
fuel
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24614291A
Other languages
Japanese (ja)
Inventor
Nobuo Morimoto
信夫 森本
Tetsuyoshi Ishida
哲義 石田
Hidenori Hidaka
秀則 日高
Koujirou Yamada
紘二郎 山田
Takeshi Okawa
剛 大川
Minoru Hisanaka
実 久中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP24614291A priority Critical patent/JPH0587333A/en
Publication of JPH0587333A publication Critical patent/JPH0587333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Combustion (AREA)

Abstract

PURPOSE:To eliminate a diagnosis due to mutual interference of burner flames and to obtain a diagnosing method of a state of combustion having a high diagnostic precision on the occasion of diagnosing the state of combustion in a combustion furnace having a plurality of burners. CONSTITUTION:Regarding a combustion furnace provided with a plurality of burners, the relations of an emission spectrum of each burner flame with set flow rates of fuel for a burner, air for it and a recirculation exhaust gas are determined beforehand, and the emission spectrum of flame, the flow rate of fuel, the flow rate of air and the flow rate of the recirculation exhaust gas are measured in regard to an object burner. The measured emission spectrum is corrected by the amount of deviation of a measured value of each flow rate from the set value thereof, and based on comparison of the reference emission spectrum at the time of each flow rate being set with the above-mentioned corrected emission spectrum, the state of combustion of the burner flame is diagnosed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼状態診断方法に係わ
り、特に複数のバーナを設けた火炉内でバーナ間の干渉
があっても精度の高い診断を行なうことを可能とした、
火炎発光スペクトルを検出して燃焼状況を診断する燃焼
状態診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing a combustion state, and in particular, enables a highly accurate diagnosis even if there is interference between burners in a furnace equipped with a plurality of burners.
The present invention relates to a combustion state diagnosis method for diagnosing a combustion situation by detecting a flame emission spectrum.

【0002】[0002]

【従来の技術】ボイラ等の燃焼装置においては、公害防
止のため、窒素酸化物、すすおよび一酸化炭素を発生さ
せないことが望まれている。このためには、燃焼炉内に
おいて極端な高温度領域および極端な低温度領域を形成
させないことが必要である。このような燃焼状態の形成
は、燃焼炉内で燃料と空気が適度に混合した火炎を形成
することによって達成される。
2. Description of the Related Art In a combustion apparatus such as a boiler, it is desired that nitrogen oxides, soot and carbon monoxide are not generated in order to prevent pollution. For this purpose, it is necessary not to form an extremely high temperature region and an extremely low temperature region in the combustion furnace. Formation of such a combustion state is achieved by forming a flame in which the fuel and the air are appropriately mixed in the combustion furnace.

【0003】このような燃焼状態を形成する方法の一つ
に、燃焼炉内火炎の発光スペクトルを検出して、この発
光スペクトルをもとに、火炎温度、燃料流量、空気流
量、再循環排ガス流量、燃料と空気の混合状態等の状態
を診断し、この診断結果に基づき、燃料流量の調整、空
気流量の調整、排ガス再循環流量および燃料と空気の混
合状態等の調整を行なう方法がある。
One of the methods for forming such a combustion state is to detect the emission spectrum of the flame in the combustion furnace, and based on this emission spectrum, the flame temperature, the fuel flow rate, the air flow rate, the recirculated exhaust gas flow rate. There is a method of diagnosing a state such as a mixed state of fuel and air, and adjusting a fuel flow rate, an air flow rate, an exhaust gas recirculation flow rate, a mixed state of fuel and air and the like based on the diagnosis result.

【0004】しかしながら、従来の燃焼診断装置は、単
一バーナ火炎に対する燃焼診断では精度の高い燃焼診断
が可能であるが、大型燃焼炉のような複数個のバーナを
有する火炎に対する燃焼診断では誤診断が多く見られ
た。これは複数のバーナ火炎があると、火炎相互の干渉
が発生し、この火炎相互干渉が外乱となって、燃焼診断
精度が低下することにあった。詳しくは複数個のバーナ
を有する燃焼炉では、燃焼炉全体の運転操作が一定に保
持される運転が行なわれたときでも、あるバーナ火炎の
燃焼が盛んになると、他のバーナ火炎の燃焼が衰え、逆
にあるバーナ火炎の燃焼が衰えると、他のバーナ火炎の
燃焼が盛んになる現象が生じる。このため、対象バーナ
の燃焼診断において、燃焼機器の不良により燃焼状態が
盛んになっていたりまたは衰えていたとしても、このバ
ーナ火炎相互干渉のための燃焼の盛衰と判別できず、燃
焼関連機器の状態の良否を判定できない状況におかれ
る。したがって、このような複数個のバーナを有する大
型燃焼炉では燃焼診断において誤診断を生じさせてい
た。
However, the conventional combustion diagnosis apparatus can perform highly accurate combustion diagnosis in the combustion diagnosis for a single burner flame, but misdiagnosis is performed in the combustion diagnosis for a flame having a plurality of burners such as a large combustion furnace. Was often seen. This is because when there are a plurality of burner flames, mutual interference of the flames occurs, and the mutual interference of the flames becomes a disturbance, and the accuracy of combustion diagnosis deteriorates. Specifically, in a combustion furnace having multiple burners, even when the operation of the entire combustion furnace is maintained at a constant level, when combustion of one burner flame becomes active, combustion of another burner flame will decline. On the contrary, when the combustion of one burner flame declines, a phenomenon occurs in which the combustion of another burner flame becomes active. For this reason, in the combustion diagnosis of the target burner, even if the combustion state is prosperous or has declined due to a defect in the combustion equipment, it cannot be distinguished from the combustion ups and downs due to this burner flame mutual interference, and the combustion-related equipment You are left in a situation where you cannot judge whether the condition is good or bad. Therefore, in a large combustion furnace having such a plurality of burners, an erroneous diagnosis is caused in the combustion diagnosis.

【0005】[0005]

【発明が解決しようとする課題】従来の火炎発光スペク
トル検出燃焼診断装置は、単一バーナ火炎における燃焼
診断では高い診断精度が得られていたが、複数個のバー
ナを有する燃焼炉におけるバーナ火炎の相互干渉に対し
て十分な配慮がなされておらず、このため、複数個のバ
ーナを有する燃焼炉の燃焼診断においては誤診断が多く
見られる問題があった。
Although the conventional flame emission spectrum detection combustion diagnostic apparatus has been able to obtain high diagnostic accuracy in the combustion diagnostics for a single burner flame, it has been found that burner flames in a combustion furnace having a plurality of burners. Sufficient consideration has not been given to mutual interference, and therefore, there has been a problem that many misdiagnosis is seen in combustion diagnosis of a combustion furnace having a plurality of burners.

【0006】本発明の目的は、複数個のバーナを有する
燃焼炉内の燃焼状態を診断するに際し、バーナ火炎の相
互干渉から生じる誤診断をなくし、精度の高い診断を行
うことができる燃焼状態診断方法を提供することにあ
る。
An object of the present invention is to diagnose a combustion state in a combustion furnace having a plurality of burners, which eliminates erroneous diagnosis caused by mutual interference of burner flames and enables highly accurate diagnosis. To provide a method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本願の第1の発明は、複数個のバーナを設けた燃焼炉に
対し、火炉内火炎の発光スペクトルを検出して、火炉内
燃焼状態を診断する方法において、あらかじめ燃料流
量、空気流量、再循環排ガス流量の各設定値と火炎発光
スペクトルの関係を求めておき、次いで対象バーナにつ
いて火炎発光スペクトル、燃料流量、空気流量、再循環
排ガス流量を測定し、これら各流量測定値ごとにそれら
の設定値との偏差を求め、火炎発光スペクトルと前記各
流量の関係と上記偏差値とに基づき、測定した前記火炎
発光スペクトルを補正し、燃料流量、空気流量、再循環
排ガス流量が設定流量時の基準の火炎発光スペクトルと
補正した上記火炎発光スペクトルと比較してバーナの燃
焼状態を診断することを特徴とする燃焼状態診断方法に
関する。
In order to achieve the above object, the first invention of the present application is to detect an emission spectrum of flame in a furnace for a combustion furnace provided with a plurality of burners to detect a combustion state in the furnace. In the method of diagnosing, the relationship between each setting value of fuel flow rate, air flow rate, recirculation exhaust gas flow rate and flame emission spectrum is obtained in advance, and then flame emission spectrum, fuel flow rate, air flow rate, recirculation exhaust gas flow rate for the target burner. For each of these flow rate measurement values, the deviation from their set values is determined, based on the above deviation value and the relationship between the flame emission spectrum and each flow rate, the measured flame emission spectrum is corrected, and the fuel flow rate is determined. The burner combustion state can be diagnosed by comparing the reference flame emission spectrum and the corrected flame emission spectrum when the air flow rate and the recirculated exhaust gas flow rate are set. Combustion condition diagnosis method comprising.

【0008】第2の発明は、複数個のバーナを設けた燃
焼炉に対し、火炉内火炎の発光スペクトルを検出して、
火炉内の燃焼状態を診断する方法において、あらかじめ
燃料流量、空気流量、再循環排ガス流量の各設定流量と
火炎発光スペクトルの関係を求めておき、ついで対象バ
ーナについて火炎発光スペクトルを測定し、この検出発
光スペクトルより火炎温度と水蒸気吸光度を検出し、燃
料、空気、再循環排ガスの設定流量時の火炎発光スペク
トルより求めた火炎温度と水蒸気吸光度とそれらの前記
検出値と比較して、火炎発光スペクトル測定時の燃料流
量、空気流量、再循環排ガス流量を算出し、これらの設
定流量値との偏差値を求め、各偏差値に基づき測定時の
火炎発光スペクトルを補正し、燃料流量、空気流量、再
循環排ガス流量が設定流量時の基準の火炎発光スペクト
ルと補正した上記火炎発光スペクトルと比較してバーナ
の燃焼状態を診断することを特徴とする燃焼状態診断方
法に関する。
A second aspect of the present invention detects the emission spectrum of the flame in the furnace for a combustion furnace provided with a plurality of burners,
In the method of diagnosing the combustion state in the furnace, the relationship between the flame emission spectrum and each set flow rate of the fuel flow rate, air flow rate, recirculation exhaust gas flow rate is obtained in advance, and then the flame emission spectrum is measured for the target burner and this detection is performed. Flame temperature and water vapor absorbance are detected from the emission spectrum, and flame emission spectrum is measured by comparing the flame temperature and water vapor absorbance obtained from the flame emission spectrum at the set flow rates of fuel, air, and recirculated exhaust gas with their detection values. The fuel flow rate, air flow rate, and recirculated exhaust gas flow rate are calculated, the deviation values from these set flow rate values are calculated, and the flame emission spectrum at the time of measurement is corrected based on each deviation value. The combustion state of the burner is diagnosed by comparing the reference flame emission spectrum with the circulating exhaust gas flow rate set and the corrected flame emission spectrum. Combustion condition diagnosis method comprising Rukoto.

【0009】第3の発明は、複数個のバーナを設けた燃
焼炉に対し、火炉内火炎の発光スペクトルを検出して、
火炉内の燃焼状態を診断する方法において、あらかじめ
燃料流量、空気流量の各設定流量と火炎発光スペクトル
の関係を求めておき、ついで対象バーナについて火炎発
光スペクトルを測定し、この検出発光スペクトルより火
炎温度と炭酸ガス吸光度を検出し、燃料、空気の設定流
量時の火炎発光スペクトルより求めた火炎温度と炭酸ガ
ス吸光度とそれらの前記検出値と比較して、火炎発光ス
ペクトル測定時の燃料流量、空気流量を算出し、これら
の設定流量値との偏差値を求め、各偏差値に基づき測定
時の火炎発光スペクトルを補正し、燃料流量、空気流量
が設定流量時の基準の火炎発光スペクトルと補正した上
記火炎発光スペクトルと比較してバーナの燃焼状態を診
断することを特徴とする燃焼状態診断方法に関する。
A third aspect of the invention is to detect an emission spectrum of a flame in a furnace for a combustion furnace provided with a plurality of burners,
In the method of diagnosing the combustion state in the furnace, the relationship between each set flow rate of the fuel flow rate and air flow rate and the flame emission spectrum is obtained in advance, then the flame emission spectrum is measured for the target burner, and the flame temperature is detected from this detected emission spectrum. And the carbon dioxide absorbance are detected and compared with the flame temperature and carbon dioxide absorbance determined from the flame emission spectrum at the set flow rates of fuel and air, and their detected values, and the fuel flow rate and air flow rate during flame emission spectrum measurement Calculate the deviation value from these set flow rate values, correct the flame emission spectrum at the time of measurement based on each deviation value, and correct the fuel flow rate and air flow rate with the reference flame emission spectrum at the set flow rate. The present invention relates to a combustion state diagnosis method characterized by diagnosing a combustion state of a burner in comparison with a flame emission spectrum.

【0010】[0010]

【実施例】【Example】

i)全体の構成 図1に本発明になる燃焼診断方法のフローを示す。本発
明の燃焼診断方法では、あらかじめ火炎発光スペクトル
と燃料流量、火炎発光スペクトルと空気流量、火炎発光
スペクトルと再循環排ガス流量との関係を求めておき、
電算機に記憶させておく。そして対象バーナの火炎発光
スペクトルと燃料流量、空気流量、再循環排ガス流量を
測定する。電算機を用い、燃料流量、空気流量、再循環
排ガス流量について、測定値と設定値を比較し、それぞ
れの偏差を求める。そして、まず燃料流量の測定値と設
定値の偏差と、火炎発光スペクトルと燃料流量の関係か
ら、火炎発光スペクトルに補正を加え、設定燃料流量時
における火炎発光スペクトルを求める。ついで空気流量
の測定値と設定値の偏差と、火炎発光スペクトルと空気
流量の関係から、火炎発光スペクトルに補正を加え、設
定空気流量時における火炎発光スペクトルを求める。さ
らに再循環排ガス流量の測定値と設定値の偏差と、火炎
発光スペクトルと再循環排ガス流量の関係から、火炎発
光スペクトルに補正を加え、設定再循環排ガス流量時に
おける火炎発光スペクトルを求める。
i) Overall configuration FIG. 1 shows a flow of the combustion diagnosis method according to the present invention. In the combustion diagnosis method of the present invention, the relationship between the flame emission spectrum and the fuel flow rate, the flame emission spectrum and the air flow rate, the flame emission spectrum and the recirculation exhaust gas flow rate is obtained in advance,
It is stored in the computer. Then, the flame emission spectrum, fuel flow rate, air flow rate, and recirculation exhaust gas flow rate of the target burner are measured. Using a computer, compare the measured value with the set value for the fuel flow rate, air flow rate, and recirculated exhaust gas flow rate, and obtain the respective deviations. Then, first, the flame emission spectrum is corrected based on the deviation between the measured value and the set value of the fuel flow rate and the relationship between the flame emission spectrum and the fuel flow rate to obtain the flame emission spectrum at the set fuel flow rate. Then, the flame emission spectrum is corrected based on the deviation between the measured value and the set value of the air flow rate and the relationship between the flame emission spectrum and the air flow rate to obtain the flame emission spectrum at the set air flow rate. Furthermore, the flame emission spectrum is corrected from the deviation between the measured value and the set value of the recirculated exhaust gas flow rate and the relationship between the flame emission spectrum and the recirculated exhaust gas flow rate to obtain the flame emission spectrum at the set recirculated exhaust gas flow rate.

【0011】燃料流量、空気流量、再循環排ガス流量の
設定値に補正された火炎発光スペクトルが得られたこと
から、この補正後の火炎発光スペクトルと、設定値にお
ける基準の火炎発光スペクトルを比較する燃焼診断が行
なわれる。この補正後の火炎発光スペクトルが基準の火
炎発光スペクトルより火炎温度が高い特性が得られる
と、燃料と空気との混合が良好と診断できる。
Since the flame emission spectrum corrected to the set values of the fuel flow rate, the air flow rate, and the recirculated exhaust gas flow rate was obtained, the flame emission spectrum after the correction is compared with the reference flame emission spectrum at the set value. Combustion diagnosis is performed. When the characteristic that the corrected flame emission spectrum has a higher flame temperature than the reference flame emission spectrum is obtained, it can be diagnosed that the mixture of fuel and air is good.

【0012】本発明の燃焼診断は、経時的な火炎温度、
燃料流量、空気流量および再循環排ガス流量の変化から
その平均値と変動幅、ならびに燃料と空気の混合状態等
を把握し、それぞれの設定値と測定値の偏差が最小にな
るように、関連機器の調整の指示を与える。図2に、本
発明の一実施例の燃焼診断装置が適応された2本のバー
ナ4、5を有する燃焼炉の概略構成を示す。この燃焼炉
において、燃料は燃料タンク21から燃料ポンプ20に
よって汲みだされ、燃料ポンプ元流量調整弁17を通
り、2分岐され、バーナ元燃料流量調整弁15、16を
経て、バーナ4およびバーナ5に供給される。バーナに
供給される燃料流量は、燃料ポンプ元燃料流量調整弁1
7およびバーナ元燃料流量調整弁15、16によって制
御される。燃料ポンプ元燃料流量調整弁17はバーナ4
およびバーナ5へ供給される燃料の総量を制御する目的
から設置される。またバーナ元燃料流量調整弁15、1
6は、バーナ4およびバーナ5へ供給される燃料流量が
均等に分配されることを目的として設置される。このう
ち、バーナ元燃料流量調整弁15、16は一旦弁開度が
調整された後は固定される。
The combustion diagnosis of the present invention is performed by measuring the flame temperature over time,
Based on the changes in the fuel flow rate, air flow rate, and recirculated exhaust gas flow rate, the average value and fluctuation range, as well as the mixed state of fuel and air, etc. are grasped, and the related equipment is adjusted so that the deviation between each set value and measured value is minimized. Give adjustment instructions. FIG. 2 shows a schematic configuration of a combustion furnace having two burners 4 and 5 to which the combustion diagnosis device of one embodiment of the present invention is applied. In this combustion furnace, fuel is pumped out of a fuel tank 21 by a fuel pump 20, passes through a fuel pump source flow rate adjusting valve 17, is branched into two, passes through burner source fuel flow rate adjusting valves 15 and 16, and is burner 4 and burner 5. Is supplied to. The fuel flow rate supplied to the burner is the fuel flow rate adjustment valve 1
7 and burner source fuel flow rate adjusting valves 15 and 16. The fuel pump source fuel flow rate adjusting valve 17 is the burner 4
And is installed for the purpose of controlling the total amount of fuel supplied to the burner 5. Also, the burner original fuel flow rate adjusting valve 15, 1
6 is installed for the purpose of evenly distributing the fuel flow rate supplied to the burner 4 and the burner 5. Of these, the burner source fuel flow rate adjusting valves 15 and 16 are fixed once the valve opening is adjusted.

【0013】またこの燃焼炉において、空気22は送風
機18によって大気が取り込まれ、送風機元風量調整ダ
ンパ14を通り2分岐され、バーナ元風量調整ダンパ1
2、13を経て、バーナ4およびバーナ5に供給され
る。バーナに供給される空気流量は、送風機元風量調整
ダンパ14およびバーナ元風量調整ダンパ12、13に
よって制御される。送風機元風量調整ダンパ14はバー
ナ4およびバーナ5へ供給される空気の総量を一定に保
つ目的から設置される。バーナ元風量調整ダンパ12、
13は、バーナ4およびバーナ5へ供給される空気流量
が均等に分配されることを目的に設置される。このう
ち、バーナ元風量調整ダンパ12、13は一旦ダンパ開
度が調整された後は固定される。
Further, in this combustion furnace, the air 22 is taken into the atmosphere by the blower 18, passes through the blower source air amount adjusting damper 14 and is branched into two, and the burner source air amount adjusting damper 1
It is supplied to the burner 4 and the burner 5 via 2 and 13. The flow rate of air supplied to the burner is controlled by a blower source air amount adjusting damper 14 and burner source air amount adjusting dampers 12, 13. The blower source air amount adjusting damper 14 is installed for the purpose of keeping the total amount of air supplied to the burners 4 and 5 constant. Burner source air volume adjustment damper 12,
13 is installed for the purpose of evenly distributing the flow rate of air supplied to the burner 4 and the burner 5. Of these, the burner source air amount adjusting dampers 12 and 13 are fixed after the damper opening is once adjusted.

【0014】この燃焼炉において、再循環排ガス23は
送風機19によって煙道24から取り込まれ、送風機元
風量調整ダンパ14を通り空気に混合される。図3に、
燃焼炉内の火炎発光スペクトルの一例を示す。光ファイ
バの光透過損失が比較的小さい0.4〜1.6μmの波
長域では、0.7μmより長波長域においてスートの発
光が見られ、1.38μmの周波数帯において水蒸気に
よる吸光が見られる。
In this combustion furnace, the recirculated exhaust gas 23 is taken in from the flue 24 by the blower 19 and is mixed with the air through the blower source air amount adjusting damper 14. In Figure 3,
An example of the flame emission spectrum in a combustion furnace is shown. In the wavelength range of 0.4 to 1.6 μm where the light transmission loss of the optical fiber is relatively small, soot emission is observed in the wavelength range longer than 0.7 μm, and absorption by water vapor is observed in the frequency band of 1.38 μm. ..

【0015】この火炎発光スペクトル特性において、ス
ートの発光特性と火炎温度の間には、つぎのプランクの
輻射則の関係が成立つ。この関係を用いてスートの発光
特性を検出し、火炎温度を求めることができる。
In the flame emission spectrum characteristic, the following Planck's radiation law relationship holds between the soot emission characteristic and the flame temperature. The flame temperature can be obtained by detecting the light emission characteristics of the soot using this relationship.

【0016】[0016]

【数1】 [Equation 1]

【0017】水蒸気による吸光は、火炎発光スペクトル
監視のプローブの前を水蒸気を含む再循環排ガスが流れ
ていると、水蒸気の吸光帯(1.4、1.9、2.7μ
m)に限って、火炎からの光が吸収される現象である。
この水蒸気の吸光度(水蒸気吸光帯におけるスペクトル
強度の減少量)は、再循環排ガス流量が増加し、再循環
排ガス温度が低く火炎温度が高くなると増加する。火力
発電所のボイラのような窒素酸化物の発生を抑制するた
めに排ガス再循環を行なう大型燃焼炉では、このため、
1.4μmの水蒸気の吸光帯に限ってスペクトル強度が
減少する。
The absorption by water vapor is as follows: When the recirculated exhaust gas containing water vapor is flowing in front of the flame emission spectrum monitoring probe, the light absorption band of water vapor (1.4, 1.9, 2.7 μm).
This is a phenomenon in which light from a flame is absorbed only in m).
The water vapor absorbance (amount of decrease in spectrum intensity in the water vapor absorption band) increases as the recirculated exhaust gas flow rate increases and the recirculated exhaust gas temperature is low and the flame temperature is high. For large-scale combustion furnaces that recirculate exhaust gas in order to suppress the generation of nitrogen oxides, such as boilers in thermal power plants,
The spectral intensity decreases only in the 1.4 μm water vapor absorption band.

【0018】図4に、図2に示した燃焼炉を対象にした
燃焼診断において得られたバーナ4およびバーナ5の火
炎温度、各個所の燃料流量、空気流量、再循環排ガス流
量の測定結果を示す。このとき燃料流量の総量、空気流
量の総量、再循環排ガス流量は一定に維持された。しか
し、バーナ4およびバーナ5の火炎温度、燃料の総量以
外の各部の流量、空気の総量以外の各部の流量は変動し
た。燃料流量、空気流量を設定値としたとき補正後の火
炎温度は、旋回力の変化に対応した変化を示した。
FIG. 4 shows the measurement results of the flame temperatures of the burners 4 and 5 obtained in the combustion diagnosis for the combustion furnace shown in FIG. 2, the fuel flow rate at each location, the air flow rate, and the recirculated exhaust gas flow rate. Show. At this time, the total fuel flow rate, the total air flow rate, and the recirculated exhaust gas flow rate were maintained constant. However, the flame temperature of the burners 4 and 5, the flow rate of each part other than the total amount of fuel, and the flow rate of each part other than the total amount of air varied. When the fuel flow rate and air flow rate were set as the set values, the corrected flame temperature showed a change corresponding to the change of the swirling force.

【0019】本発明の第1の実施例においては、火炎相
互干渉が生じていても、各所に設置された燃料、空気、
再循環排ガスの各流量計の指示値から、各バーナにおけ
る燃料流量、空気流量、再循環排ガス流量、ならびに火
炎発光スペクトルから、火炎温度および燃料と空気の混
合状況をしることができる。したがって、火炎相互の干
渉が生じる複数個のバーナを有する燃料炉においても、
誤診断を生じさせない燃焼診断を行なえる効果が得られ
る。
In the first embodiment of the present invention, fuel, air,
From the indicated value of each flow meter of the recirculated exhaust gas, the fuel flow rate, the air flow rate, the recirculated exhaust gas flow rate in each burner, and the flame emission spectrum, the flame temperature and the mixing state of fuel and air can be obtained. Therefore, even in a fuel furnace having a plurality of burners in which flames interfere with each other,
It is possible to obtain the effect of making a combustion diagnosis without causing a false diagnosis.

【0020】本発明の第2の実施例は、各個所の常設の
流量計をなくし、代わって、火炎発光スペクトルから算
出される火炎温度と水蒸気の吸光特性から、各バーナに
おける燃料流量、空気流量を求めるものである。この火
炎温度および水蒸気の吸光度に対する、燃料流量、空気
流量、排ガス流量の関係は、公知例(例えば、燃料協会
誌;第70巻 第4号 P359)を参考に、図5に示
されるような関係が得られる。例えば、基準値の火炎温
度および水蒸気吸光度に対して、火炎温度が高く水蒸気
吸光度が大きいときは、燃料流量が基準値より多い。ま
た、火炎温度が変化せず、水蒸気吸光度が小さいとき
は、空気流量が基準値より多い。火炎温度が低く水蒸気
吸光度が変化しないか、または大きいときは再循環排ガ
ス流量が基準値より多い。
The second embodiment of the present invention eliminates the permanent flow meter at each location, and instead uses the flame temperature and water vapor absorption characteristics calculated from the flame emission spectrum to determine the fuel flow rate and air flow rate at each burner. Is to seek. The relationship between the flow rate of fuel, the flow rate of air, and the flow rate of exhaust gas with respect to the flame temperature and the absorbance of water vapor is as shown in FIG. 5 with reference to a known example (for example, Fuel Society Magazine, Vol. 70, No. 4, P359). Is obtained. For example, when the flame temperature is high and the water vapor absorbance is large with respect to the reference value flame temperature and water vapor absorbance, the fuel flow rate is greater than the reference value. When the flame temperature does not change and the water vapor absorbance is small, the air flow rate is higher than the reference value. When the flame temperature is low and the water vapor absorbance does not change or is high, the recirculated exhaust gas flow rate is higher than the reference value.

【0021】したがって、火炎発光スペクトルから算出
される火炎温度と水蒸気の吸光度より、各バーナにおけ
る燃料流量、空気流量の変動の傾向を求めることができ
る。図6に、上記第2の実施例の燃焼診断方法のフロー
を示す。まず、あらかじめ仮設の流量計により、火炎発
光スペクトルから得られる火炎温度および水蒸気吸光度
に対する、燃料流量、空気流量、再循環排ガス流量との
関係、ならびに、燃料流量、空気流量、再循環排ガス流
量の設定条件における火炎温度および水蒸気吸光度を求
めておく。そして対象バーナの火炎発光スペクトルを測
定する。設定条件の燃料流量、空気流量、再循環排ガス
流量における燃焼温度および水蒸気吸光度と、測定され
た火炎温度および水蒸気吸光度との違いから、燃料流
量、空気流量、再循環排ガス流量を求める。得られた燃
料流量、空気流量、再循環排ガス流量を設定値と比較
し、それぞれの偏差を求める。そして、まず燃料流量の
測定値と設定値の偏差と、火炎発光スペクトルと燃料流
量の関係から、火炎発光スペクトルに補正を加え、設定
燃料流量時における火炎発光スペクトルを求める。つい
で空気流量の測定値と設定値の偏差と、火炎発光スペク
トルと空気流量の関係から、火炎発光スペクトルに補正
を加え、設定空気流量時における火炎発光スペクトルを
求める。さらに、再循環排ガス流量の測定値と設定値の
偏差と、火炎発光スペクトルと再循環排ガス流量の関係
から、火炎発光スペクトルに補正を加え、設定再循環排
ガス流量時における火炎発光スペクトルを求める。
Therefore, the tendency of fluctuations in the fuel flow rate and air flow rate in each burner can be obtained from the flame temperature and the absorbance of water vapor calculated from the flame emission spectrum. FIG. 6 shows a flow of the combustion diagnosis method of the second embodiment. First, using a temporary flow meter, set the fuel flow rate, air flow rate, and recirculation exhaust gas flow rate as well as the relationship between the fuel flow rate, air flow rate, and recirculation exhaust gas flow rate with respect to the flame temperature and water vapor absorbance obtained from the flame emission spectrum. Determine the flame temperature and water vapor absorbance under the conditions. Then, the flame emission spectrum of the target burner is measured. The fuel flow rate, the air flow rate, and the recirculated exhaust gas flow rate are obtained from the differences between the combustion temperature and the steam absorbance at the set fuel flow rate, air flow rate, and recirculated exhaust gas flow rate, and the measured flame temperature and water vapor absorbance. The obtained fuel flow rate, air flow rate, and recirculated exhaust gas flow rate are compared with the set values, and the respective deviations are obtained. Then, first, the flame emission spectrum is corrected based on the deviation between the measured value and the set value of the fuel flow rate and the relationship between the flame emission spectrum and the fuel flow rate to obtain the flame emission spectrum at the set fuel flow rate. Then, the flame emission spectrum is corrected based on the deviation between the measured value and the set value of the air flow rate and the relationship between the flame emission spectrum and the air flow rate to obtain the flame emission spectrum at the set air flow rate. Further, the flame emission spectrum is corrected from the deviation between the measured value and the set value of the recirculated exhaust gas flow rate and the relationship between the flame emission spectrum and the recirculated exhaust gas flow rate to obtain the flame emission spectrum at the set recirculated exhaust gas flow rate.

【0022】燃料流量、空気流量、再循環排ガス流量の
設定値に補正された火炎発光スペクトルが得られたこと
から、この補正後の火炎発光スペクトルと、設定値にお
ける基準の火炎発光スペクトルを比較する燃焼診断が行
なわれ、燃料と空気との混合状態を診断できる。本発明
の他の実施例の燃焼診断は、常設の流量計を設置するこ
となく経時的な火炎温度、燃料流量、空気流量および再
循環排ガス流量の変化と、その平均値と変動幅を把握
し、ならびに燃料と空気の混合状態等を把握し、その結
果それぞれの設定値と測定値の偏差が最小になるよう
に、関連機器へ調整の指示を与える。
Since the flame emission spectrum corrected to the set values of the fuel flow rate, the air flow rate, and the recirculated exhaust gas flow rate was obtained, the flame emission spectrum after this correction is compared with the reference flame emission spectrum at the set values. Combustion diagnosis is performed, and the mixed state of fuel and air can be diagnosed. Combustion diagnosis of another embodiment of the present invention, the change of the flame temperature, fuel flow rate, air flow rate and recirculation exhaust gas flow rate over time without installing a permanent flow meter, to grasp the average value and fluctuation range. , And the state of mixing of fuel and air, etc., and as a result, give an instruction for adjustment to related equipment so that the deviation between each set value and measured value is minimized.

【0023】この本発明の第2の実施例の具体例は、図
4に示されたように火炎発光スペクトル特性からの火炎
温度および水蒸気吸光度と各種流量の間には、図5に示
されるような関係がなりたっており、したがって、火炎
発光スペクトル特性からの火炎温度および水蒸気吸光度
から、燃料流量、空気(再循環排ガスを含む)流量を求
めることができる。
The specific example of the second embodiment of the present invention is as shown in FIG. 5 between the flame temperature and water vapor absorbance and various flow rates from the flame emission spectrum characteristics as shown in FIG. Therefore, the fuel flow rate and the air (including recirculated exhaust gas) flow rate can be obtained from the flame temperature and the water vapor absorbance from the flame emission spectrum characteristic.

【0024】なお、水蒸気の吸光度が利用できるのは、
再循環排ガス中に水蒸気を含むときに限られる。このと
きの燃料は、燃焼排ガス中に水蒸気が含まれるガス燃
料、液体燃料である必要がある。しかし、固体燃料のと
きは、燃焼排ガス中には水蒸気がわずかしか含まれない
が、水蒸気の吸光に代わって炭酸ガスの吸光を利用でき
る。炭酸ガスの吸光帯は、2.7、4.3μmにある。
したがって、固体燃料の燃焼時は、2.7、4.3μm
の波長帯における炭酸ガスの吸光度とスートの発光特性
(火炎温度)を用いると、燃料流量、空気流量、再循環
排ガス流量を求めることができる。
The reason why the absorbance of water vapor can be used is
Only when water vapor is contained in the recirculated exhaust gas. The fuel at this time needs to be gas fuel or liquid fuel in which steam is contained in the combustion exhaust gas. However, when the solid fuel is used, the combustion exhaust gas contains only a small amount of water vapor, but the light absorption of carbon dioxide gas can be used instead of the light absorption of water vapor. The absorption band of carbon dioxide is at 2.7 and 4.3 μm.
Therefore, when burning solid fuel, 2.7, 4.3 μm
The fuel flow rate, the air flow rate, and the recirculated exhaust gas flow rate can be obtained by using the absorbance of carbon dioxide gas and the emission characteristics (flame temperature) of soot in the wavelength band of.

【0025】図4に示したように、各バーナにおける燃
料流量、空気流量、排ガス再循環流量はステップ状に変
化する。この変化状況を観察したところ、このステップ
状の流量変化は、バーナ元燃料流量調整弁15、16お
よびバーナ元風量調整ダンパ12、13のあそびによる
ものであった。このあそびとは、弁またはダンパ開度が
一定に設定されていても、弁またはダンパのブレード等
が移動し、流路断面積が変化することをいう。
As shown in FIG. 4, the fuel flow rate, the air flow rate, and the exhaust gas recirculation flow rate in each burner change stepwise. Observing this change condition, this step-like change in flow rate was due to the play of the burner source fuel flow rate adjusting valves 15 and 16 and the burner source air flow rate adjusting dampers 12 and 13. This play means that the blade or the like of the valve or damper moves and the flow passage cross-sectional area changes even if the valve or damper opening is set constant.

【0026】弁、ダンパの開閉操作を繰返すと、軸等が
摩耗し、あそびが増大し、流量のステップ変化幅が増大
する。本発明の第3の実施例は、火炎のスペクトル特性
から得られる火炎温度の変動および水蒸気の吸光度の変
動幅を検出し、燃料系統、空気系統に設置された各種流
量調整機器の摩耗状況およびこの流量調整器の寿命を知
るものである。
When the opening and closing operations of the valve and the damper are repeated, the shaft and the like are worn, the play increases, and the step change width of the flow rate increases. The third embodiment of the present invention detects the fluctuation range of the flame temperature and the fluctuation range of the absorbance of water vapor, which are obtained from the spectrum characteristics of the flame, and detects the wear state of various flow rate adjusting devices installed in the fuel system and the air system and This is to know the life of the flow rate regulator.

【0027】図7に、火炎のスペクトル特性から得られ
た火炎温度と水蒸気吸光度、ならびに燃料流量と空気
(再循環排ガスを含む)流量の経時変化を示す。燃料流
量、空気(再循環排ガスを含む)流量の変動幅は、経時
的に増大するが、バーナ元燃料流量調整弁およびバーナ
元風量調整弁をオーバーホールすると縮小される。この
実施例は、経時的な火炎温度、燃料流量、空気流量およ
び再循環排ガス流量の変化からその平均値と変動幅、な
らびに燃料と空気の混合状態等を把握し、それぞれの設
定値と測定値の偏差が最小になるように、燃焼調整のた
めに制御される各種流量調整機器の流量調整のための指
示を与えることができるようにするものである。
FIG. 7 shows changes with time in the flame temperature and the water vapor absorbance, and the fuel flow rate and the air (including recirculated exhaust gas) flow rate obtained from the spectrum characteristics of the flame. The fluctuation range of the fuel flow rate and the air (including recirculation exhaust gas) flow rate increases with time, but is reduced by overhauling the burner source fuel flow rate control valve and the burner source air flow rate control valve. In this example, the average value and fluctuation range, the mixed state of fuel and air, etc. are grasped from changes in flame temperature, fuel flow rate, air flow rate and recirculated exhaust gas flow rate over time, and the respective set values and measured values Therefore, it is possible to give an instruction for flow rate adjustment of various flow rate adjusting devices controlled for combustion adjustment so that the deviation of the above is minimized.

【0028】図8に、この燃焼診断システムおよび流量
調整機器診断システムの構成を示す。この燃焼診断シス
テムおよび流量調整機器診断システムは、光プローブ、
中継光ファイバ、分光分析装置、および電算器から主に
構成される。火炎からの発光スペクトルは、光プローブ
で受光され中継光ファイバを経て、分光分析装置に懸け
られる。分光分析装置では、発光スペクトルが電気信号
に変換される。この電気信号は、電算機における燃焼診
断システムおよび流量調整機器診断システムの入力信号
となる。
FIG. 8 shows the configurations of the combustion diagnosis system and the flow rate adjustment device diagnosis system. This combustion diagnosis system and flow rate adjustment device diagnosis system are equipped with an optical probe,
It is mainly composed of a relay optical fiber, a spectroscopic analyzer, and a computer. The emission spectrum from the flame is received by the optical probe, passed through the relay optical fiber, and then suspended by the spectroscopic analyzer. In the spectroscopic analyzer, the emission spectrum is converted into an electric signal. This electric signal serves as an input signal for the combustion diagnosis system and the flow rate adjustment device diagnosis system in the computer.

【0029】この燃焼診断システムおよび流量調整機器
診断システムにおいては、光プローブと分光分析装置の
間を中継光ファイバで結ぶことにより、電気を使用する
分光分析装置を燃焼炉壁から十分離れた位置に設置する
ことができるようになり、燃焼爆発等の危険をなくす効
果が得られる。
In this combustion diagnosis system and the flow rate adjustment device diagnosis system, the optical probe and the spectroscopic analysis device are connected by a relay optical fiber so that the spectroscopic analysis device using electricity is placed at a position sufficiently distant from the combustion furnace wall. It becomes possible to install it, and the effect of eliminating the danger of combustion and explosion can be obtained.

【0030】[0030]

【発明の効果】本発明によれば、複数個のバーナが設置
された燃焼炉において、火炎相互の干渉が生じていて
も、高精度な燃焼診断を行なうことができる。
According to the present invention, in a combustion furnace in which a plurality of burners are installed, highly accurate combustion diagnosis can be performed even if flames interfere with each other.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明になる燃焼診断方法のフローを
示す図である。
FIG. 1 is a diagram showing a flow of a combustion diagnosis method according to the present invention.

【図2】図2は、本発明の一実施例の燃焼診断装置が適
応された燃焼炉の概略構成を示す図である。
FIG. 2 is a diagram showing a schematic configuration of a combustion furnace to which a combustion diagnosis device according to an embodiment of the present invention is applied.

【図3】図3は、燃焼炉内の火炎発光スペクトルの一例
を示す図である。
FIG. 3 is a diagram showing an example of a flame emission spectrum in a combustion furnace.

【図4】図4は、本発明の一実施例における各流量の測
定結果の一例を示す図である。
FIG. 4 is a diagram showing an example of measurement results of respective flow rates according to an embodiment of the present invention.

【図5】図5は、火炎温度および水蒸気の吸光度に対す
る、燃料流量、空気流量、排ガス流量の関係を示す図で
ある。
FIG. 5 is a diagram showing a relationship of a fuel flow rate, an air flow rate, and an exhaust gas flow rate with respect to flame temperature and water vapor absorbance.

【図6】図6は、本発明の他の実施例の燃焼診断方法の
フローを示す図である。
FIG. 6 is a diagram showing a flow of a combustion diagnosis method according to another embodiment of the present invention.

【図7】図7は、火炎のスペクトル特性から得られた火
炎温度と水蒸気吸光度、ならびに燃料流量と空気(再循
環排ガスを含む)流量の経時変化を示す図である。
FIG. 7 is a diagram showing changes with time in flame temperature and water vapor absorbance, fuel flow rate, and air (including recirculated exhaust gas) flow rate obtained from flame spectrum characteristics.

【図8】図8は、燃焼診断システムおよび流量調整機器
診断システムの構成を示す図である。
FIG. 8 is a diagram showing a configuration of a combustion diagnosis system and a flow rate adjustment device diagnosis system.

【符号の説明】 1:燃焼炉、2,3:バーナ火炎、4:バーナI、5:
バーナII、6,7:バーナ元空気流量計、8:送風機
元空気流量計、9,10:バーナ元燃料流量計、11:
ポンプ元燃料流量計、12,13:バーナ元風量調整ダ
ンパ、14:通風機元風量調整ダンパ、15,16:バ
ーナ元燃料調整弁、17:燃料ポンプ元流量調整弁、1
8,19:送風機、20:燃料ポンプ、21:燃料タン
ク、22:空気、23:排ガス
[Explanation of Codes] 1: Combustion furnace, 2, 3: Burner flame, 4: Burner I, 5:
Burner II, 6, 7: Burner source air flow meter, 8: Blower source air flow meter, 9, 10: Burner source fuel flow meter, 11:
Pump original fuel flow meter, 12, 13: Burner original air flow rate adjustment damper, 14: Ventilator original air flow rate adjustment damper, 15, 16: Burner original air flow adjustment valve, 17: Fuel pump original flow rate adjustment valve, 1
8, 19: Blower, 20: Fuel pump, 21: Fuel tank, 22: Air, 23: Exhaust gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 紘二郎 広島県呉市宝町3番36号 バブコツク日立 株式会社呉研究所内 (72)発明者 大川 剛 広島県呉市宝町6番9号 バブコツク日立 株式会社呉工場内 (72)発明者 久中 実 広島県呉市宝町6番9号 バブ日立エンジ ニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koujiro Yamada, No. 36 Takara-cho, Kure City, Hiroshima Prefecture, Babkotuku Hitachi Co., Ltd., Kure Research Institute (72) Go Okawa, No. 6-9, Takara-cho, Kure City, Hiroshima Prefecture Company Kure Factory (72) Inventor Minoru Kuanaka 6-9 Takaracho, Kure City, Hiroshima Prefecture Bab Hitachi Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数個のバーナを設けた燃焼炉に対し、
火炉内火炎の発光スペクトルを検出して、火炉内燃焼状
態を診断する方法において、あらかじめ燃料流量、空気
流量、再循環排ガス流量の各設定値と火炎発光スペクト
ルの関係を求めておき、次いで対象バーナについて火炎
発光スペクトル、燃料流量、空気流量、再循環排ガス流
量を測定し、これら各流量測定値ごとにそれらの設定値
との偏差を求め、火炎発光スペクトルと前記各流量の関
係と上記偏差値とに基づき、測定した前記火炎発光スペ
クトルを補正し、燃料流量、空気流量、再循環排ガス流
量が設定流量時の基準の火炎発光スペクトルと補正した
上記火炎発光スペクトルと比較してバーナの燃焼状態を
診断することを特徴とする燃焼状態診断方法。
1. A combustion furnace having a plurality of burners,
In the method of diagnosing the combustion state in the furnace by detecting the emission spectrum of the flame in the furnace, the relationship between each set value of fuel flow rate, air flow rate, recirculation exhaust gas flow rate and flame emission spectrum is obtained in advance, and then the target burner About the flame emission spectrum, the fuel flow rate, the air flow rate, the recirculation exhaust gas flow rate is measured, the deviation from those set values for each of these flow rate measurement values is obtained, the relationship between the flame emission spectrum and each of the flow rates, and the above deviation value. Based on the above, the measured flame emission spectrum is corrected, and the combustion state of the burner is diagnosed by comparing the reference flame emission spectrum with the fuel flow rate, the air flow rate, and the recirculation exhaust gas flow rate at the set flow rate and the corrected flame emission spectrum. A method for diagnosing a combustion state, comprising:
【請求項2】 複数個のバーナを設けた燃焼炉に対し、
火炉内火炎の発光スペクトルを検出して、火炉内の燃焼
状態を診断する方法において、あらかじめ燃料流量、空
気流量、再循環排ガス流量の各設定流量と火炎発光スペ
クトルの関係を求めておき、次いで対象バーナについて
火炎発光スペクトルを測定し、この検出発光スペクトル
より火炎温度と水蒸気吸光度を検出し、燃料、空気、再
循環排ガスの設定流量時の火炎発光スペクトルより求め
た火炎温度と水蒸気吸光度とそれらの前記検出値と比較
して、火炎発光スペクトル測定時の燃料流量、空気流
量、再循環排ガス流量を算出し、これらの設定流量値と
の偏差値を求め、各偏差値に基づき測定時の火炎発光ス
ペクトルを補正し、燃料流量、空気流量、再循環排ガス
流量が設定流量時の基準の火炎発光スペクトルと補正し
た上記火炎発光スペクトルと比較してバーナの燃焼状態
を診断することを特徴とする燃焼状態診断方法。
2. A combustion furnace having a plurality of burners,
In the method of diagnosing the combustion state in the furnace by detecting the emission spectrum of the flame in the furnace, the relationship between the fuel flow rate, the air flow rate, the set flow rate of the recirculated exhaust gas flow rate and the flame emission spectrum is obtained in advance, and then the target. The flame emission spectrum is measured for the burner, the flame temperature and water vapor absorbance are detected from this detected emission spectrum, and the flame temperature and water vapor absorbance obtained from the flame emission spectrum at the set flow rate of fuel, air, and recirculated exhaust gas and their absorbance are described above. Calculate the fuel flow rate, air flow rate, and recirculated exhaust gas flow rate at the time of flame emission spectrum measurement by comparing with the detected value, find the deviation value from these set flow rate values, and flame emission spectrum at the time of measurement based on each deviation value The flame emission spectrum is corrected by correcting the fuel flow rate, air flow rate, and recirculated exhaust gas flow rate with the reference flame emission spectrum at the set flow rate. Combustion state diagnosis method characterized by compared to torque diagnosing the combustion state of the burner.
【請求項3】 複数個のバーナを設けた燃焼炉に対し、
火炉内火炎の発光スペクトルを検出して、火炉内の燃焼
状態を診断する方法において、あらかじめ燃料流量、空
気流量の各設定流量と火炎発光スペクトルの関係を求め
ておき、ついで対象バーナについて火炎発光スペクトル
を測定し、この検出発光スペクトルより火炎温度と炭酸
ガス吸光度を検出し、燃料、空気の設定流量時の火炎発
光スペクトルより求めた火炎温度と炭酸ガス吸光度とそ
れらの前記検出値と比較して、火炎発光スペクトル測定
時の燃料流量、空気流量を算出し、これらの設定流量値
との偏差値を求め、各偏差値に基づき測定時の火炎発光
スペクトルを補正し、燃料流量、空気流量が設定流量時
の基準の火炎発光スペクトルと補正した上記火炎発光ス
ペクトルと比較してバーナの燃焼状態を診断することを
特徴とする燃焼状態診断方法。
3. A combustion furnace having a plurality of burners,
In the method of diagnosing the combustion state in the furnace by detecting the emission spectrum of the flame in the furnace, the relationship between each set flow rate of the fuel flow rate and air flow rate and the flame emission spectrum is obtained in advance, and then the flame emission spectrum of the target burner is calculated. Was measured to detect the flame temperature and carbon dioxide absorbance from this detected emission spectrum, and compared with the flame temperature and carbon dioxide absorbance and their detection values obtained from the flame emission spectrum at the set flow rate of fuel and air, Calculate the fuel flow rate and air flow rate during flame emission spectrum measurement, find the deviation from these set flow rate values, correct the flame emission spectrum during measurement based on each deviation value, and set the fuel flow rate and air flow rate to the set flow rate. Combustion state characterized by diagnosing the combustion state of the burner by comparing the flame emission spectrum of the standard at the time with the corrected flame emission spectrum. Diagnostic methods.
JP24614291A 1991-09-25 1991-09-25 Diagnosing method of state of combustion Pending JPH0587333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24614291A JPH0587333A (en) 1991-09-25 1991-09-25 Diagnosing method of state of combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24614291A JPH0587333A (en) 1991-09-25 1991-09-25 Diagnosing method of state of combustion

Publications (1)

Publication Number Publication Date
JPH0587333A true JPH0587333A (en) 1993-04-06

Family

ID=17144111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24614291A Pending JPH0587333A (en) 1991-09-25 1991-09-25 Diagnosing method of state of combustion

Country Status (1)

Country Link
JP (1) JPH0587333A (en)

Similar Documents

Publication Publication Date Title
CN107152695B (en) Heating furnace visualization combustion control system and control method based on many reference amounts detection
CA2583512C (en) A method and apparatus for monitoring and controlling the stability of a burner of a fired heater
JPH0239688B2 (en)
JPS6225934B2 (en)
JP2002267159A (en) Air-fuel ratio control method and device
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
CN112797399A (en) Combustion system and method suitable for preventing high-temperature corrosion of opposed combustion boiler
JPH0587333A (en) Diagnosing method of state of combustion
US20210356126A1 (en) Burner flame stabilization method and system
CN110671717B (en) Combustion accurate control system for steam power generation boiler
JPH0979571A (en) Combustion monitor sensor and air ratio control method of combustor using the sensor
JP3059229B2 (en) Combustion diagnostic device
CN114963229B (en) Intelligent online real-time monitoring CO combustion analysis control platform
JPS63306310A (en) Combustion control method and combustion control device using said method
Butcher Performance control strategies for oil-fired residential heating systems
JP2000179843A (en) Apparatus for diagnosing combustion of burner
JPH08338697A (en) Repair time determining method of heat exchanger for heating furnace
JPS6131816A (en) Combustion state monitoring device
KR20200019500A (en) Combustion environment diagnostics apparatus of boiler
JP5838522B2 (en) Damage diagnosis method for radiant tube recuperator
RU2745181C1 (en) System and method of automatic control and monitoring of a boiler unit operating on gaseous fuel
JPS6030415B2 (en) Control method for preventing black smoke generation from combustion furnace
RU2152557C1 (en) Method of determination of flow rate of flue gases
JPS5924119A (en) Measurement of amount of unburnt substance in ash generated from combustion furnace and concentration of nox in exhaust gas
Ito et al. A combustion monitoring and evaluation system for large utility boilers