JPH10115648A - Measuring method for equivalent circuit constant of piezoelectric vibrator - Google Patents

Measuring method for equivalent circuit constant of piezoelectric vibrator

Info

Publication number
JPH10115648A
JPH10115648A JP27010296A JP27010296A JPH10115648A JP H10115648 A JPH10115648 A JP H10115648A JP 27010296 A JP27010296 A JP 27010296A JP 27010296 A JP27010296 A JP 27010296A JP H10115648 A JPH10115648 A JP H10115648A
Authority
JP
Japan
Prior art keywords
frequency
equivalent circuit
circle
circuit constant
piezoelectric vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27010296A
Other languages
Japanese (ja)
Inventor
Shoichi Mizuno
祥一 水野
Masao Nagano
昌生 長野
Norito Kotani
範人 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP27010296A priority Critical patent/JPH10115648A/en
Publication of JPH10115648A publication Critical patent/JPH10115648A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure in a short time an equivalent circuit constant of a quartz vibrator having a large Q-value. SOLUTION: Dynamic admittance of a quartz vibrator is measured (step 11) with a network analyze at a few measuring points with different frequencies. A circle that the measuring point on a admittance plane fits most is obtained (step 12) with a circle diagram approximation using minimum mean-square method and the frequency (resonance frequency fS) of the resonance frequency point and a pair of frequencies (quadrant frequencies f1 and f2 ) of quadrant frequency points are obtained (step 13) on the circumference of the obtained circle with an approximation calculation on the condition that reactance and frequency are proportional in the frequency region between the pair of quadrant frequency. With the value of each frequency fS, f1 and f2 and conductance GS and susceptance BS at the resonance frequency fS, each equivalence circuit constant of the quartz vibrator is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水晶振動子などの
圧電振動子の等価回路定数を測定する方法に関し、特
に、Q値が大きな水晶振動子に適した等価回路定数測定
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an equivalent circuit constant of a piezoelectric vibrator such as a crystal resonator, and more particularly to a method for measuring an equivalent circuit constant suitable for a crystal resonator having a large Q value.

【0002】[0002]

【従来の技術】水晶振動子などの圧電振動子の等価回路
定数は、ネットワークアナライザなどを用いて動アドミ
タンスを測定し、アドミタンス平面上での動アドミタン
スの周波数軌跡を描くことにより、この周波数軌跡から
求めることができる。ここでは、水晶振動子の場合を例
に挙げて説明するが、他の種類の圧電振動子でも同様の
手順で等価回路定数が決定される。図1(a)は、水晶振
動子の等価回路図であり、図1(b)はアドミタンス平面
上での水晶振動子の動アドミタンスYの周波数軌跡を示
している。
2. Description of the Related Art The equivalent circuit constant of a piezoelectric vibrator such as a crystal vibrator is determined by measuring dynamic admittance using a network analyzer and drawing the frequency trajectory of dynamic admittance on an admittance plane. You can ask. Here, the case of a quartz oscillator will be described as an example, but the equivalent circuit constant is determined in the same procedure for other types of piezoelectric oscillators. FIG. 1A is an equivalent circuit diagram of the crystal resonator, and FIG. 1B shows a frequency locus of dynamic admittance Y of the crystal resonator on an admittance plane.

【0003】図1(a)に示すように、水晶振動子は、抵
抗R1、容量C1、インダクタンスL1からなるLCR直
列回路に、電極間容量に相当する容量C0が直列に接続
された等価回路で表わされる。また、図1(b)では横軸
方向がコンダクタンスG(アドミタンスYの実数成分)
を表わし、縦軸方向がサセプタンスB(アドミタンスY
の虚数成分)を表わしている。さて図1(b)に示す周波
数軌跡91において、コンダクタンスGが最大となる点
の周波数をfsとし(この周波数fsは水晶振動子の直列
共振周波数である)、この点でのコンダクタンスとサセ
プタンスをそれぞれGs,Bsとする。また、コンダクタ
ンスが直列共振周波数fsでのコンダクタンスGsの1/
2である周波数は、それぞれ象限周波数f1,f2と呼ば
れる。象限周波数f1,f2は、動アドミタンスの周波数
軌跡でのサセプタンスBの最大値と最小値とにそれぞれ
対応する。なお、周波数の増加に伴って、各周波数での
動アドミタンスYは、図示矢印方向(時計周り方向)に
周波数軌跡91上を移動する。
As shown in FIG. 1A, a crystal unit has a capacitance C 0 corresponding to a capacitance between electrodes connected in series to an LCR series circuit including a resistor R 1 , a capacitance C 1 , and an inductance L 1. It is represented by an equivalent circuit. In FIG. 1B, the conductance G (the real component of the admittance Y) is plotted along the horizontal axis.
And the vertical axis represents susceptance B (admittance Y).
Imaginary component). In the frequency trajectory 91 shown in FIG. 1B, the frequency at the point where the conductance G is maximum is f s (this frequency f s is the series resonance frequency of the crystal unit), and the conductance and the susceptance at this point are shown. Are G s and B s , respectively. Further, the conductance is 1/1/3 of the conductance G s at the series resonance frequency f s.
The frequencies of 2 are called quadrant frequencies f 1 and f 2 , respectively. The quadrant frequencies f 1 and f 2 correspond to the maximum value and the minimum value of the susceptance B on the frequency trajectory of the dynamic admittance, respectively. As the frequency increases, the dynamic admittance Y at each frequency moves on the frequency trajectory 91 in the direction indicated by the arrow (clockwise).

【0004】周波数軌跡から上述したようにfs,f1,f
2,Gs,Bsが決定されれば、よく知られているように、
水晶発振子のQ値は、 Q=fs/|f2−f1| …(1) で求めることができ、また定数C0,R1,L1,C1は、 C0=Bs/(2πfs) …(2), R1=1/Gs …(3), L1=QR1/(2πfs) …(4), C1=1/(2πfsQR1) …(5) によって算出することができる。
As described above, f s , f 1 , f
Once 2 , G s and B s are determined, as is well known,
Q values of the crystal oscillator, Q = f s / | f 2 -f 1 | ... It can be determined by (1), also the constant C 0, R 1, L 1, C 1 is, C 0 = B s / (2πf s) ... (2 ), R 1 = 1 / G s ... (3), L 1 = QR 1 / (2πf s) ... (4), C 1 = 1 / (2πf s QR 1) ... ( It can be calculated by 5).

【0005】従来は、ネットワークアナライザを用い、
共振周波数fsの近傍の多数の周波数点で動アドミタン
スYを測定し、コンダクタンスGが最大になる周波数を
s、そのときのコンダクタンスとサセプタンスをそれ
ぞれGs,Bs、コンダクタンスがGsの半分である測定点
の周波数をf1,f2とし、上述の式(1)〜(5)を利用し、
等価回路定数やQ値を決定していた。
Conventionally, using a network analyzer,
The dynamic admittance Y is measured at a number of frequency points near the resonance frequency f s , the frequency at which the conductance G is maximum is f s , the conductance and the susceptance at that time are G s and B s , and the conductance is half of G s . Are the frequencies of the measurement points f 1 and f 2 , using the above equations (1) to (5),
Equivalent circuit constants and Q values were determined.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、圧電振
動子のうちでも水晶振動子、なかでもQ値の大きな水晶
振動子の等価回路定数を上述した従来の方法によって決
定する場合、振動子のQ値が大きいので、振動子の応答
に追従できるようにするためには1つの測定点での測定
時間を長くする必要があり、ネットワークアナライザの
掃引速度を遅くしなければならない。また、Q値が大き
いためにf1,f2の周波数差が小さく、このため、精度
よく等価回路定数を決定するためには、周波数分解能を
上げ、細かい周波数刻みで動アドミタンスの測定を行わ
なければならない。
However, when the equivalent circuit constants of the quartz oscillator among the piezoelectric oscillators, particularly the quartz oscillator having a large Q value, are determined by the above-described conventional method, the Q value of the oscillator is determined. Therefore, in order to be able to follow the response of the vibrator, the measurement time at one measurement point needs to be increased, and the sweep speed of the network analyzer must be reduced. Further, since the Q value is large, the frequency difference between f 1 and f 2 is small. Therefore, in order to determine the equivalent circuit constant with high accuracy, the frequency resolution must be increased and the dynamic admittance must be measured at fine frequency increments. Must.

【0007】測定ポイント数は、必要とする周波数分解
能と、掃引すべき周波数スパンから決定されるので、上
述した従来の方法によれば、必然的に測定ポイント数が
多くなってしまう。一方で、ネットワークアナライザの
掃引速度は小さくしなければならないので、結局、測定
時間が大幅に長くなる。例えば、水晶振動子のQ値が1
00倍になれば、このような水晶振動子の等価回路定数
を同じ精度で測定するためには、100倍の測定時間を
要することになる。
Since the number of measurement points is determined from the required frequency resolution and the frequency span to be swept, the number of measurement points inevitably increases according to the above-described conventional method. On the other hand, since the sweep speed of the network analyzer must be reduced, the measurement time eventually increases significantly. For example, if the Q value of the crystal unit is 1
If it is 00 times, 100 times measurement time is required to measure the equivalent circuit constant of such a crystal unit with the same accuracy.

【0008】本発明の目的は、Q値が大きい水晶振動子
であっても、短時間に等価回路定数を決定できる測定方
法を提供することにある。
An object of the present invention is to provide a measuring method capable of determining an equivalent circuit constant in a short time even for a crystal resonator having a large Q value.

【0009】[0009]

【課題を解決するための手段】本発明の圧電振動子の等
価回路決定法は、圧電振動子の等価回路定数を測定する
方法であって、測定対象の圧電振動子の動アドミタンス
を周波数が異なる3個以上の測定点で測定し、各測定点
が当てはまるアドミタンス平面上の円を求め、1対の象
限周波数の間の周波数領域ではリアクタンスと周波数と
が比例することを前提とした近似計算により、円の周上
での共振周波数点の周波数と1対の象限周波数点の周波
数を求め、各周波数によって等価回路定数を算出する。
A method for determining an equivalent circuit of a piezoelectric vibrator according to the present invention is a method for measuring an equivalent circuit constant of a piezoelectric vibrator. The dynamic admittance of a piezoelectric vibrator to be measured is different in frequency. Measure at three or more measurement points, find a circle on the admittance plane to which each measurement point applies, and perform an approximate calculation on the assumption that reactance and frequency are proportional in the frequency domain between a pair of quadrant frequencies. The frequency of the resonance frequency point and the frequency of a pair of quadrant frequency points on the circumference of the circle are determined, and the equivalent circuit constant is calculated based on each frequency.

【0010】本発明の測定法では、まず、測定対象の圧
電振動子の動アドミタンスを数点(3点以上せいぜい十
点程度まで)の測定点で測定し、円線図近似などによっ
て、アドミタンス平面上でこれら測定点を最もよく表わ
す円を求める。この円は、従来法での円形の周波数軌跡
と同等のものであり、この円の周上に、共振周波数点
(コンダクタンスが最大値Gsとなる点)や象限周波数
点(コンダクタンスがGsの1/2である点)を求める
ことができる。しかしながら本発明の場合、周波数は各
測定点でしか分かっていないので、共振周波数fsや象
限周波数f1,f2は別途求めなければならない。
In the measuring method of the present invention, first, the dynamic admittance of the piezoelectric vibrator to be measured is measured at several measuring points (3 to at most about 10), and the admittance plane is approximated by a circle diagram approximation or the like. The circle that best represents these measurement points is determined above. This circle is intended circular equivalent to the frequency trajectory of the conventional method, the peripheral on the circle, the resonance frequency (where the conductance is maximized G s) and quadrant frequency points (conductance is G s点). However, in the case of the present invention, since the frequency is known only at each measurement point, the resonance frequency f s and the quadrant frequencies f 1 and f 2 must be separately obtained.

【0011】ところで本発明は、Q値が大きい場合の等
価回路定数の測定方法を提供することを主眼している
が、Q値が大きければ大きいほど、1対の象限周波数f
1,f2の間の周波数領域(及びこの近傍の周波数領域)
は狭帯域になる。狭帯域であれば、リアクタンスXが周
波数fに比例すると近似できることから、本発明では、
この比例関係を前提として、測定点での周波数及びリア
クタンスと、先に求めた円での共振周波数点及び象限周
波数点のリアクタンスとから、共振周波数fs及び象限
周波数f1,f2を算出する。このように共振周波数fs
び象限周波数f1,f2が算出されれば、あとは、上述の
式(1)〜(5)にしたがって各等価回路定数を決定すればよ
い。
The present invention aims at providing a method for measuring the equivalent circuit constant when the Q value is large, but the larger the Q value, the more the pair of quadrant frequencies f
Frequency domain between 1 and f 2 (and frequency domain in the vicinity)
Becomes a narrow band. In a narrow band, the reactance X can be approximated to be proportional to the frequency f.
Assuming this proportional relationship, the resonance frequency f s and the quadrant frequencies f 1 and f 2 are calculated from the frequency and the reactance at the measurement point and the reactances at the resonance frequency point and the quadrant frequency point in the circle previously obtained. . Once the resonance frequency f s and the quadrant frequencies f 1 , f 2 have been calculated in this way, the equivalent circuit constants may be determined in accordance with the above-described equations (1) to (5).

【0012】本発明において、円線図近似の方法として
は、例えは、最小二乗法などを用いることができる。
In the present invention, as a method of approximating a circle diagram, for example, a least square method can be used.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。図2は本発明の実施の一形
態の圧電振動子の等価回路定数測定法の手順を示すフロ
ーチャートである。ここでは、圧電振動子が水晶振動子
である場合の測定法を説明する。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a flowchart showing a procedure of a method for measuring an equivalent circuit constant of a piezoelectric vibrator according to one embodiment of the present invention. Here, a measuring method when the piezoelectric vibrator is a quartz vibrator will be described.

【0014】まず、ネットワークアナライザを用いて、
予想される共振周波数の近傍の周波数領域での数点の周
波数ポイント(測定点)で、測定対象の水晶振動子の動
アドミタンスYを測定する(ステップ11)。円線図近
似を行う関係上、測定点は3点以上である必要がある。
次に、円線図近似により、ステップ11で得られた測定
点をアドミタンス平面上の円にカーブフィッティング
し、これら測定点を最もよく表わす円を求める(ステッ
プ12)。具体的には、最小二乗法を用いればよい。円
への当てはめを行うための最小二乗法としては、いくつ
かの方法が考えられるが、例えば、以下のようにすれば
よい。
First, using a network analyzer,
At several frequency points (measurement points) in the frequency region near the expected resonance frequency, the dynamic admittance Y of the crystal resonator to be measured is measured (step 11). Because of the approximation of the circle diagram, the number of measurement points needs to be three or more.
Next, the measurement points obtained in step 11 are curve-fitted to circles on the admittance plane by circular diagram approximation, and a circle that best represents these measurement points is obtained (step 12). Specifically, the least squares method may be used. Several methods are conceivable as the least squares method for fitting to a circle. For example, the following method may be used.

【0015】測定点の数が4点以上であるとして、アド
ミタンス平面でこれら測定点の中から選ばれた3点がそ
れぞれ頂点となる三角形を考える。以下ではアドミタン
ス平面のコンダクタンス軸をx軸、サセプタンス軸をy
軸とする。このような三角形のなかで面積が十分に大き
い三角形(例えば、外心が三角形の内部にあるような三
角形)を1つ選び、その三角形の外心P(x,y)を仮に
円の中心とし、この外心Pから各頂点までの距離r(外
心なので相互に等しい)を仮に円の半径とする。また、
各測定点Yiの座標を(xi,yi)で表わすことにする。
Assuming that the number of measurement points is four or more, consider a triangle in which three points selected from these measurement points on the admittance plane are vertices. In the following, the conductance axis of the admittance plane is x axis, and the susceptance axis is y
Axis. Among such triangles, one triangle having a sufficiently large area (for example, a triangle whose outer center is inside the triangle) is selected, and the outer center P (x, y) of the triangle is temporarily set as the center of the circle. The distance r from the circumcenter P to each vertex (equal to each other because of the circumcenter) is temporarily set as the radius of the circle. Also,
The coordinates of each measurement point Y i will be represented by (x i , y i ).

【0016】評価関数Jとして、As the evaluation function J,

【0017】[0017]

【数1】 を考え、この評価関数Jの値が最小となるように(x,
y,r)を変化させることによって、測定点に最もよくあ
てあまる円を決定できることになる。偏微分
(Equation 1) , And (x,
By changing (y, r), the circle that best fits the measurement point can be determined. Partial differential

【0018】[0018]

【外1】 がいずれも0になるようにすればよいのだが、計算を簡
単にするために、真の円の中心をO(X,Y)とし、真の
円の半径をRとし、仮の円の中心Pから見た各測定点Y
iの位相角をθiとして、評価関数Jとして、
[Outside 1] Is set to 0, but for simplicity of calculation, the center of the true circle is O (X, Y), the radius of the true circle is R, and the center of the temporary circle is Each measurement point Y viewed from P
the i phase angle as θ i, as the evaluation function J,

【0019】[0019]

【数2】 を考えるとよい。ここで真の円とは、最小二乗法によっ
て最適解として求められるはずの円のことである。そし
て、
(Equation 2) Think about it. Here, the true circle is a circle that should be obtained as an optimal solution by the least square method. And

【0020】[0020]

【数3】 が成立するようにこの方程式を解いて(X,Y,R)を求め
ればよい。
(Equation 3) (X, Y, R) may be obtained by solving this equation so that

【0021】[0021]

【数4】 であることから、nを測定点数として、X,Yが、(Equation 4) Therefore, when n is the number of measurement points and X and Y are

【0022】[0022]

【数5】 であることが直ちに分かる。また、このようにして求め
たX,Yから、
(Equation 5) Is immediately known. Also, from the X and Y obtained in this way,

【0023】[0023]

【数6】 が示され、(Equation 6) Is shown,

【0024】[0024]

【数7】 である。これにより、測定点に最もよく当てはまる円が
求められたことになる。
(Equation 7) It is. This means that the circle that best fits the measurement point has been determined.

【0025】このようにして求められた円の周上の点で
あって、コンダクタンスが最大になっている点が共振周
波数点であり、この点でのコンダクタンスとサセプタン
スがそれぞれGs,Bsである。また、サセプタンスが最
大値、最小値となっている点が、1対の象限周波数点で
ある。
The point on the circumference of the circle obtained in this way, where the conductance is maximum is the resonance frequency point, and the conductance and susceptance at this point are G s and B s , respectively. is there. The point where the susceptance has the maximum value and the minimum value is a pair of quadrant frequency points.

【0026】このように、アドミタンス平面上の円を求
めたら、次に、リアクタンスと周波数が比例関係にある
ことにより、共振周波数fs、象限周波数f1,f2を決定
する。具体的には、先に求めた円から、共振周波数点及
び各象限周波数点での複素アドミタンスを求める。複素
アドミタンスの逆数が複素インピーダンスであり、複素
インピーダンスにおける虚数成分の値がリアクタンスで
あるから、共振周波数点及び各象限周波数点でのリアク
タンスを計算する。同様に、周波数が既知である各測定
点での動アドミタンスの測定値から、その測定点でのリ
アクタンスを計算する。そして、周波数とリアクタンス
とが比例することを仮定して、直線近似により、各測定
点の測定周波数から、共振周波数点の周波数すなわち共
振周波数fsと、1対の象限周波数点の周波数すなわち
象限周波数f1,f2を決定する。
After the circle on the admittance plane is obtained as described above, the resonance frequency f s and the quadrant frequencies f 1 and f 2 are determined by the fact that the reactance and the frequency are in a proportional relationship. Specifically, the complex admittance at the resonance frequency point and each quadrant frequency point is obtained from the previously obtained circle. Since the reciprocal of the complex admittance is the complex impedance and the value of the imaginary component in the complex impedance is the reactance, the reactance at the resonance frequency point and each quadrant frequency point is calculated. Similarly, the reactance at each measurement point is calculated from the measured value of the dynamic admittance at each measurement point whose frequency is known. Then, assuming that the frequency and reactance proportional, by linear approximation, from the measured frequency of the measuring points, the frequency, that the resonance frequency f s of the resonant frequency points, one pair of quadrants frequency points frequency or quadrant frequency f 1 and f 2 are determined.

【0027】そして、ここまでに求めたfs,f1,f2,G
s,Bsから、上述の式(1)〜(5)を利用して、水晶振動子
の等価回路定数を決定する(ステップ14)。
Then, f s , f 1 , f 2 , G
s, from B s, utilizing the above equation (1) to (5), to determine the equivalent circuit constants of the crystal unit (step 14).

【0028】図3は、上述した測定過程を説明する図で
あって、図3(a)は測定点数が4であるときのアドミタ
ンス平面での測定点Y1〜Y4の配置の一例を示してい
る。また、このように配置された測定点Y1〜Y4に最も
よく当てはまるものとして計算された円21が、図3
(b)に示されている。
FIG. 3 is a diagram for explaining the above-described measuring process. FIG. 3A shows an example of the arrangement of the measuring points Y 1 to Y 4 on the admittance plane when the number of measuring points is four. ing. In addition, the circle 21 calculated as best fitting to the measurement points Y 1 to Y 4 arranged in this way is shown in FIG.
It is shown in (b).

【0029】以上、圧電振動子が水晶発振子である場合
の測定方法について説明したが、本発明が水晶振動子以
外の圧電振動子にも適用できることはいうまでもない。
The measurement method in the case where the piezoelectric vibrator is a quartz oscillator has been described above, but it goes without saying that the present invention can be applied to a piezoelectric oscillator other than a quartz oscillator.

【0030】[0030]

【発明の効果】以上説明したように本発明は、円線図近
似を用い、また、狭帯域におけるリアクタンスと周波数
との比例関係を用いることにより、従来法に比べて著し
く少ない測定ポイント数で圧電振動子の等価回路定数を
決定することが可能になり、特に、Q値が大きな水晶振
動子の等価回路定数を求めるための測定時間を大幅に短
縮することができるという効果がある。
As described above, the present invention uses the circular diagram approximation and the proportional relationship between the reactance and the frequency in the narrow band to obtain a piezoelectric element with a significantly smaller number of measurement points than the conventional method. It is possible to determine the equivalent circuit constant of the resonator, and in particular, there is an effect that the measurement time for obtaining the equivalent circuit constant of the crystal resonator having a large Q value can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は水晶振動子の等価回路図であり、(b)はア
ドミタンス平面上での水晶振動子の動アドミタンスの周
波数軌跡を示す図である。
1A is an equivalent circuit diagram of a crystal resonator, and FIG. 1B is a diagram illustrating a frequency locus of dynamic admittance of the crystal resonator on an admittance plane.

【図2】本発明の実施の一形態の圧電振動子の等価回路
定数測定法の手順を示すフローチャートである。
FIG. 2 is a flowchart showing a procedure of a method for measuring an equivalent circuit constant of a piezoelectric vibrator according to one embodiment of the present invention.

【図3】(a)はアドミタンス平面での測定点の配置の一
例を示す図であり、(b)は測定点に最もよく当てはまる
円を説明する図である。
3A is a diagram illustrating an example of an arrangement of measurement points on an admittance plane, and FIG. 3B is a diagram illustrating a circle that best fits the measurement points.

【符号の説明】[Explanation of symbols]

11〜14 ステップ 21 円 91 周波数軌跡 11-14 steps 21 yen 91 frequency locus

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧電振動子の等価回路定数を測定する方
法であって、 測定対象の圧電振動子の動アドミタンスを周波数が異な
る3個以上の測定点で測定し、 前記各測定点が当てはまるアドミタンス平面上の円を求
め、 1対の象限周波数の間の周波数領域ではリアクタンスと
周波数とが比例することを前提とした近似計算により、
前記円の周上での共振周波数点の周波数と1対の象限周
波数点の周波数を求め、 前記各周波数によって前記等価回路定数を算出する、圧
電振動子の等価回路定数測定法。
1. A method for measuring an equivalent circuit constant of a piezoelectric vibrator, wherein dynamic admittance of a piezoelectric vibrator to be measured is measured at three or more measurement points having different frequencies, and the admittance to which each of the measurement points applies Find a circle on a plane, and perform an approximate calculation on the assumption that reactance and frequency are proportional in the frequency domain between a pair of quadrant frequencies.
A method for measuring an equivalent circuit constant of a piezoelectric vibrator, wherein a frequency of a resonance frequency point and a frequency of a pair of quadrant frequency points on the circumference of the circle are obtained, and the equivalent circuit constant is calculated based on each of the frequencies.
【請求項2】 前記測定点の数が4以上であって、最小
二乗近似に基づく円線図近似により前記円を決定する、
請求項1に記載の圧電振動子の等価回路定数測定法。
2. The method according to claim 1, wherein the number of the measurement points is four or more, and the circle is determined by circle diagram approximation based on least square approximation.
A method for measuring an equivalent circuit constant of the piezoelectric vibrator according to claim 1.
【請求項3】 前記圧電振動子が水晶振動子である請求
項1または2に記載の圧電振動子の等価回路定数測定
法。
3. The method for measuring an equivalent circuit constant of a piezoelectric vibrator according to claim 1, wherein said piezoelectric vibrator is a quartz vibrator.
JP27010296A 1996-10-11 1996-10-11 Measuring method for equivalent circuit constant of piezoelectric vibrator Withdrawn JPH10115648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27010296A JPH10115648A (en) 1996-10-11 1996-10-11 Measuring method for equivalent circuit constant of piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27010296A JPH10115648A (en) 1996-10-11 1996-10-11 Measuring method for equivalent circuit constant of piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JPH10115648A true JPH10115648A (en) 1998-05-06

Family

ID=17481570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27010296A Withdrawn JPH10115648A (en) 1996-10-11 1996-10-11 Measuring method for equivalent circuit constant of piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JPH10115648A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023892A1 (en) * 1999-09-30 2001-04-05 Sensorchem International Corporation Traverse shear mode piezoelectric chemical sensor
JP2005351798A (en) * 2004-06-11 2005-12-22 Ulvac Japan Ltd Measuring method by surface elastic wave element
JP2007071722A (en) * 2005-09-07 2007-03-22 Tokyo Institute Of Technology Method of measuring parameter of elastic wave element
JP2008256518A (en) * 2007-04-04 2008-10-23 Ulvac Japan Ltd Method for measuring change of mass load of piezoelectric element or surface acoustic wave element
WO2009057535A1 (en) * 2007-10-30 2009-05-07 Ngk Insulators, Ltd. Method for inspecting electromechanical characteristic of electromechanical conversion element
WO2009139418A1 (en) * 2008-05-14 2009-11-19 株式会社アルバック Quartz oscillator and measurement method using same
JP2010019694A (en) * 2008-07-10 2010-01-28 Sekonic Corp Viscosity or/and elasticity measuring method of liquid

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023892A1 (en) * 1999-09-30 2001-04-05 Sensorchem International Corporation Traverse shear mode piezoelectric chemical sensor
JP4504106B2 (en) * 2004-06-11 2010-07-14 株式会社アルバック Measuring method using surface acoustic wave device
JP2005351798A (en) * 2004-06-11 2005-12-22 Ulvac Japan Ltd Measuring method by surface elastic wave element
JP2007071722A (en) * 2005-09-07 2007-03-22 Tokyo Institute Of Technology Method of measuring parameter of elastic wave element
JP2008256518A (en) * 2007-04-04 2008-10-23 Ulvac Japan Ltd Method for measuring change of mass load of piezoelectric element or surface acoustic wave element
WO2009057535A1 (en) * 2007-10-30 2009-05-07 Ngk Insulators, Ltd. Method for inspecting electromechanical characteristic of electromechanical conversion element
JP5225284B2 (en) * 2007-10-30 2013-07-03 日本碍子株式会社 Electromechanical property inspection method for electromechanical transducer
JP5140724B2 (en) * 2008-05-14 2013-02-13 株式会社アルバック Quartz crystal resonator and measurement method using the same
WO2009139418A1 (en) * 2008-05-14 2009-11-19 株式会社アルバック Quartz oscillator and measurement method using same
US8601857B2 (en) 2008-05-14 2013-12-10 Ulvac, Inc. Crystal oscillator, and measurement method using same
EP2278298A4 (en) * 2008-05-14 2017-08-30 Ulvac, Inc. Quartz oscillator and measurement method using same
JP4555368B2 (en) * 2008-07-10 2010-09-29 株式会社セコニック Method for measuring viscoelasticity of liquid
JP2010019694A (en) * 2008-07-10 2010-01-28 Sekonic Corp Viscosity or/and elasticity measuring method of liquid

Similar Documents

Publication Publication Date Title
JPH03189503A (en) Apparatus and method for measuring thick- ness of coating
CN113551660B (en) Method for obtaining vibration mode angle of hemispherical resonance gyroscope when electrode angle has error
JPH1172515A (en) Broad-band analog insulation circuit
JPH10115648A (en) Measuring method for equivalent circuit constant of piezoelectric vibrator
CN113252019A (en) Method for acquiring vibration mode angle of hemispherical resonant gyroscope when forward amplification coefficients are inconsistent
CN115824263A (en) Damping trimming method and system based on hemispherical resonator gyroscope
CN112964242B (en) System and method for testing mechanical coupling error of quartz tuning fork gyroscope gauge head
US4782281A (en) Method of measuring the parameters of a resonator
CN115060293B (en) Method for rapidly acquiring attenuation time constant of quartz harmonic oscillator
CN113566844A (en) Harmonic oscillator kinetic parameter detection device based on interdigital electrode
JP5124761B2 (en) Parameter measurement method for acoustic wave device
JPS6347363B2 (en)
Gerber A review of methods for measuring the constants of piezoelectric vibrators
JPH0868817A (en) Method and device for measuring c/i ratio of same or neighboring channel-interference signal with digital-type movable radio system
JPH07113644A (en) Vibrating gyro and driving method thereof
US3309929A (en) Impedance tuning of a piezoelectric device
EP0442670B1 (en) Four frequency measuring process for coupled-dual resonator crystals
Dworsky et al. Air-Gap Probe Evaluation of Thin Quartz Plates
Lippmann et al. Continuous Recording of Resonator Characteristics Using Single-Sideband Modulation
JPH0443223B2 (en)
Jimbo Measurement of frequency
SU1123095A1 (en) Process for checking degree of hyperpolarization of piezoelectric ceramic sample
JPS58166229A (en) Crystal oscillator
Beukema et al. Measuring system for complex shear modulus of liquids using torsionally vibrating quartz crystals
Fujisho et al. A supplemental method for evaluating quartz transducers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106