JPH0584853B2 - - Google Patents

Info

Publication number
JPH0584853B2
JPH0584853B2 JP21493686A JP21493686A JPH0584853B2 JP H0584853 B2 JPH0584853 B2 JP H0584853B2 JP 21493686 A JP21493686 A JP 21493686A JP 21493686 A JP21493686 A JP 21493686A JP H0584853 B2 JPH0584853 B2 JP H0584853B2
Authority
JP
Japan
Prior art keywords
frequency
point
temperature
crystal
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21493686A
Other languages
Japanese (ja)
Other versions
JPS6370130A (en
Inventor
Kaoru Furusawa
Mitsumaro Koike
Atsutoshi Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP21493686A priority Critical patent/JPS6370130A/en
Publication of JPS6370130A publication Critical patent/JPS6370130A/en
Publication of JPH0584853B2 publication Critical patent/JPH0584853B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LCカツト水晶振動子を使用した温
度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature sensor using an LC cut crystal resonator.

〔従来技術と問題点〕[Conventional technology and problems]

水晶振動子のエコー現象(水晶振動子をその共
振周波数でしたのち、この励振を停止すると、当
該水晶振動子が励振停止後、暫時減衰しながら共
振を継続し、共振周波数の振動信号を外部に放出
する現象)を使用した温度センサが公知である。
Echo phenomenon of a crystal oscillator (When a crystal oscillator is operated at its resonant frequency and then the excitation is stopped, the crystal oscillator continues to resonate while attenuating for a while after the excitation stops, and transmits a vibration signal at the resonant frequency to the outside. Temperature sensors using the phenomenon of emission) are known.

すなわち、当該水晶振動子を使用した温度計測
装置は、被測定物又は被測定個所に水晶振動子に
よる温度センサ(以下、水晶温度センサという。)
を取り付け、外部装置より当該水晶温度センサに
周波数が変化する励振信号(電波)を送出する
と、水晶温度センサの共振周波数と一致した周波
数の励振信号の送出時に大きなレベルのエコー信
号(前記励振停止後に水晶振動子から放出される
信号)が検出できることを利用したものであり、
ある種の水晶振動子の共振周波数は温度によつて
変化することから被測定物又は被測定個所の温度
が計測できる。
In other words, the temperature measuring device using the crystal resonator has a temperature sensor (hereinafter referred to as a crystal temperature sensor) using the crystal resonator on the object or location to be measured.
When an excitation signal (radio wave) whose frequency changes is sent to the crystal temperature sensor from an external device, a large level echo signal (after the excitation stops) is generated when the excitation signal with a frequency that matches the resonant frequency of the crystal temperature sensor is sent. This method takes advantage of the fact that the signal emitted from a crystal oscillator can be detected.
Since the resonant frequency of some types of crystal oscillators changes depending on the temperature, the temperature of the object or location to be measured can be measured.

ところで、上記温度計測装置に使用される水晶
温度センサとして、従来、LCカツトの水晶振動
子を3次共振モードで使用するものが直線性の良
好なものとして知られている。
By the way, as a crystal temperature sensor used in the above-mentioned temperature measuring device, one using an LC cut crystal resonator in a third-order resonance mode is conventionally known as one having good linearity.

第2図にLCカツト水晶振動子を3次共振モー
ドで励振したときの周波数スペクトラムを示す。
この第2図は、20℃に於ける周波数スペクトラム
で、周波数軸の1目盛は25KHzで示してある。
Figure 2 shows the frequency spectrum when the LC cut crystal resonator is excited in the third-order resonance mode.
This figure 2 shows the frequency spectrum at 20°C, and each division on the frequency axis is 25KHz.

第2図は、最大レベルが得られるA点の周波数
は28.235MHzで、この周波数より約25KHz高い約
28.26MHz付近にレベルの極大点B点が存在する。
従つて、この水晶温度センサを周波数を変化させ
ながら励振して行くと、温度測定データとしての
エコー信号はA点で検出されるとともに、レベル
はA点より低いが、B点に於いても検出される
(温度測定データとしてのエコー信号の有意性は
共振周波数の極大点で求められる。)。従つて励振
信号の周波数を上記A点とB点の双方を含む範囲
で掃引すると、B点でのエコー信号を温度測定デ
ータとして誤つて検出する恐れがあるため、この
恐れをなくするためには1つのレンジでの励振信
号の周波数掃引巾をA点からB点の間、すなわち
約25KHzとしなければならない。3次共振モード
で使用するLCカツト水晶振動子の温度に対する
感度は、第2図に示す周波数スペクトラムを有す
るものでは約1KHz/℃であるので、1つのレン
ジでの温度測定幅は25℃であつて(上記例で20℃
を最低の温度とする測定レンジを設定すると当該
測定レンジの測定温度範囲は20℃〜45℃であ
る。)、その幅は非常に狭く、このような水晶温度
センサを使用した温度計測装置では多くのレンジ
切換えが必要となる。
In Figure 2, the frequency at point A where the maximum level is obtained is 28.235MHz, which is approximately 25KHz higher than this frequency.
There is a maximum level point B near 28.26MHz.
Therefore, when this crystal temperature sensor is excited while changing the frequency, an echo signal as temperature measurement data is detected at point A, and also at point B, although the level is lower than point A. (The significance of the echo signal as temperature measurement data is determined at the maximum point of the resonance frequency.) Therefore, if the frequency of the excitation signal is swept in a range that includes both points A and B, there is a risk that the echo signal at point B will be mistakenly detected as temperature measurement data. The frequency sweep width of the excitation signal in one range must be between point A and point B, that is, about 25 KHz. The temperature sensitivity of the LC cut crystal resonator used in the third-order resonance mode is approximately 1 KHz/°C with the frequency spectrum shown in Figure 2, so the temperature measurement width in one range is 25°C. (20℃ in the above example)
If a measurement range is set that has the lowest temperature, the measurement temperature range of the measurement range is 20°C to 45°C. ), its width is very narrow, and a temperature measuring device using such a crystal temperature sensor requires many range changes.

〔発明の目的〕[Purpose of the invention]

本発明は、以上に述べた問題点を解決すべく提
案するもので、レンジ巾が大きくとれるような水
晶温度センサを得ることを目的とする。
The present invention is proposed to solve the above-mentioned problems, and an object of the present invention is to obtain a crystal temperature sensor that can have a wide range.

〔発明の概要〕[Summary of the invention]

以上の目的のため、本発明はLCカツト水晶振
動子を極大値間の周波数巾が広くとれる1次共振
モードで駆動するようにしたものである。
For the above purpose, the present invention is configured to drive an LC cut crystal resonator in a first-order resonance mode in which the frequency width between local maximum values can be widened.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例に係るLCカツト水晶
振動子の1次共振モードに於ける周波数スペクト
ラムを示すグラフである。この第1図は前記第2
図の3次共振モードを有するものと同等のLCカ
ツト水晶振動子の1次共振モードに於ける周波数
スペクトラムを示すもので、この第1図は周波数
軸の1目盛を50KHzで示してある。
FIG. 1 is a graph showing the frequency spectrum in the primary resonance mode of the LC cut crystal resonator according to the embodiment of the present invention. This figure 1 is similar to the above-mentioned second figure.
This figure shows the frequency spectrum in the first-order resonance mode of an LC cut crystal resonator that is equivalent to the one having the third-order resonance mode shown in the figure. In this figure, one scale of the frequency axis is shown at 50 KHz.

発明者は、LCカツト水晶振動子の1次共振モ
ードの周波数スペクトラムから、極大値間の周波
数幅が約100KHzあることを見出した。すなわち、
第1図に於いて、最大レベル極大点であるA点の
周波数が9.432MHz(前記第2図に於けるA点の
周波数の約3分の1)であり、これに隣接する極
大点のB点の周波数が約9.54MHzであり、この間
の周波数巾は約100KHzである。従つて前記従来
例の説明から明らかなように水晶温度センサとし
て3次共振モードのLCカツト水晶振動子を使用
した場合の1つのレンジでの周波数掃引幅は約
100KHzとすることができる。
The inventor found that the frequency width between local maximum values is about 100 KHz from the frequency spectrum of the primary resonance mode of the LC cut crystal resonator. That is,
In Figure 1, the frequency of point A, which is the maximum level point, is 9.432 MHz (approximately one-third of the frequency of point A in Figure 2), and the adjacent maximum point B The frequency of the point is approximately 9.54 MHz, and the frequency width between these points is approximately 100 KHz. Therefore, as is clear from the explanation of the conventional example above, when a third-order resonance mode LC cut crystal resonator is used as a crystal temperature sensor, the frequency sweep width in one range is approximately
Can be 100KHz.

また、LCカツト水晶振動子を1次共振モード
で使用する場合の温度に対する周波数変化は約
333Hz/℃(3次共振モードで使用する場合の3
分の1の変化)であるので、1つのレンジで約
300℃の温度測定巾が得られる。
Also, when using an LC cut crystal resonator in the primary resonance mode, the frequency change with temperature is approximately
333Hz/℃ (3 when used in 3rd resonance mode)
(1/1 change), so in one range it is approx.
A temperature measurement width of 300℃ is obtained.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明は水晶温
度センサとしてLCカツト水晶振動子を1次共振
モードで駆動するようにしたものであり、1つの
レンジでの周波数掃引幅が従来に比べて広くで
き、更に当該周波数掃引幅を温度に換算すると1
℃当りの周波数変化幅が3分の1となつて1つの
レンジでの測定可能温度幅が非常に広くなり、通
常の温度測定ではレンジ切換えを事実上必要とし
ない等、本発明は極めて著しい効果を奏するもの
である。
As explained above in detail, the present invention is a crystal temperature sensor in which an LC cut crystal resonator is driven in the primary resonance mode, and the frequency sweep width in one range is wider than that of the conventional one. Furthermore, when converting the frequency sweep width into temperature, it becomes 1
The present invention has extremely significant effects, such as the frequency change width per °C being reduced to one-third, the measurable temperature range in one range is extremely wide, and there is virtually no need to switch ranges in normal temperature measurement. It is something that plays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る水晶温度センサ
の周波数スペクトラム図、第2図は従来の水晶温
度センサの周波数スペクトラム図である。 信号の説明、A……共振の最大レベル極大点、
B……極大点Aに隣接する極大点。
FIG. 1 is a frequency spectrum diagram of a crystal temperature sensor according to an embodiment of the present invention, and FIG. 2 is a frequency spectrum diagram of a conventional crystal temperature sensor. Signal explanation, A...Maximum level local peak point of resonance,
B... Maximum point adjacent to maximum point A.

Claims (1)

【特許請求の範囲】[Claims] 1 LCカツト水晶振動子を使用した温度センサ
に於いて、当該LCカツト水晶振動子を1次共振
モードで駆動するようにした水晶振動子温度セン
サ。
1. A temperature sensor using an LC cut crystal resonator, in which the LC cut crystal resonator is driven in a primary resonance mode.
JP21493686A 1986-09-11 1986-09-11 Quartz resonator temperature sensor Granted JPS6370130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21493686A JPS6370130A (en) 1986-09-11 1986-09-11 Quartz resonator temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21493686A JPS6370130A (en) 1986-09-11 1986-09-11 Quartz resonator temperature sensor

Publications (2)

Publication Number Publication Date
JPS6370130A JPS6370130A (en) 1988-03-30
JPH0584853B2 true JPH0584853B2 (en) 1993-12-03

Family

ID=16664025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21493686A Granted JPS6370130A (en) 1986-09-11 1986-09-11 Quartz resonator temperature sensor

Country Status (1)

Country Link
JP (1) JPS6370130A (en)

Also Published As

Publication number Publication date
JPS6370130A (en) 1988-03-30

Similar Documents

Publication Publication Date Title
US4467235A (en) Surface acoustic wave interferometer
US20020121988A1 (en) Apparatus and method for interrogating a passive sensor
US4650346A (en) Arrangement for ultrasonic temperature measurement using a resonant sensor
JP2003534561A (en) Sensor, sensor system and method for remotely detecting a measurand
US20070229241A1 (en) Tire information detecting system
JPH0584853B2 (en)
JP2000187050A (en) Method for search and decision of resonance frequency and tuner for search and maintenance of resonance frequency
US4860266A (en) Method for operating a transmitting/receiving circuit and a circuit utilizing the method
JP2001017916A (en) Ultrasonic circuit
JPH10115648A (en) Measuring method for equivalent circuit constant of piezoelectric vibrator
JP3436238B2 (en) Piezoelectric body manufacturing apparatus and piezoelectric body manufacturing method
FR3100330A1 (en) Differential acoustic wave pressure sensors
JP2011095092A (en) Glass destruction detector
RU1796900C (en) Device for measuring resonance frequency of mechanical resonators
US20220170799A1 (en) Interrogation of acoustic wave sensors
SU847099A1 (en) Piezo-resonance vacuum meter
KR102688818B1 (en) Inquiry of acoustic wave sensors
JPH0454800A (en) Ultrasonic sensor
SU1747947A1 (en) Piezoelectric-crystal converter of temperature
SU1732298A1 (en) Method of quality factor determining for piezoelectric ceramic element
RU2052888C1 (en) Low-frequency generator on surface acoustic waves
Leisure An improved CW technique for measurement of ultrasonic attenuation
CN116092850A (en) Wireless passive switch and system for high-temperature working condition and application method of wireless passive switch and system
SU1741033A1 (en) Method for measuring physical parameters of object
JPH0420514B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term