JPH0587001B2 - - Google Patents

Info

Publication number
JPH0587001B2
JPH0587001B2 JP866201A JP620186A JPH0587001B2 JP H0587001 B2 JPH0587001 B2 JP H0587001B2 JP 866201 A JP866201 A JP 866201A JP 620186 A JP620186 A JP 620186A JP H0587001 B2 JPH0587001 B2 JP H0587001B2
Authority
JP
Japan
Prior art keywords
resistance layer
resistor
nonlinear
nonlinear resistor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP866201A
Other languages
Japanese (ja)
Other versions
JPS6254404A (en
Inventor
Zenichi Tanno
Noboru Amiji
Koji Tohata
Hideo Ookuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Publication of JPS6254404A publication Critical patent/JPS6254404A/en
Publication of JPH0587001B2 publication Critical patent/JPH0587001B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電気系統における過電圧保護装置に
使用される焼結体自体が電圧非直線性をもつ非直
線抵抗体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a nonlinear resistor whose sintered body itself has voltage nonlinearity and is used in an overvoltage protection device in an electrical system.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

電気系統において、正常な電圧に重畳される過
電圧を除去し、電気系統や電気機器を保護するた
め、サージアブソーバ及び避雷器などの過電圧保
護装置が用いられる。
In electrical systems, overvoltage protection devices such as surge absorbers and lightning arresters are used to remove overvoltages superimposed on normal voltages and protect electrical systems and electrical equipment.

この過電圧保護装置には、正常な電圧ではほぼ
絶縁特性を示し、過電圧が印加されたときには比
較的低抵抗値になる非直線抵抗体が用いられる。
This overvoltage protection device uses a non-linear resistor that exhibits almost insulating properties at normal voltage and has a relatively low resistance value when overvoltage is applied.

非直線抵抗体は酸化亜鉛(ZnO)に金属酸化物
を混合した素材をプレスして成形し、焼成して造
られる。
Nonlinear resistors are made by pressing and molding a material made of zinc oxide (ZnO) mixed with metal oxides, and then firing.

ZnO系の非直線抵抗体は、小電流域における非
直線特性が急峻で、かつ、大電流域に到るまで鋭
く立ち上りをもつため、従来使用されていたSiC
系の非直線抵抗体を用いた過電圧保護装置よりも
すぐれた過電圧保護装置を作ることができる。
ZnO-based nonlinear resistors have steep nonlinear characteristics in the small current range and have a sharp rise up to the large current range, so they
It is possible to create an overvoltage protection device that is superior to an overvoltage protection device using a conventional nonlinear resistor.

このZnO系非直線抵抗体は、高湿状態において
使用すると、非直線抵抗体側面の抵抗値が減少す
る。すなわち、非直線指数αが著しく損われると
いう問題があり、従来は非直線抵抗体の側面にア
ンチモン酸亜鉛(Zn7Sb2O12)を主成分とする高
抵抗層を設けることにより、耐湿性の向上だけで
なく、沿面閃絡の防止をも図つていた。
When this ZnO-based nonlinear resistor is used in high humidity conditions, the resistance value of the side surface of the nonlinear resistor decreases. In other words, there is a problem that the nonlinearity index α is significantly impaired. Conventionally, moisture resistance has been improved by providing a high resistance layer mainly composed of zinc antimonate (Zn 7 Sb 2 O 12 ) on the side surface of the nonlinear resistor. The aim was not only to improve the performance but also to prevent creepage flash.

しかし、従来の非直線抵抗体は、例えば特公昭
59−41284号公報に示されているように、側面に
高抵抗層を形成する方法として、 (1) Sb2O3という形をとつた物質を塗布して、
Sb2O3を焼結体内部のZnOと反応させて、Zn7
Sb2O12を形成する方法。
However, conventional nonlinear resistors, such as
As shown in Publication No. 59-41284, as a method of forming a high resistance layer on the side surface, (1) coating a substance in the form of Sb 2 O 3 ;
By reacting Sb 2 O 3 with ZnO inside the sintered body, Zn 7
How to form Sb2O12 .

(2) 初めから最終組成物の形をとつたZn7Sb2O12
を含む物質を側面に付着させる方法。
(2) Zn 7 Sb 2 O 12 in the form of the final composition from the beginning
A method of attaching substances containing substances to the sides.

が知られている。しかし、前者の方法(1)では焼成
時に十分に反応しきれないでSb2O3がそのまま残
る部分があり、また後者の方法(2)では反応の最終
組成物を塗布するので溶着性が悪いというそれぞ
れの欠点があつた。
It has been known. However, in the former method (1), there are parts where Sb 2 O 3 remains as it is due to insufficient reaction during firing, and in the latter method (2), the final composition of the reaction is applied, resulting in poor welding properties. Each had their own shortcomings.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点に鑑みなされたもので、高抵
抗層と素体の密着性を良くすることにより、耐湿
性に優れたしかもインパルス耐量を向上させるこ
とができる非直線抵抗体を得ることができる非直
線抵抗体の製造方法を提供することを目的とす
る。
The present invention was made in view of the above drawbacks, and by improving the adhesion between the high-resistance layer and the element body, it is possible to obtain a non-linear resistor that has excellent moisture resistance and can improve impulse resistance. An object of the present invention is to provide a method for manufacturing a nonlinear resistor.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するため、本発明によれば、
酸化亜鉛を主体とする成形体素体あるいは予め成
形体を仮焼した素体の側面にZn2Bi3Sb3O14を含
む物質、あるいはZn2Bi3Sb3O14とSiO2,TiO2
Fe2O3からなる群から選ばれた1つの材料も含む
物質を塗布した後、焼結して、焼結体の側面に高
抵抗層を形成することによつて、耐湿性に優れし
かもインパルス耐量が向上する非直線抵抗体を得
る様にしたものである。
In order to achieve this objective, according to the present invention,
A material containing Zn 2 Bi 3 Sb 3 O 14 on the side of a compacted body mainly composed of zinc oxide or a pre-calcined compact, or Zn 2 Bi 3 Sb 3 O 14 and SiO 2 , TiO 2
After coating a substance containing one material selected from the group consisting of Fe 2 O 3 , it is sintered to form a high-resistance layer on the side of the sintered body, which provides excellent moisture resistance and impulse resistance. This is to obtain a non-linear resistor with improved resistance.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

(実施例 1) まず、酸化亜鉛(ZnO)の粉末に、酸化ビスマ
ス(Bi2O3)、酸化コバルト(Co2O3)、酸化マン
ガン(MnO)、酸化クロム(Cr2O3)を各々0.5モ
ル%、酸化アンチモン(Sb2O3)、酸化ニツケル
(NiO)の粉末を夫々1.0モル%の範囲で添加し、
これらの原料粉末を十分に混合するために水、分
散剤、バインダー、潤滑剤と共に混合装置に入れ
て混合した。この混合物スラリーを、スプレード
ライヤーで例えば平均粒径120ミクロンになる様
に造粒し、この粉末をプレスにかけ直径50mm厚さ
30mmの円板に成形した。添加した分散剤、バイン
ダー、潤滑剤を予め除くため空気中で500℃で焼
成後、1020℃で仮焼した素体に予め用意した高抵
抗層形成用スラリーをスプレーガンを用いて塗布
した。
(Example 1) First, bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), manganese oxide (MnO), and chromium oxide (Cr 2 O 3 ) were added to zinc oxide (ZnO) powder. Adding 0.5 mol%, antimony oxide (Sb 2 O 3 ), and nickel oxide (NiO) powder in a range of 1.0 mol% each,
In order to thoroughly mix these raw material powders, they were placed in a mixing device together with water, a dispersant, a binder, and a lubricant. This mixture slurry is granulated using a spray dryer so that the average particle size is, for example, 120 microns, and this powder is pressed to a diameter of 50 mm thick.
It was molded into a 30mm disc. After firing in air at 500°C to remove the added dispersant, binder, and lubricant, a slurry for forming a high-resistance layer prepared in advance was applied to the calcined body at 1020°C using a spray gun.

前記の高抵抗層形成用スラリーは、以下の様に
調製された。酸化亜鉛(ZnO)40モル%、酸化ビ
スマン(Bi2O3)30モル%、酸化アンチモン
(Sb2O3)30モル%で混合した粉末を650〜950℃
で焼成することにより生成させたZn2Bi3Sb3O14
に、重量比1:1となる様に純水を加え適当なス
ラリーにした。この時、ポリビニルアルコールの
様な結合剤を0.1重量%程添加することにより、
塗膜の強度が増大する。この様に調整したスラリ
ーを前記素体に塗布した後この素体を空気雰囲気
中で1200℃の温度で焼成した。その後、焼結素体
の両面を平行に研磨し厚さ20mmとした後、アルミ
ニウムの溶射により両面に電極を形成して、非直
線抵抗体を得た。
The above slurry for forming a high resistance layer was prepared as follows. A powder mixture of 40 mol% zinc oxide (ZnO), 30 mol% bisman oxide (Bi 2 O 3 ), and 30 mol % antimony oxide (Sb 2 O 3 ) was heated at 650 to 950°C.
Zn 2 Bi 3 Sb 3 O 14 produced by firing with
Pure water was added to the mixture at a weight ratio of 1:1 to form a suitable slurry. At this time, by adding about 0.1% by weight of a binder such as polyvinyl alcohol,
The strength of the coating film increases. After the slurry prepared in this manner was applied to the element body, the element body was fired at a temperature of 1200° C. in an air atmosphere. Thereafter, both sides of the sintered element were polished in parallel to a thickness of 20 mm, and electrodes were formed on both sides by thermal spraying of aluminum to obtain a nonlinear resistor.

このようにして得られた非直線抵抗体の特性を
第1図及び第2図に示す。
The characteristics of the nonlinear resistor thus obtained are shown in FIGS. 1 and 2.

第1図は非直線抵抗体を湿度90%以上、温度90
℃の恒温槽内に長時間放置したとき、非直線抵抗
体に10μÅの電流を流すのに必要な電圧V10μÅ
を測定し、初期値に対する変化率ΔV10μÅを算
出し図示したものである。
Figure 1 shows a nonlinear resistor at a humidity of 90% or more and a temperature of 90%.
Voltage V required to cause a current of 10 μÅ to flow through a nonlinear resistor when left in a constant temperature chamber at °C for a long time 10 μÅ
was measured, and the rate of change ΔV 10 μÅ with respect to the initial value was calculated and illustrated.

また、第2図は4×10マイクロ秒の波形のイン
パルス電流を印加した時の合格率を示す。
Moreover, FIG. 2 shows the pass rate when an impulse current with a waveform of 4×10 microseconds is applied.

第1図、第2図において、実線Aは従来のZn7
Sb2O12を含む物質を塗布して高抵抗層を形成さ
せた非直線抵抗体の特性を、破線Bは本発明の
Zn2Bi3Sb3O14を含む物質を塗布して高抵抗層を
形成させた非直線抵抗体の特性をそれぞれ示す。
In Figures 1 and 2, solid line A indicates conventional Zn 7
The broken line B shows the characteristics of a non-linear resistor in which a high resistance layer is formed by applying a substance containing Sb 2 O 12 .
The characteristics of a nonlinear resistor in which a high resistance layer is formed by coating a substance containing Zn 2 Bi 3 Sb 3 O 14 are shown.

第1図及び第2図から明らかなように本発明の
Zn2Bi3Sb3O14を含む物質を素体に塗布した後、
焼結して高抵抗層を形成させた非直線抵抗体は従
来の非直線抵抗体に比べ耐湿性が優れ、しかもイ
ンパルス耐量が向上する。
As is clear from FIGS. 1 and 2, the present invention
After applying a substance containing Zn 2 Bi 3 Sb 3 O 14 to the element body,
A non-linear resistor in which a high-resistance layer is formed by sintering has superior moisture resistance and improved impulse resistance compared to conventional non-linear resistors.

本発明においてこのような優れた特性が得られ
る理由は次のように考えられる。即ちZn2Bi3Sb3
O14は下記に示す反応で素体内部のZnOと反応し
てZn7Sb2O12を形成し、しかもその時遊離した
Bi2O3がZnOとの反応を促進するため、形成され
た高抵抗層(Zn7Sb2O12)の密着性が増大する。
またZn2Bi3Sb3O14は非常に活性な物質のため、
反応しきれないでそのまま残ることもない。
The reason why such excellent characteristics are obtained in the present invention is considered as follows. i.e. Zn 2 Bi 3 Sb 3
O 14 reacts with ZnO inside the element body in the reaction shown below to form Zn 7 Sb 2 O 12 , and at that time, it is liberated.
Since Bi 2 O 3 promotes the reaction with ZnO, the adhesion of the formed high resistance layer (Zn 7 Sb 2 O 12 ) increases.
Also, since Zn 2 Bi 3 Sb 3 O 14 is a very active substance,
You won't be left alone because you can't fully react.

2Zn2Bi3Sb3O14+17ZnO→3Zn7Sb2O12+3Bi2O3 上記実施例によれば、本発明により製造した非
直線抵抗体は、耐湿性及びインパルス耐量特性に
優れ、非直線抵抗体の湿度やインパルス電流に対
する安定性を著しく改善するものであり、このこ
とは、非直線抵抗体を電力用避雷器等に使用した
場合において、非常に優れた信頼性を保証するも
ので、実用的見地から見て重要である。
2Zn 2 Bi 3 Sb 3 O 14 +17ZnO→3Zn 7 Sb 2 O 12 +3Bi 2 O 3According to the above example, the nonlinear resistor manufactured according to the present invention has excellent moisture resistance and impulse withstand characteristics, and has a nonlinear resistance. It significantly improves the stability against body humidity and impulse current, and this guarantees extremely high reliability when nonlinear resistors are used in power surge arresters, etc., making them practical. Important from this point of view.

(実施例 2) 実施例1と同様にして焼結体自体が電圧非直線
性を有するような添加物を加えた、酸化亜鉛を主
成分とし、予め成形体を仮焼した素体に、予め用
意した高抵抗層形成用スラリーをスプレーガンを
用いて塗布した。
(Example 2) In the same manner as in Example 1, the sintered body was preliminarily calcined as a molded body containing zinc oxide as the main component and containing additives that would cause the sintered body to have voltage nonlinearity. The prepared slurry for forming a high resistance layer was applied using a spray gun.

前記の高抵抗層形成用スラリーは、以下の様に
調製した。酸化亜鉛(ZnO)40モル%、酸化ビス
マス(Bi2O3)30モル%、酸化アンチモン(Sb2
O3)30モル%で混合した粉末を650〜950℃で焼
成することにより生成させたZn2Bi3Sb3O1450モ
ル%と酸化硅素(SiO2)50モル%に、重量比
1:1となる様に純水を加え適当なスラリーにし
た。この時、ポリビニルアルコールの様な結合剤
を0.1重量%程添加することにより、塗膜の強度
が増大する。この様に調整したスラリーを前記素
体に塗布した後この素体を空気雰囲気中で1200℃
の温度で焼成した。その後、焼結素体の両面を平
行に研磨し厚さ20mmとした後、アルミニウムの溶
射により両面に電極を形成して、非直線抵抗体を
得た。
The above slurry for forming a high resistance layer was prepared as follows. Zinc oxide (ZnO) 40 mol%, bismuth oxide (Bi 2 O 3 ) 30 mol %, antimony oxide (Sb 2
50 mol% of Zn 2 Bi 3 Sb 3 O 14 and 50 mol% of silicon oxide (SiO 2 ) , which were produced by firing a powder mixed with 30 mol% of O 3 ) at 650 to 950°C, were added in a weight ratio of 1: Pure water was added to make a suitable slurry. At this time, the strength of the coating film is increased by adding about 0.1% by weight of a binder such as polyvinyl alcohol. After applying the slurry prepared in this manner to the element body, the element body was heated to 1200℃ in an air atmosphere.
It was fired at a temperature of Thereafter, both sides of the sintered element were polished in parallel to a thickness of 20 mm, and electrodes were formed on both sides by thermal spraying of aluminum to obtain a nonlinear resistor.

このようにして得られた非直線抵抗体の特性を
第3図及び第4図に示す。
The characteristics of the nonlinear resistor thus obtained are shown in FIGS. 3 and 4.

第3図は非直線抵抗体を湿度90%以上、温度90
℃の恒温槽内に長時間放置したとき、非直線抵抗
体に10μÅの電流を流すのに必要な電圧V10〓Åを
測定し、初期値に対する変化率ΔV10μÅを算出
し図示したものである。
Figure 3 shows a non-linear resistor at a humidity of 90% or more and a temperature of 90%.
The voltage V 10 〓 Å required to cause a current of 10 µÅ to flow through a nonlinear resistor when left in a constant temperature chamber at ℃ for a long time was measured, and the rate of change ΔV 10 µÅ from the initial value was calculated and illustrated. be.

また、第4図は4×10マイクロ秒の波形のイン
パルス電流を印加した時の合格率を示す。
Moreover, FIG. 4 shows the pass rate when an impulse current with a waveform of 4×10 microseconds is applied.

第3図、第4図において、実線Aは従来のZn2
SiO4とZn7Sb2O12を含む物質を塗布して高抵抗層
を形成させた非直線抵抗体の特性を、また破線B
は本発明のZn2Bi3Sb3O14とSiO2を含む物質を塗
布して高抵抗層を形成させた非直線抵抗体の特性
をそれぞれ示す。
In Figures 3 and 4, solid line A indicates conventional Zn 2
The characteristics of a non-linear resistor in which a high resistance layer is formed by coating a substance containing SiO 4 and Zn 7 Sb 2 O 12 are also shown by the broken line B.
1 and 2 respectively show the characteristics of a non-linear resistor in which a high resistance layer is formed by coating a substance containing Zn 2 Bi 3 Sb 3 O 14 and SiO 2 of the present invention.

第3図及び第4図から明らかなように本発明の
Zn2Bi3Sb3O14とSiO2を含む物質を素体に塗布し
た後、焼結して高抵抗層を形成させた非直線抵抗
体は従来の非直線抵抗体に比べ耐湿性が優れ、し
かもインパルス耐量が向上する。
As is clear from FIGS. 3 and 4, the present invention
A non-linear resistor, in which a material containing Zn 2 Bi 3 Sb 3 O 14 and SiO 2 is coated on an element body and then sintered to form a high-resistance layer, has better moisture resistance than conventional non-linear resistors. Moreover, the impulse withstand capacity is improved.

本発明においてこのような優れた特性が得られ
る理由は次のように考えられる。即ちZn2Bi3Sb3
O14は下記に示す反応で素体内部のZnOと反応し
てZn7Sb2O12を形成し、しかもその時遊離した
Bi2O3がSiO2とZnOとの反応を促進するため、形
成された高抵抗層(Zn7Sb2O12及びZn2SiO4)の
密着性が増大する。またZn2Bi3Sb3O14は非常に
活性な物質のため、反応しきれないでそのまま残
ることもない。
The reason why such excellent characteristics are obtained in the present invention is considered as follows. i.e. Zn 2 Bi 3 Sb 3
O 14 reacts with ZnO inside the element body in the reaction shown below to form Zn 7 Sb 2 O 12 , and at that time, it is liberated.
Since Bi 2 O 3 promotes the reaction between SiO 2 and ZnO, the adhesion of the formed high resistance layer (Zn 7 Sb 2 O 12 and Zn 2 SiO 4 ) increases. Furthermore, since Zn 2 Bi 3 Sb 3 O 14 is a very active substance, it does not react completely and remains as it is.

(1) 2Zn2Bi3Sb3O14+17ZnO→3Zn7Sb2O12+3Bi2
O3 (2) SiO2+2ZnO→Zn2SiO4 上記実施例によれば、本発明により製造した非
直線抵抗体は、耐湿性及びインパルス耐量特性に
優れ、非直線抵抗体の湿度やインパルス電流に対
する安定性を著しく改善するものであり、このこ
とは、非直線抵抗体を電力用避雷器等に使用した
場合において、非常に優れた信頼性を保証するも
ので、実用的見地から見て重要である。
(1) 2Zn 2 Bi 3 Sb 3 O 14 +17ZnO→3Zn 7 Sb 2 O 12 +3Bi 2
O 3 (2) SiO 2 +2ZnO→Zn 2 SiO 4According to the above example, the nonlinear resistor manufactured according to the present invention has excellent moisture resistance and impulse withstand characteristics, and is resistant to humidity and impulse current of the nonlinear resistor. This significantly improves stability, which is important from a practical point of view, as it guarantees very good reliability when non-linear resistors are used in power surge arresters, etc. .

(実施例 3) 実施例1と同様にして焼結体自体が電圧非直線
性を有するような添加物を加えた、酸化亜鉛を主
成分とし、予め成形体を仮焼した素体に、予め用
意した高抵抗層形成用スラリーをスプレーガンを
用いて塗布した。
(Example 3) In the same manner as in Example 1, an element body containing zinc oxide as the main component and pre-calcined as a molded body to which an additive such that the sintered body itself has voltage non-linearity was added. The prepared slurry for forming a high resistance layer was applied using a spray gun.

前記の高抵抗層形成用スラリーは、以下の様に
調製した。酸化亜鉛(ZnO)40モル%、酸化ビス
マス(Bi2O3)30モル%、酸化アンチモン(Sb2
O3)30モル%で混合した粉末を650〜950℃で焼
成することにより生成させたZn2Bi3Sb3O1450モ
ル%と酸化チタン(TiO2)50モル%に、重量比
1:1となる様に純水を加え適当なスラリーにし
た。この時、ポリビニルアルコールの様な結合剤
を0.1重量%程添加することにより、塗膜の強度
が増大する。この様に調整したスラリーを前記素
体に塗布した後この素体を空気雰囲気中で1200℃
の温度で焼成した。その後、焼結素体の両面を平
行に研磨し厚さ20mmとした後、アルミニウムの溶
射により両面に電極を形成して、非直線抵抗体を
得た。
The above slurry for forming a high resistance layer was prepared as follows. Zinc oxide (ZnO) 40 mol%, bismuth oxide (Bi 2 O 3 ) 30 mol %, antimony oxide (Sb 2
50 mol% of Zn 2 Bi 3 Sb 3 O 14 and 50 mol% of titanium oxide (TiO 2 ) , which were produced by firing a powder mixed with 30 mol% of O 3 ) at 650 to 950°C, were added in a weight ratio of 1: Pure water was added to make a suitable slurry. At this time, the strength of the coating film is increased by adding about 0.1% by weight of a binder such as polyvinyl alcohol. After applying the slurry prepared in this manner to the element body, the element body was heated to 1200℃ in an air atmosphere.
It was fired at a temperature of Thereafter, both sides of the sintered element were polished in parallel to a thickness of 20 mm, and electrodes were formed on both sides by thermal spraying of aluminum to obtain a nonlinear resistor.

このようにして得られた非直線抵抗体の特性を
第5図及び第6図に示す。
The characteristics of the nonlinear resistor thus obtained are shown in FIGS. 5 and 6.

第5図は非直線抵抗体を湿度90%以上、温度90
℃の恒温槽内に長時間放置したとき、非直線抵抗
体に10μÅの電流を流すのに必要な電圧V10μÅ
を測定し、初期値に対する変化率ΔV10μÅを算
出し図示したものである。
Figure 5 shows a non-linear resistor at a humidity of 90% or more and a temperature of 90%.
Voltage V required to cause a current of 10 μÅ to flow through a nonlinear resistor when left in a constant temperature chamber at °C for a long time 10 μÅ
was measured, and the rate of change ΔV 10 μÅ with respect to the initial value was calculated and illustrated.

また、第6図は4×10マイクロ秒の波形のイン
パルス電流を印加した時の合格率を示す。
Moreover, FIG. 6 shows the pass rate when an impulse current with a waveform of 4×10 microseconds is applied.

第5図、第6図において、実線Aは従来のZn2
SiO4とZn7Sb2O12を含む物質を塗布して高抵抗層
を形成させた非直線抵抗体の特性を、また破線B
は本発明のZn2Bi3Sb3O14とTiO2を含む物質を塗
布した高抵抗層を形成させた非直線抵抗体の特性
をそれぞれ示す。
In Figures 5 and 6, solid line A indicates conventional Zn 2
The characteristics of a nonlinear resistor in which a high resistance layer is formed by coating a substance containing SiO 4 and Zn 7 Sb 2 O 12 are also shown by the broken line B.
1 and 2 respectively show the characteristics of a non-linear resistor in which a high-resistance layer coated with a substance containing Zn 2 Bi 3 Sb 3 O 14 and TiO 2 of the present invention is formed.

第5図及び第6図から明らかなように本発明の
Zn2Bi3Sb3O14とTiO2を含む物質を素体に塗布し
た後、焼結して高抵抗層を形成させて製造した非
直線抵抗体は従来の非直線抵抗体に比べ耐湿性が
優れ、しかもインパルス耐量が向上する。
As is clear from FIGS. 5 and 6, the present invention
A non-linear resistor manufactured by applying a substance containing Zn 2 Bi 3 Sb 3 O 14 and TiO 2 to an element body and then sintering it to form a high-resistance layer has better moisture resistance than conventional non-linear resistors. is excellent, and the impulse withstand capacity is improved.

本発明においてこのような優れた特性が得られ
る理由は次のように考えられる。即ちZn2Bi3Sb3
O14は下記に示す反応で素体内部のZnOと反応し
てZn7Sb2O12を形成し、しかもその時遊離した
Bi2O3がTiO2とZnOとの反応を促進するため、形
成された高抵抗層(Zn7Sb2O12及びZn2TiO4)の
密着性が増大する。またZn2Bi3Sb3O14は非常に
活性な物質のため、反応しきれないでそのまま残
ることもない。
The reason why such excellent characteristics are obtained in the present invention is considered as follows. i.e. Zn 2 Bi 3 Sb 3
O 14 reacts with ZnO inside the element body in the reaction shown below to form Zn 7 Sb 2 O 12 , and at that time, it is liberated.
Since Bi 2 O 3 promotes the reaction between TiO 2 and ZnO, the adhesion of the formed high resistance layer (Zn 7 Sb 2 O 12 and Zn 2 TiO 4 ) increases. Furthermore, since Zn 2 Bi 3 Sb 3 O 14 is a very active substance, it does not react completely and remains as it is.

(1) 2Zn2Bi3Sb3O14+17ZnO→3Zn7Sb2O12+3Bi2
O3 (2) TiO2+2ZnO→Zn2TiO4 上記実施例によれば、本発明により製造した非
直線抵抗体は、耐湿性及びインパルス耐量特性に
優れ、非直線抵抗体の湿度やインパルス電流に対
する安定性を著しく改善するものであり、このこ
とは、非直線抵抗体を電力用避雷器等に使用した
場合において、非常に優れた信頼性を保証するも
ので、実用的見地から見て重要である。
(1) 2Zn 2 Bi 3 Sb 3 O 14 +17ZnO→3Zn 7 Sb 2 O 12 +3Bi 2
O 3 (2) TiO 2 +2ZnO→Zn 2 TiO 4According to the above example, the nonlinear resistor manufactured according to the present invention has excellent moisture resistance and impulse withstand characteristics, and the nonlinear resistor has excellent resistance to humidity and impulse current. This significantly improves stability, which is important from a practical point of view, as it guarantees very good reliability when non-linear resistors are used in power surge arresters, etc. .

(実施例 4) 実施例1と同様にして焼結体自体が電圧非直線
性を有するような添加物を加えた、酸化亜鉛を主
成分とし、予め成形体を仮焼した素体に、予め用
意した高抵抗層形成用スラリーをスプレーガンを
用いて塗布した。
(Example 4) In the same manner as in Example 1, an element body containing zinc oxide as the main component and pre-calcined as a molded body to which an additive such that the sintered body itself has voltage non-linearity was added. The prepared slurry for forming a high resistance layer was applied using a spray gun.

前記の高抵抗層形成用スラリーは、以下の様に
調製した。酸化亜鉛(ZnO)40モル%、酸化ビス
マン(Bi2O3)30モル%、酸化アンチモン(Sb2
O3)30モル%で混合した粉末を650〜950℃で焼
成することにより生成させたZn2Bi3Sb3O1450モ
ル%と酸化鉄(Fe2O3)50モル%に、重量比1:
1となる様に純水を加え適当なスラリーにした。
この時、ポリビニルアルコールの様な結合剤を
0.1重量%程添加することにより、塗膜の強度が
増大する。この様に調整したスラリーを前記素体
に塗布した後この素体を空気雰囲気中で1200℃の
温度で焼成した。その後、焼結素体の両面を平行
に研磨し厚さ20mmとした後、アルミニウムの溶射
により両面に電極を形成して、非直線抵抗体を得
た。
The above slurry for forming a high resistance layer was prepared as follows. Zinc oxide (ZnO) 40 mol%, bisman oxide (Bi 2 O 3 ) 30 mol %, antimony oxide (Sb 2
50 mol% of Zn 2 Bi 3 Sb 3 O 14 and 50 mol% of iron oxide (Fe 2 O 3 ), which were produced by firing a powder mixed at 30 mol% of O 3 ) at 650 to 950°C, were added to 1:
Pure water was added to make a suitable slurry.
At this time, use a binder such as polyvinyl alcohol.
By adding about 0.1% by weight, the strength of the coating film increases. After the slurry prepared in this manner was applied to the element body, the element body was fired at a temperature of 1200° C. in an air atmosphere. Thereafter, both sides of the sintered element were polished in parallel to a thickness of 20 mm, and electrodes were formed on both sides by thermal spraying of aluminum to obtain a nonlinear resistor.

このようにして得られた非直線抵抗体の特性を
第7図及び第8図に示す。
The characteristics of the nonlinear resistor thus obtained are shown in FIGS. 7 and 8.

第7図は非直線抵抗体を湿度90%以上、温度90
℃の恒温槽内に長時間放置したとき、非直線抵抗
体に10μÅの電流を流すのに必要な電圧V10μÅ
を測定し、初期値に対する変化率ΔV10μÅを算
出し図示したものである。
Figure 7 shows a non-linear resistor at a humidity of 90% or more and a temperature of 90%.
Voltage V required to cause a current of 10 μÅ to flow through a nonlinear resistor when left in a constant temperature chamber at °C for a long time 10 μÅ
was measured, and the rate of change ΔV 10 μÅ with respect to the initial value was calculated and illustrated.

また、第8図は4×10マイクロ秒の波形のイン
パルス電流を印加した時の合格率を示す。
Moreover, FIG. 8 shows the pass rate when an impulse current with a waveform of 4×10 microseconds is applied.

第7図、第8図において、実線Aは従来のZn2
SiO4とZn7Sb2O12を含む物質を塗布して高抵抗層
を形成させた非直線抵抗体の特性を、また破線B
は本発明のZn2Bi3Sb3O14とFe2O3を含む物質を塗
布して高抵抗層を形成させた非直線抵抗体の特性
をそれぞれ示す。
In Figures 7 and 8, solid line A indicates conventional Zn 2
The characteristics of a non-linear resistor in which a high resistance layer is formed by coating a substance containing SiO 4 and Zn 7 Sb 2 O 12 are also shown by the broken line B.
1 and 2 show the characteristics of a non-linear resistor in which a high resistance layer is formed by applying a substance containing Zn 2 Bi 3 Sb 3 O 14 and Fe 2 O 3 according to the present invention.

第7図及び第8図から明らかなように本発明の
Zn2Bi3Sb3O14とFe2O3を含む物質を素体に塗布し
た後、焼結して高抵抗層を形成させた非直線抵抗
体は従来の非直線抵抗体に比べ耐湿性が優れ、し
かもインパルス耐量が向上する。
As is clear from FIGS. 7 and 8, the present invention
Non-linear resistors are made by applying a substance containing Zn 2 Bi 3 Sb 3 O 14 and Fe 2 O 3 to the element body and then sintering it to form a high-resistance layer, which has better moisture resistance than conventional non-linear resistors. is excellent, and the impulse withstand capacity is improved.

本発明においてこのような優れた特性が得られ
る理由は次のように考えられる。即ちZn2Bi3Sb3
O14は下記に示す反応で素体内部のZnOと反応し
てZn7Sb2O12を形成し、しかもその時遊離した
Bi2O3がFe2O3とZnOとの反応を促進するため、
形成された高抵抗層(Zn7Sb2O12及びZnFe2O4
の密着性が増大する。またZn2Bi3Sb3O14は非常
に活性な物質のため、反応しきれないでそのまま
残ることもない。
The reason why such excellent characteristics are obtained in the present invention is considered as follows. i.e. Zn 2 Bi 3 Sb 3
O 14 reacts with ZnO inside the element body in the reaction shown below to form Zn 7 Sb 2 O 12 , and at that time, it is liberated.
Because Bi 2 O 3 promotes the reaction between Fe 2 O 3 and ZnO,
High resistance layer formed (Zn 7 Sb 2 O 12 and ZnFe 2 O 4 )
adhesion increases. Furthermore, since Zn 2 Bi 3 Sb 3 O 14 is a very active substance, it does not react completely and remains as it is.

(1) 2Zn2Bi3Sb3O14+17ZnO→3Zn7Sb2O12+3Bi2
O3 (2) Fe2O3+ZnO→Zn2→Zn2Fe2O4 上記実施例によれば、本発明により製造した非
直線抵抗体は、耐湿性及びインパルス耐量特性に
優れ、非直線抵抗体の湿度やインパルス電流に対
する安定性を著しく改善するものであり、このこ
とは、非直線抵抗体を電力用避雷器等に使用した
場合において、非常に優れた信頼性を保証するも
ので、実用的見地から見て重要である。
(1) 2Zn 2 Bi 3 Sb 3 O 14 +17ZnO→3Zn 7 Sb 2 O 12 +3Bi 2
O 3 (2) Fe 2 O 3 +ZnO→Zn 2 →Zn 2 Fe 2 O 4According to the above example, the nonlinear resistor manufactured according to the present invention has excellent moisture resistance and impulse withstand characteristics, and has a high nonlinear resistance. It significantly improves the stability against body humidity and impulse current, and this guarantees extremely high reliability when nonlinear resistors are used in power surge arresters, etc., making them practical. Important from this point of view.

以上、本発明の実施例を4件例示した。なお本
発明の実施例では、原料として酸化物を用いた
が、焼結して酸化物になるものであれば良く、例
えば水酸化物、炭酸化物、シユウ酸化物等であつ
ても同じ効果が得られる。また、実施例に示した
添加物以外に、非直線抵抗体の特性を向上させる
目的で他の成分を加えてもよい。
Above, four examples of the present invention have been illustrated. In the examples of the present invention, an oxide was used as the raw material, but any material that can be sintered to become an oxide may be used; for example, hydroxides, carbonates, sulfur oxides, etc. may have the same effect. can get. In addition to the additives shown in the examples, other components may be added for the purpose of improving the characteristics of the nonlinear resistor.

更に、本発発明の実施例では高抵抗層形成物質
を仮焼した素体に塗布したが、成形した素体に塗
布しても同様の効果が認められた。
Further, in the examples of the present invention, the high-resistance layer-forming substance was applied to the calcined element body, but the same effect was observed even when it was applied to the molded element body.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、耐湿特性及
びインパルス耐量特性に優れ、信頼性の高い非直
線抵抗体を得ることのできる非直線抵抗体の製造
方法を提供することができる。
As explained above, according to the present invention, it is possible to provide a method for manufacturing a nonlinear resistor that can obtain a highly reliable nonlinear resistor with excellent moisture resistance and impulse withstand characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例1の効果を
説明するための耐湿特性を示す図及びインパルス
耐量特性線図、第3図及び第4図は本発明の実施
例2の効果を説明するための耐湿特性を示す図及
びインパルス耐量特性線図、第5図及び第6図は
夫々本発明の実施例3の効果を説明するための耐
湿特性を示す図及びインパルス耐量特性線図、第
7図及び第8図は本発明の実施例4の効果を説明
するための耐湿特性を示す図及びインパルス耐量
特性線図である。
1 and 2 are diagrams showing moisture resistance characteristics and impulse withstand characteristic curves for explaining the effects of Example 1 of the present invention, and FIGS. 3 and 4 are diagrams showing the effects of Example 2 of the present invention. FIGS. 5 and 6 are diagrams showing moisture resistance characteristics and impulse withstand characteristics diagrams for explaining the effects of Example 3 of the present invention, respectively; FIGS. FIGS. 7 and 8 are diagrams showing moisture resistance characteristics and impulse resistance characteristics diagrams for explaining the effects of Example 4 of the present invention.

Claims (1)

【特許請求の範囲】 1 焼結体自体が電圧非直線性を有するような添
加物を加えた、酸化亜鉛を主成分とする成形体素
体あるいは予め成形体を仮焼した素体の側面に
Zn2Bi3Sb3O14を含む物質を塗布した後、これを
焼結して、焼結体の側面に高抵抗層を形成するこ
とを特徴とする非直線抵抗体の製造方法。 2 前記物質は、更にSiO2,TiO2,Fe2O3から
なる群から選ばれた1つの材料も含むことを特徴
とする特許請求の範囲第1項記載の非直線抵抗体
の製造方法。
[Scope of Claims] 1. On the side surface of a compacted body made of zinc oxide as a main component or a pre-calcined compacted body to which an additive such that the sintered body itself has voltage nonlinearity is added.
A method for manufacturing a non-linear resistor, comprising applying a substance containing Zn 2 Bi 3 Sb 3 O 14 and then sintering it to form a high resistance layer on the side surface of the sintered body. 2. The method of manufacturing a nonlinear resistor according to claim 1, wherein the substance further includes one material selected from the group consisting of SiO 2 , TiO 2 , and Fe 2 O 3 .
JP61006201A 1985-05-24 1986-01-17 Manufacture of non-linear resistor Granted JPS6254404A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP60-111515 1985-05-24
JP60-111509 1985-05-24
JP11150985 1985-05-24
JP60-111511 1985-05-24
JP60-111510 1985-05-24

Publications (2)

Publication Number Publication Date
JPS6254404A JPS6254404A (en) 1987-03-10
JPH0587001B2 true JPH0587001B2 (en) 1993-12-15

Family

ID=14563108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006201A Granted JPS6254404A (en) 1985-05-24 1986-01-17 Manufacture of non-linear resistor

Country Status (1)

Country Link
JP (1) JPS6254404A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213692A (en) * 1975-07-23 1977-02-02 Marcon Electronics Co Ltd Non-linear voltage resistor
JPS5213691A (en) * 1975-07-24 1977-02-02 Marcon Electronics Co Ltd Method to manufacture a non-linear voltage resistor
JPS5249491A (en) * 1975-10-16 1977-04-20 Meidensha Electric Mfg Co Ltd Non-linear resistor
JPS57147203A (en) * 1981-03-09 1982-09-11 Tokyo Shibaura Electric Co Method of producing metal oxide nonlinear resistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213692A (en) * 1975-07-23 1977-02-02 Marcon Electronics Co Ltd Non-linear voltage resistor
JPS5213691A (en) * 1975-07-24 1977-02-02 Marcon Electronics Co Ltd Method to manufacture a non-linear voltage resistor
JPS5249491A (en) * 1975-10-16 1977-04-20 Meidensha Electric Mfg Co Ltd Non-linear resistor
JPS57147203A (en) * 1981-03-09 1982-09-11 Tokyo Shibaura Electric Co Method of producing metal oxide nonlinear resistor

Also Published As

Publication number Publication date
JPS6254404A (en) 1987-03-10

Similar Documents

Publication Publication Date Title
JPS63136603A (en) Manufacture of voltage nonlinear resistor
JPS62237703A (en) Manufacture of voltage nonlinear resistance element
JPS5812306A (en) Oxide voltage nonlinear resistor
JP2656233B2 (en) Voltage non-linear resistor
JPH0587001B2 (en)
JPH0744088B2 (en) Method for manufacturing voltage non-linear resistor
JPS63114104A (en) Manufacture of nonlinear resistor
JPS61260608A (en) Manufacture of voltage non-linear resistor
JPH0513361B2 (en)
JPH02170402A (en) Manufacture of voltage dependent nonlinear resistor
JPS63114102A (en) Manufacture of nonlinear resistor
JPH0510803B2 (en)
JPH0518241B2 (en)
JPS60206001A (en) Nonlinear resistor
JPH04296002A (en) Manufacture of non-linear resistor
JPS6196703A (en) Non-linear resistor
JPS6197905A (en) Voltage non-linear resistor
JPS6110205A (en) Nonlinear resistor
JPS62282407A (en) Manufacture of voltage nonlinear resistance element
JPS6329805B2 (en)
JPH02103902A (en) Manufacture of voltage nonlinear resistor
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPH04290204A (en) Nonlinear resistor
JPH07245201A (en) Nonlinear resistor
JPS622501A (en) Voltage/current non-linear resistor