JPH0586367A - Erbium-containing perovskite-type luminescent crystal and its production - Google Patents

Erbium-containing perovskite-type luminescent crystal and its production

Info

Publication number
JPH0586367A
JPH0586367A JP3271857A JP27185791A JPH0586367A JP H0586367 A JPH0586367 A JP H0586367A JP 3271857 A JP3271857 A JP 3271857A JP 27185791 A JP27185791 A JP 27185791A JP H0586367 A JPH0586367 A JP H0586367A
Authority
JP
Japan
Prior art keywords
oxide
crystal
ions
earth metal
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3271857A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kodama
展宏 小玉
Yuka Naitou
由香 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3271857A priority Critical patent/JPH0586367A/en
Publication of JPH0586367A publication Critical patent/JPH0586367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain the subject crystal excellent in luminescent intensity, etc., by mixing a carbonate of an alkaline earth metal ion with two specified oxides of rare earth metal ions and an oxide of aluminum in a specified mixing ratio, melting the resulting mixture, and solidifying the melt. CONSTITUTION:A carbonate or oxide (A) of an alkaline earth metal ion selected between Ca2+ and Sr<2+> (e.g. CaCO3), an oxide (B) of Er<3+> (e.g. Er2O3), an oxide (C) of a rare earth metal ion selected between Gd<3+> and La<3+> (e.g. Gd2O3), and an oxide (D) of Al (e.g. Al2O3) are mixed together in an atomic ratio, ions of component A/Er/ions of component C/Al ions, of 1:x:(1-x):1 (wherein 0.001<=x<=0.2). The resulting mixture is molten in an atmosphere of an inert gas or an oxidizing gas, and the melt is solidified to obtain a perovskite-type luminescent crystal of the formula (wherein A is Ca<2+> or Sr<2+>; B is Er<3+>; and Ln is Gd<3+> or La<3+>).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光材料として有用
で、光学用計測、光情報処理、光医療、光プロセッシン
グ等コヒーレント光を利用する光応用計測、光医療、光
プロセッシングの分野に於いて、発光材料、レーザー材
料、光増幅材料として有用なペロブスカイト型発光結晶
及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is useful as a light emitting material, and is in the fields of optical measurement, optical information processing, optical medical treatment, optical applied measurement using coherent light such as optical processing, optical medical treatment, and optical processing. , A perovskite type light emitting crystal useful as a light emitting material, a laser material and a light amplifying material, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、ABLn1−xAlO(A:
アルカリ土類イオン、B:発光イオン、Ln:希土類イ
オン)で表される結晶で、発光性を有するものとして
は、発光イオンとしてNd3+、又はEr3+を用いた
CaNd(又はEr0.05 .95AlO(E.
F.Kustov et al、Phys.stat.
sol.41,379(1977))、Nd3+を用い
たCaNdGd1−xAlO(Z.S.Appen
et al、Inorg.Mater.(USSR)
21,716(1985))が知られている。
2. Description of the Related Art Conventionally, AB x Ln 1-x AlO 4 (A:
A crystal represented by an alkaline earth ion, B: a light emitting ion, and Ln: a rare earth ion, which has a light emitting property, is CaNd (or Er 0.05 Y) using Nd 3+ or Er 3+ as a light emitting ion. 0 .95 AlO 4 (E.
F. Kustov et al, Phys. stat.
sol. 41,379 (1977)), CaNd x Gd 1-x AlO 4 with Nd 3+ (Z.S.Appen
et al, Inorg. Mater. (USSR)
21,716 (1985)) is known.

【0003】しかし、上記結晶の内、CaNdLn
1−xAlO(Ln:Y3+、Gd3+)について
は、最も強い発光が1080nm近辺であり、450〜
500nm領域内での発光は弱く、又、上記Erを用い
た結晶についても、可視域の450〜570nm、更に
近赤外域の840〜870nm付近で発光は見られるが
その強度は必ずしも強いものではない。
However, among the above crystals, CaNd x Ln
For 1-x AlO 4 (Ln: Y 3+ , Gd 3+ ), the strongest light emission is around 1080 nm, and 450 to
The light emission is weak in the 500 nm region, and even for the crystal using Er, the light emission is observed in the visible region of 450 to 570 nm and further in the near infrared region of 840 to 870 nm, but the intensity is not necessarily strong. ..

【0004】[0004]

【発明が解決しようとする課題】本発明は、特に、45
0〜570nm、又は840〜870nm領域内での発
光の強い発光材料、又、従来知られていない組成の結晶
で、発光材料として有用な希土類イオンを添加したペロ
ブスカイト型結晶を提供することを目的とするものであ
る。
The present invention is particularly applicable to 45
An object is to provide a light emitting material having a strong light emission within a range of 0 to 570 nm or 840 to 870 nm, and a perovskite type crystal having a composition not known in the art and having a rare earth ion added, which is useful as a light emitting material. To do.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
点の解決のため、従来のNdを添加したCaNdLn
1−xAlO(Ln:Y3+、Gd3+)とは、発光
イオンを異にしたもの、ホストペロブスカイト結晶の組
成を選択することに着目し種々の検討を行った結果本発
明を完成した。即ち本発明は、発光イオンとして、Er
イオンを含む、組成式ABLn1−xAlO
(A:Ca2+又はSr2+、B:Er3+、Ln:
Gd3+、La3+から選ばれる一種、x:0.001
≦x≦0.2)で表されるペロブスカイト型発光結晶に
関するものである。次に本発明を更に詳細に説明する。
In order to solve the above problems, the inventors of the present invention have proposed CaNd x Ln containing CaNd x Ln containing conventional Nd.
The present invention has been completed as a result of various investigations focusing on the selection of the composition of the host perovskite crystal different from that of 1-x AlO 4 (Ln: Y 3+ , Gd 3+ ). That is, the present invention uses Er as the luminescent ion.
Composition formula AB x Ln 1-x AlO containing 3 ions
4 (A: Ca 2+ or Sr 2+ , B: Er 3+ , Ln:
One kind selected from Gd 3+ and La 3+ , x: 0.001
≦ x ≦ 0.2) and perovskite type light emitting crystals. Next, the present invention will be described in more detail.

【0006】本発明で発光イオンとして用いるEr3+
の量は上記した組成式のxで示すように0.001≦x
≦0.2であるが、この量が0.001より小であると
結晶の発光強度が弱く、0.2より大であると濃度消光
を起こすので好ましくない。
Er 3+ used as a luminescent ion in the present invention
Is 0.001 ≦ x as shown by x in the above composition formula.
≦ 0.2, but if this amount is smaller than 0.001, the luminescence intensity of the crystal is weak, and if it is larger than 0.2, concentration quenching occurs, which is not preferable.

【0007】次に本発明の製造方法について説明する。Next, the manufacturing method of the present invention will be described.

【0008】本発明の結晶を得るのに用いる原料は、結
晶を構成する夫々の成分の酸化物等を用いる。即ち、組
成式ABLn1−xAlOに於いて、アルカリ土類
イオンA(A:Ca2+又はSr2+)の炭酸塩又は酸
化物、希土類イオンB(B:Er3+)の酸化物、希土
類イオンンLn(Ln:Gd3+、La3+から選ばれ
る一種)の酸化物、及びAlの酸化物を用い、これらを
原子比で、A:B:Ln:Al=1:x:1−x:1
(0.001≦x≦0.2)の量比で混合し、この混合
物を不活性ガス、例えば、N、Ar、Heの雰囲気下
で、又は、酸化性ガス、例えば酸素を含んだガス雰囲気
下で溶融する。ここで用いる酸素を含んだガス雰囲気は
好ましくは酸素を0.1vol%以上含んだ雰囲気であ
る。
As the raw material used for obtaining the crystal of the present invention, oxides of the respective constituents of the crystal are used. That is, in the composition formula AB x Ln 1-x AlO 4 , a carbonate or oxide of an alkaline earth ion A (A: Ca 2+ or Sr 2+ ), an oxide of a rare earth ion B (B: Er 3+ ), An oxide of a rare earth ion ion Ln (one selected from Ln: Gd 3+ and La 3+ ) and an oxide of Al are used, and these are represented by an atomic ratio of A: B: Ln: Al = 1: x: 1-x: 1
(0.001 ≦ x ≦ 0.2), and the mixture is mixed under an inert gas atmosphere such as N 2 , Ar, or He, or an oxidizing gas such as a gas containing oxygen. Melts under atmosphere. The oxygen-containing gas atmosphere used here is preferably an atmosphere containing 0.1 vol% or more of oxygen.

【0009】還元性雰囲気でこれを行うと、得られる結
晶に酸素欠陥が生じ、これがカラーセンターとなり発光
材料としての品質の低下をもたらす。更に、発光イオン
の価数が2価となる場合があり、発光を阻害する原因と
なる。特に酸素を0.1vol%以上含んだ雰囲気で
は、結晶のカラーセンターの発生が非常に少なく、高品
質な結晶が得られる。
When this is carried out in a reducing atmosphere, oxygen deficiency occurs in the obtained crystal, which becomes a color center and causes a deterioration in the quality of the light emitting material. Further, the valence of the luminescent ion may be divalent, which may cause the luminescence to be inhibited. In particular, in an atmosphere containing 0.1 vol% or more of oxygen, the generation of color centers of crystals is very small, and high quality crystals can be obtained.

【0010】本発明の製造方法での溶融温度は1650
〜1850℃で、フローティングゾーン法、チョコラル
スキー法、ブリッジマン法等の方法で溶融固化して得
る。
The melting temperature in the manufacturing method of the present invention is 1650.
It is obtained by melting and solidifying at ˜1850 ° C. by a floating zone method, Czochralski method, Bridgman method, or the like.

【0011】[0011]

【実施例】次に本発明を実施例により更に詳細に説明す
る。
EXAMPLES The present invention will now be described in more detail by way of examples.

【0012】[0012]

【実施例1】CaCO、Er、Gd、A
を、Ca:Er:Gd:Al=1:0.05:
0.95:1となるように調製して混合した混合物を、
イリジウムルツボに入れて加熱し、1vol%の酸素を
含むArガス雰囲気下、結晶の回転数を10rpm、引
上げ速度を1mm/hで、チョコラルスキー法により、
単結晶を得た。
Example 1 CaCO 3 , Er 2 O 3 , Gd 2 O 3 and A
l 2 O 3 was added to Ca: Er: Gd: Al = 1: 0.05:
The mixture prepared and mixed so that it becomes 0.95: 1,
By placing in an iridium crucible and heating it, in an Ar gas atmosphere containing 1 vol% oxygen, the rotation speed of the crystal was 10 rpm, the pulling rate was 1 mm / h, and by the Czochralski method,
A single crystal was obtained.

【0013】得られた結晶のX線回折の結果から、この
結晶は単相のペロブスカイト型結晶であることが確認さ
れた。又この結晶は、470nm付近、又は540〜5
70nm、840〜870nmの領域で強い発光が見ら
れた。X線回折の結果を図1に、図2に540〜570
nm、840〜870nmの領域の発光スペクトルを示
す。 又、得られた結晶の元素分析の結果CaEr
0.04Gd0.96AlOであった。
From the result of X-ray diffraction of the obtained crystal, it was confirmed that this crystal was a single-phase perovskite type crystal. Also, this crystal is around 470 nm, or 540-5.
Strong light emission was observed in the regions of 70 nm and 840 to 870 nm. The results of X-ray diffraction are shown in FIG. 1 and 540 to 570 in FIG.
2 shows an emission spectrum in the region of nm, 840 to 870 nm. In addition, as a result of elemental analysis of the obtained crystal, CaEr
It was 0.04 Gd 0.96 AlO 4 .

【0014】[0014]

【実施例2】SrCO、Er、Gd、A
を、Sr:Er:Gd:Al=1:0.05:
0.95:1となるように調製して混合した混合物を、
実施例1と同様の方法で単結晶を得た。
Example 2 SrCO 3 , Er 2 O 3 , Gd 2 O 3 and A
l 2 O 3 was added to Sr: Er: Gd: Al = 1: 0.05:
A mixture prepared and mixed so as to be 0.95: 1,
A single crystal was obtained in the same manner as in Example 1.

【0015】得られた結晶のX線回折の結果から、この
結晶は単相のペロブスカイト型結晶であることが確認さ
れた。又この結晶の発光スペクトルについても実施例1
で得た結晶と類似していた。
From the result of X-ray diffraction of the obtained crystal, it was confirmed that this crystal was a single-phase perovskite type crystal. In addition, the emission spectrum of this crystal is also shown in Example 1.
It was similar to the crystals obtained in.

【0016】[0016]

【発明の効果】本発明の発光結晶は発光強度が強く、光
学機器類の発光材料として有用である。
The luminescent crystal of the present invention has a high luminescence intensity and is useful as a luminescent material for optical devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で得た発光結晶のX線回折図FIG. 1 is an X-ray diffraction diagram of a light emitting crystal obtained in an example of the present invention.

【図2】本発明の実施例で得た発光結晶の発光スペクト
ルを示す図
FIG. 2 is a diagram showing an emission spectrum of a light emitting crystal obtained in an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】発光イオンとして、Er3+イオンを含
む、組成式ABLn −xAlO(A:Ca2+
はSr2+、B:Er3+、Ln:Gd3+、La3+
から選ばれる一種、x:0.001≦x≦0.2)で表
されるペロブスカイト型発光結晶。
1. A composition formula AB x Ln 1- x AlO 4 (A: Ca 2+ or Sr 2+ , B: Er 3+ , Ln: Gd 3+ , La 3+) containing Er 3+ ions as luminescent ions.
A perovskite type luminescent crystal represented by the following formula: x: 0.001 ≦ x ≦ 0.2).
【請求項2】アルカリ土類イオンA(A:Ca2+又は
Sr2+)の炭酸塩又は酸化物、希土類イオンB(B:
Er3+)の酸化物、希土類イオンンLn(Ln:Gd
3+、La3+から選ばれる一種)の酸化物、及びAl
の酸化物を、A:B:Ln:Al(原子比)=1:x:
1−x:1(x:0.001≦x≦0.2)の量比で混
合し、不活性ガス又は酸化性ガス雰囲気下で溶融し固化
することを特徴とするペロブスカイト型発光結晶の製造
方法。
2. Alkaline earth ion A (A: Ca 2+ or Sr 2+ ) carbonate or oxide, rare earth ion B (B:
Er 3+ ) oxide, rare earth ion Ln (Ln: Gd)
3+ , an oxide of La 3+ ), and Al
Of the oxide of A: B: Ln: Al (atomic ratio) = 1: x:
1-x: 1 (x: 0.001 ≤ x ≤ 0.2) mixed in a volume ratio, and melted and solidified in an inert gas or oxidizing gas atmosphere to produce a perovskite-type luminescent crystal Method.
JP3271857A 1991-09-25 1991-09-25 Erbium-containing perovskite-type luminescent crystal and its production Pending JPH0586367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3271857A JPH0586367A (en) 1991-09-25 1991-09-25 Erbium-containing perovskite-type luminescent crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3271857A JPH0586367A (en) 1991-09-25 1991-09-25 Erbium-containing perovskite-type luminescent crystal and its production

Publications (1)

Publication Number Publication Date
JPH0586367A true JPH0586367A (en) 1993-04-06

Family

ID=17505855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3271857A Pending JPH0586367A (en) 1991-09-25 1991-09-25 Erbium-containing perovskite-type luminescent crystal and its production

Country Status (1)

Country Link
JP (1) JPH0586367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184203B2 (en) * 2003-02-21 2007-02-27 Burgener Ii Robert H Rare earth compounds having photo-luminescent properties and applications thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184203B2 (en) * 2003-02-21 2007-02-27 Burgener Ii Robert H Rare earth compounds having photo-luminescent properties and applications thereof

Similar Documents

Publication Publication Date Title
US20110277680A1 (en) Artificial corundum crystal
JPH033606B2 (en)
JPS62293791A (en) Lanthanide-magnesium mixed galliumate and laser made of single crystal of the galliumate
JPH0586367A (en) Erbium-containing perovskite-type luminescent crystal and its production
US5998313A (en) Cesium-lithium borate crystal
JPH0586365A (en) Perovskite-type luminescent crystal and its production
JP3301036B2 (en) Glass composition and method for producing the same
JP3334182B2 (en) Laser crystal and manufacturing method thereof
WO2021185756A1 (en) Luminophore, method for producing a luminophore and radiation-emitting component
JP3286680B2 (en) Laser crystal and manufacturing method thereof
JP2005320186A (en) Crystallized glass phosphor
EP0786542B1 (en) Cesium-lithium borate crystal
JPH06350181A (en) Laser crystal and its manufacture
JPH0692721A (en) Laser crystal and its production
JP2005531480A (en) Apatite ceramic pigment
JPH05238897A (en) Rare earth vanadate single crystal
JP2744604B2 (en) Cesium lithium borate crystal
JPH06128090A (en) Perovskite type laser crystal
JPH0710694A (en) Terbium aluminate and its production
JPH06350182A (en) Perovskite laser crystal and its manufacture
JPH06350180A (en) Laser crystal and its manufacture
Chen et al. Study of effects of F/Cl ratio on crystal growth and X-ray excited luminescence of PbFCl
JPH01108124A (en) Titanium-added gadolinium scandium, aluminum garnet crystal and its production
JPH06314838A (en) Laser crystal and manufacture thereof
JPH05304331A (en) Single crystal for solid state laser and laser employing single crystal as laser medium